首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background Our study evaluated the influence of short-term growth hormone treatment on the remnant kidney in 5/6 nephrectomized uremic rats Methods Twenty male Sprague-Dawley rats were divided into 4 groups: sham-operated control rats (SC, n=4); sham-operated rats treated with recombinant human growth hormone (SGH, n=4); uremic (5/6 nephrectomized) control rats (UrC, n=6); and uremic rats treated with recombinant human growth hormone (UrGH, n=6). Total food intake, food efficiency, average daily food intake per 100 g body weight, weight gain, increase in body length, creatinine clearance, and kidney weight per 100 g body weight were measured. Glomerular tuft area was determined, and the severity of glomerular sclerosis was scored. Insulin-like growth factor-I was localized in the kidneys by immunostaining. Results Weight gain, increase in body length, food efficiency, and food intake per unit body weight were greatest in the SGH group; in UrGH animals, food efficiency and food intake per unit body weight were significantly higher than those in UrC rats. Creatinine clearance in uremic rats was significantