首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Somatic cell mutagenesis is a powerful tool for characterizing receptor systems. We reported previously two complementation groups of mutant cell lines derived from CD14-transfected Chinese hamster ovary--K1 fibroblasts defective in responses to bacterial endotoxin. Both classes of mutants expressed a normal gene product for Toll-like receptor (TLR)4, and fully responded to stimulation by tumor necrosis factor (TNF)-alpha or interleukin (IL)-1 beta. We identified the lesion in one of the complementation groups in the gene for MD-2, a putative TLR4 coreceptor. The nonresponder phenotype of this mutant was reversed by transfection with MD-2. Cloning of MD-2 from the nonresponder cell line revealed a point mutation in a highly conserved region resulting in a C95Y amino acid exchange. Both forms of MD-2 colocalized with TLR4 on the cell surface after transfection, but only the wild-type cDNA reverted the lipopolysaccharide (LPS) nonresponder phenotype. Furthermore, soluble MD-2, but not soluble MD-2(C95Y), functioned to enable LPS responses in cells that expressed TLR4. Thus, MD-2 is a required component of the LPS signaling complex and can function as a soluble receptor for cells that do not otherwise express it. We hypothesize that MD-2 conformationally affects the extracellular domain of TLR4, perhaps resulting in a change in affinity for LPS or functioning as a portion of the true ligand for TLR4.  相似文献   

2.
3.
Lipopolysaccharide (LPS), an endotoxin of Gram-negative bacteria, activates the innate immunity system through a receptor complex of myeloid differentiation 2 (MD-2) and toll-like receptor 4 (TLR4). MD-2 directly recognizes the lipid A domain of LPS, which triggers MD-2/TLR4-mediated cellular response aimed at eliminating the invaded pathogen. However, excess production of inflammatory mediators is harmful to host tissue and this can cause septic death in extreme cases. MD-2 represents an attractive therapeutic target of inflammatory and immune diseases in human. In particular, eritoran is a synthetic tetraacylated lipid A that binds directly to MD-2 and antagonizes LPS binding to the same site, and it ameliorates various inflammatory conditions due to infection or sterile organ injury. In this review, we outline the recent advances in the structure biology of ligand interaction with MD-2/TLR4, and highlight the MD-2-directed LPS antagonists, which are natural and synthetic chemicals, under development to treat inflammatory diseases.  相似文献   

4.
Toll-like receptors (TLRs) are innate recognition molecules for microbial products, but their direct interactions with corresponding ligands remain unclarified. LPS, a membrane constituent of gram-negative bacteria, is the best-studied TLR ligand and is recognized by TLR4 and MD-2, a molecule associated with the extracellular domain of TLR4. Although TLR4-MD-2 recognizes LPS, little is known about the physical interaction between LPS and TLR4-MD-2. Here, we demonstrate cell surface LPS-TLR4-MD-2 complexes. CD14 greatly enhances the formation of LPS-TLR4-MD-2 complexes, but is not coprecipitated with LPS-TLR4-MD-2 complexes, suggesting a role for CD14 in LPS loading onto TLR4-MD-2 but not in the interaction itself between LPS and TLR4-MD-2. A tentative dissociation constant (Kd) for LPS-TLR4-MD-2 complexes was approximately 3 nM, which is approximately 10-20 times lower than the reported Kd for LPS-MD-2 or LPS-CD14. The presence of detergent disrupts LPS interaction with CD14 but not with TLR4-MD-2. E5531, a lipid A antagonist developed for therapeutic intervention of endotoxin shock, blocks LPS interaction with TLR4-MD-2 at a concentration 100 times lower than that required for blocking LPS interaction with CD14. These results reveal direct LPS interaction with cell surface TLR4-MD-2 that is distinct from that with MD-2 or CD14.  相似文献   

5.
Innate immune receptors for pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) orchestrate inflammatory responses to infection and injury. Secreted by activated immune cells or passively released by damaged cells, HMGB1 is subjected to redox modification that distinctly influences its extracellular functions. Previously, it was unknown how the TLR4 signalosome distinguished between HMGB1 isoforms. Here we demonstrate that the extracellular TLR4 adaptor, myeloid differentiation factor 2 (MD-2), binds specifically to the cytokine-inducing disulfide isoform of HMGB1, to the exclusion of other isoforms. Using MD-2–deficient mice, as well as MD-2 silencing in macrophages, we show a requirement for HMGB1-dependent TLR4 signaling. By screening HMGB1 peptide libraries, we identified a tetramer (FSSE, designated P5779) as a specific MD-2 antagonist preventing MD-2–HMGB1 interaction and TLR4 signaling. P5779 does not interfere with lipopolysaccharide-induced cytokine/chemokine production, thus preserving PAMP-mediated TLR4–MD-2 responses. Furthermore, P5779 can protect mice against hepatic ischemia/reperfusion injury, chemical toxicity, and sepsis. These findings reveal a novel mechanism by which innate systems selectively recognize specific HMGB1 isoforms. The results may direct toward strategies aimed at attenuating DAMP-mediated inflammation while preserving antimicrobial immune responsiveness.After infection or injury, the immediate host inflammatory response is mediated by receptors on innate immune cells that can efficiently recognize pathogen- or damage-associated molecular patterns (PAMPs or DAMPs). For instance, the mammalian response to bacterial endotoxin (LPS) is mediated by the LPS-binding protein (LBP), CD14, MD-2, and TLR4. Upon capturing LPS, LBP transfers it to CD14 and MD-2, which then delivers LPS to the signaling, high-affinity transmembrane receptor TLR4 (Nagai et al., 2002). The engagement of LPS with TLR4 triggers the sequential release of “early” (e.g., TNF, IL-1, and IFN-β) and “late” proinflammatory mediators (e.g., HMGB1; Wang et al., 1999).As a ubiquitous nuclear protein, HMGB1 can be passively released from damaged cells (Scaffidi et al., 2002) after sterile tissue injury as a result of ischemia/reperfusion (I/R; Tsung et al., 2005) or chemical toxicity (Antoine et al., 2013). HMGB1 can signal through a family of receptors, including RAGE (Huttunen et al., 1999), TLR4 (Yang et al., 2010), and cluster of differentiation 24 (CD24)/Siglec-10 (Chen et al., 2009), thereby functioning as a DAMP that alerts, recruits, and activates innate immune cells to produce a wide range of cytokines and chemokines. Thus, seemingly unrelated conditions such as infection and sterile injury can converge on a common process: inflammation, which is orchestrated by HMGB1 actively secreted from innate immune cells or passively released from damaged tissues (Zhang et al., 2010; Andersson and Tracey, 2011). Extracellular HMGB1 has been established as a pathogenic mediator of both infection- and injury-elicited inflammatory diseases (Yang et al., 2013).HMGB1 is a redox-sensitive protein as it contains three conserved cysteine residues at position 23, 45, and 106. The redox status of the cysteines dictates its extracellular chemokine- or cytokine-inducing properties. Specifically, HMGB1 with all cysteine residues reduced (fully reduced HMGB1) binds to CXCL12 and stimulates immune cell infiltration via the CXCR4 receptor in a synergistic fashion. Partially oxidized HMGB1, with a Cys23-Cys45 disulfide bond and a reduced Cys106 (disulfide HMGB1), activates immune cells to produce cytokines/chemokines via the TLR4 receptor. Once all cysteines are terminally oxidized (sulfonyl HMGB1), HMGB1 is devoid of chemotactic and cytokine activities (Tang et al., 2012; Venereau et al., 2012). Previously we showed that HMGB1 induces inflammatory responses via the TLR4–MD-2 signaling pathway and that the interaction with TLR4–MD-2 requires a specific HMGB1 redox form with a distinct atomic structure of thiol-cysteine 106 (Yang et al., 2012). Ample evidence suggests that HMGB1, when actively secreted by activated immune cells or passively released from dying cells, is a mixture of several isoforms with distinct posttranslational modifications (Yang et al., 2013). Paradoxically, it is unknown how the immune system uses the TLR4–MD-2 receptor system to distinguish between different isoforms of HMGB1, specifically recognizing the disulfide HMGB1 molecule to the exclusion of other isoforms.MD-2 carries a hydrophobic pocket folded by two antiparallel β-sheets for binding LPS (Park et al., 2009) and confers molecular specificity for LPS interaction and TLR4 signaling (Nagai et al., 2002; Meng et al., 2010). Accordingly, here we reasoned that MD-2 may similarly discriminate different HMGB1 isoforms to facilitate TLR4-dependent signaling. Our current findings reveal that only the disulfide HMGB1 binds to MD-2, and this interaction is critically important for HMGB1-mediated cytokine/chemokine production and the development of subsequent tissue injury. Screening of HMGB1 peptide libraries identified a tetramer (FSSE, P5779) as a specific MD-2–targeting antagonist that prevents HMGB1–MD-2 interaction and cytokine induction, thereby protecting animals against liver I/R injury, chemical toxemia, and sepsis.  相似文献   

6.
7.
Background  Increasing data support the hypothesis of a local and systemic crosstalk between adipocytes and monocytes mediated by fatty acids. The aim of this study was to characterize the immunomodulatory effects of a large panel of fatty acids on cytokines and chemokines in monocytic THP-1 cells and primary human monocytes. We tested whether anti-inflammatory fatty acids are able to inhibit the binding of lipopolysaccharide (LPS) to its receptor, toll-like receptor/MD-2 (TLR4/MD-2).
Materials and methods  Resistin, monocyte chemoattractant protein-1 (MCP-1) and tumour necrosis factor (TNF) were measured by enzyme-linked immunosorbent assay. Proteins were analysed by Western blot. A designed Flag-tagged TLR4/MD-2 fusion protein (LPS trap) was used to investigate the effect of fatty acids on binding of LPS to its receptor. In 30 patients with type 2 diabetes mellitus (T2D), the correlation of serum triglyceride levels with LPS-induced monocyte activation was analysed.
Results  Eleven fatty acids investigated exerted differential effects on the monocytic release of cytokines and chemokines. Eicosapentaenoic acid had potent anti-inflammatory effects on human primary monocytes and THP-1 cells; 100 and 200 μM eicosapentaenoic acid dose-dependently inhibited LPS binding to the LPS trap. LPS-induced release of monocytic MCP-1 and TNF was significantly and positively correlated with serum triglyceride levels in 30 patients with T2D.
Conclusions  Monocytic activation is differentially regulated by fatty acids and depends on triglyceride levels in T2D. The main finding of the present study shows that eicosapentaenoic acid inhibits the specific binding of LPS to TLR4/MD-2. Eicosapentaenoic acid represents a new anti-inflammatory LPS-antagonist.  相似文献   

8.
Local anesthetics have anti-inflammatory effects. Because most previous experiments were performed with supra-therapeutic concentrations, we measured the effects of clinically relevant concentrations of bupivacaine on the Toll like receptor 4 (TLR4)- and TLR2-myeloid differentiation primary response 88 (MyD88)-nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) pathways. We measured tumor necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) release, p38 mitogen-activated protein kinase (MAP-kinase) phosphorylation and translocation of NF-κB in human peripheral blood mononuclear cells (hPBMCs) and human monocytes challenged with lipopolysaccharide (LPS) or tripalmitoylated lipopeptide Pam3CysSerLys4 (Pam3CSK4) in the presence or absence of bupivacaine. Similarly, we measured the effect of bupivacaine on HEK293 cells expressing the hTLR4 and the hTLR2 genes and challenged with LPS or Pam3CSK4. Finally, molecular docking simulations of R(+)- and S(−)-bupivacaine binding to the TLR4-myeloid differentiation protein 2 (MD-2) complex and to the TLR2/TLR1 heterodimer were performed. In PBMCs, bupivacaine from 0.1 to 100 μM inhibited LPS-induced TNF-α and PGE2 secretion, phosphorylation of p38 and nuclear translocation of NF-κB in monocytes. Bupivacaine similarly inhibited the effects of Pam3CSK4 on TNF-α secretion. Bupivacaine inhibited the effect of LPS on HEK293 cells expressing the human TLR4 receptor and the effect of Pam3CSK4 on HEK293 cells expressing the human TLR2 receptor. Molecular docking showed that bupivacaine binds to the MD-2 co-receptor of TLR4 and to the TLR2 receptor. Contrary to numerous experiments performed with supratherapeutic doses, our results were obtained with concentrations of bupivacaine as low as 0.1 μM. We conclude that bupivacaine modulates the inflammatory reactions such as those observed after surgery or trauma, at least partly by inhibiting the TLR4- and TLR2-NF-κB pathways.  相似文献   

9.
目的 探讨性别差异对脓毒症大鼠肺组织Toll样受体4(TLR4)、髓样分化蛋白-2(MD-2)和肿瘤坏死因子-α(TNF-α)基因表达的影响。方法脂多糖(LPS)刺激前后留取雌性和雄性大鼠肺组织标本,提取总RNA,采用半定量逆转录-聚合酶链反应(RT-PCR)测定TLR4、MD-2和TNF-α基因表达情况,采用放射免疫测定法检测大鼠血浆雌二醇(E2)含量。结果正常雌性和雄性大鼠肺组织均可表达少量TLR4、MD-2和TNF-α基因,性别间差异均无显著性(P均〉0.05),但脓毒症雌性大鼠各项指标表达均明显弱于雄性(P均〈0.01)。相关分析表明,雌性和雄性脓毒症大鼠肺组织TLR4、TNF-α mRNA表达与血浆E2含量均呈显著负相关(P均〈0.05)。结论LPS诱导的肺组织TLR4信号转导通路活化存在性别差异,内源性雌激素作用可能导致雌性脓毒症大鼠对LPS的反应性弱于雄性。  相似文献   

10.
11.
Objective: During preconditioning, lipopolysaccharide (LPS) selectively activates TLR4/MD-2/Toll/IL-1 receptor-domain-containing adaptor inducing IFN-β (TRIF) pathway instead of pro-inflammatory myeloid differentiation protein-88 (MyD88)/MyD88-adaptor-like protein (MAL) pathway. Extracellular prothymosin alpha (ProTα) is also known to selectively activate the TLR4/MD2/TRIF–IRF3 pathway in certain diseased conditions. In the current study, biophysical evidence for ProTα/TLR4/MD-2 complex formation and its interaction dynamics have been studied.

Research design and methods: Gravimetric assay was used to investigate ProTα/TLR4/MD-2 complex formation while molecular dynamics (MD) simulation was used to study its interaction dynamics.

Results: Through electrostatic interaction, full-length ProTα (F-ProTα) C-terminal peptide (aa 91 – 111) superficially interacts with similar TLR4/MD-2 (KD = 273.36 nm vs 16.07 μg/ml [LPS]) conformation with LPS at an overlapping three-dimensional space while F-ProTα is hinged to the TLR4 scaffold by one-amino acid shift-Mosoian domain (aa-51 – 90). Comparatively, F-ProTα better stabilizes MD-2 metastable states transition and mediates higher TLR4/MD-2 interaction than LPS.

Conclusions: ProTα via its C-terminal peptide (aa 91 – 111) exhibits in vitro biophysical contact with TLR4/MD-2 complex conformation recognized by LPS at overlapping LPS-binding positions.  相似文献   

12.
Toll-IL-1-resistance (TIR) domain-containing adaptor-inducing IFN-beta (TRIF)-related adaptor molecule (TRAM) is the fourth TIR domain-containing adaptor protein to be described that participates in Toll receptor signaling. Like TRIF, TRAM activates interferon regulatory factor (IRF)-3, IRF-7, and NF-kappaB-dependent signaling pathways. Toll-like receptor (TLR)3 and 4 activate these pathways to induce IFN-alpha/beta, regulated on activation, normal T cell expressed and secreted (RANTES), and gamma interferon-inducible protein 10 (IP-10) expression independently of the adaptor protein myeloid differentiation factor 88 (MyD88). Dominant negative and siRNA studies performed here demonstrate that TRIF functions downstream of both the TLR3 (dsRNA) and TLR4 (LPS) signaling pathways, whereas the function of TRAM is restricted to the TLR4 pathway. TRAM interacts with TRIF, MyD88 adaptor-like protein (Mal)/TIRAP, and TLR4 but not with TLR3. These studies suggest that TRIF and TRAM both function in LPS-TLR4 signaling to regulate the MyD88-independent pathway during the innate immune response to LPS.  相似文献   

13.
Lipopolysaccharide (LPS) and muramyl dipeptide (MDP) are components of microbial cell walls that cause innate immune responses and inflammation. Toll-like receptor 4 (TLR4) is a receptor for LPS and transduces signals through myeloid differentiation factor 88 (MyD88), which plays essential roles in the TLR/IL-1R signaling and activates NF-kappaB and MAP kinase pathways to induce RANKL expression in osteoblasts. Osteoblasts express NOD2, an intracellular sensor for MDP, in response to LPS, IL-1 and TNF. NOD2 binds RIP2, a serine/threonine kinase which transduces NF-kappaB signaling. Thus MDP synergistically enhances osteoclast formation induced by LPS, IL-1 and TNF through RANK ligand up-regulation in osteoblasts. In summary, innate immune receptors, TLR4 and NOD2, recognize bacterial components on cell surfaces and inside cells, respectively, and these signals cross-talk to induce RANKL expression in osteoblasts, which results in enhancing osteoclast formation and function.  相似文献   

14.
Endotoxin tolerance is defined as a reduced responsiveness to a lipopolysaccharide (LPS) challenge following a first encounter with endotoxin. Endotoxin tolerance protects against a lethal challenge of LPS and prevents infection and ischemia-reperfusion damage. Endotoxin tolerance is paralleled by a dramatic reduction of tumor necrosis factor (TNF) production and some other cytokines in response to LPS. Endotoxin tolerance involves the participation of macrophages and mediators, such as glucocorticoids, prostaglandins, IL-10, and transforming growth factor-β. Endotoxin tolerance is accompanied by the up-regulation of inhibitory molecules that down-regulate the Toll-like receptor (TLR)4-dependent signaling pathway. Cross-tolerance between LPS and other TLR specific ligands, as well as IL-1 and TNF, has been regularly reported. A similar loss of LPS reactivity has been repeatedly reported in circulating leukocytes of septic patients and in patients with non-infectious systemic inflammation response syndrome (SIRS). Studies on cellular signaling within leukocytes from septic and SIRS patients reveal numerous alterations reminiscent of those observed in endotoxin tolerant cells. However, altered responsiveness to LPS of leukocytes from sepsis and SIRS patients is not synonymous with a global down-regulation of cellular reactivity. The term 'cellular reprogramming', which has been proposed to qualify the process of endotoxin tolerance, defines well the immune status of circulating leukocytes in septic and SIRS patients.  相似文献   

15.
Oxidative stress generated by ischemia/reperfusion is known to prime inflammatory cells for increased responsiveness to subsequent stimuli, such as lipopolysaccharide (LPS). The mechanism(s) underlying this effect remains poorly elucidated. These studies show that alveolar macrophages recovered from rodents subjected to hemorrhagic shock/resuscitation expressed increased surface levels of Toll-like receptor 4 (TLR4), an effect inhibited by adding the antioxidant N-acetylcysteine to the resuscitation fluid. Consistent with a role for oxidative stress in this effect, in vitro H2O2 treatment of RAW 264.7 macrophages similarly caused an increase in surface TLR4. The H2O2-induced increase in surface TLR4 was prevented by depleting intracellular calcium or disrupting the cytoskeleton, suggesting the involvement of receptor exocytosis. Further, fluorescent resonance energy transfer between TLR4 and the raft marker GM1 as well as biochemical analysis of the raft components demonstrated that oxidative stress redistributes TLR4 to lipid rafts in the plasma membrane. Preventing the oxidant-induced movement of TLR4 to lipid rafts using methyl-beta-cyclodextrin precluded the increased responsiveness of cells to LPS after H2O2 treatment. Collectively, these studies suggest a novel mechanism whereby oxidative stress might prime the responsiveness of cells of the innate immune system.  相似文献   

16.
17.
Bacterial lipopolysaccharide (LPS) triggers innate immune responses through the Toll-like receptor (TLR) 4. Regulation of TLR signaling is a key step for inflammation, septic shock and innate/adaptive immunity. TLR signaling is shown to be regulated by cytokines, such as interferon-gamma (positive) and interleukin-10 and IL-4 (negative). However, molecular mechanisms of the regulation of LPS signaling by cytokines have not been clarified. Cytokine signaling is regulated by CIS/SOCS family proteins. Both SOCS1 and SOCS3 can inhibit JAK tyrosine kinase activity. We demonstrate that SOCS1 and SOCS3 play an important regulatory role in macrophages and dendritic cells (DCs) by modulating TLR signaling. SOCS1 negatively regulates not only the JAK/STAT pathway, but also the TLR-NF-kappaB pathway. SOCS3 protein was strongly induced by both IL-6 and IL-10 in the presence of LPS, but selectively inhibited IL-6 signaling. Therefore lack of SOCS3 gene in macrophages resulted in suppression of TLR signaling by hyperactivation of STAT3.  相似文献   

18.
Receptor-interacting protein (RIP) has been reported to associate with tumor necrosis-associated factor (TRAF)2 and TRAF6. Since TRAF2 and TRAF6 play important roles in CD40 signaling and TRAF6 plays an important role in TLR4 signaling, we examined the role of RIP in signaling via CD40 and TLR4. Splenocytes from RIP(-/-) mice proliferated and underwent isotype switching normally in response to anti-CD40-IL-4 but completely failed to do so in response to LPS-IL-4. However, they normally up-regulated TNF-alpha and IL-6 gene expression and CD54 and CD86 surface expression after LPS stimulation. RIP(-/-) splenocytes exhibited increased apoptosis and impaired Akt phosphorylation after LPS stimulation. These results suggest that RIP is essential for cell survival after TLR4 signaling and links TLR4 to the phosphatidylinositol 3 kinase-Akt pathway.  相似文献   

19.
The susceptibility to infections induced by Gram-negative bacteria is largely determined by innate immune responses to bacteria cell wall lipopolysaccharide (LPS). The stimulation of B cells by LPS enhances their antigen-presenting capacity and is accompanied by B cell proliferation and secretion of large quantities of LPS-neutralizing antibodies. Similar to macrophages and neutrophils, the LPS-induced activation of B cells is dependent on Toll-like receptor (TLR)4. Here, we demonstrate that the responses of B cells to LPS are also regulated by another TLR protein, RP105, which is predominantly expressed on mature B cells in mice and humans. The analysis of mice homozygous for the null mutation in the RP105 gene revealed impaired proliferative and humoral immune responses of RP105-deficient B cells to LPS. Using originally LPS-unresponsive Ba/F3 cells expressing exogenous TLR4 and RP105, we demonstrate the functional cooperation between TLR4 and RP105 in LPS-induced nuclear factor kappaB activation. These data suggest the existence of the TLR4-RP105 signaling module in the LPS-induced B cell activation.  相似文献   

20.
Bacterial lipopolysaccharide (LPS), the major structural component of the outer wall of Gram-negative bacteria, is a potent activator of macrophages. Activated macrophages produce a variety of inflammatory cytokines. Excessive production of cytokines in response to LPS is regarded as the cause of septic shock. On the other hand, macrophages exposed to suboptimal doses of LPS are rendered tolerant to subsequent exposure to LPS and manifest a profoundly altered response to LPS. Increasing evidence suggests that monocytic cells from patients with sepsis and septic shock survivors have characteristics of LPS tolerance. Thus, an understanding of the molecular mechanisms underlying activation and deactivation of macrophages in response to LPS is important for the development of therapeutics for septic shock and the treatment of septic shock survivors. Over the past several years, significant progress has been made in identifying and characterizing several key molecules and signal pathways involved in the regulation of macrophage functions by LPS. In this paper, we summarize the current findings of the functions of the LPS receptor complex, which is composed of CD14, Toll-like receptor 4 (TLR4), and myeloid differentiation protein-2 (MD-2), and the signal pathways of this LPS receptor complex with regard to both activation and deactivation of macrophages by LPS. In addition, recent therapeutic approaches for septic shock targeting the LPS receptor complex are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号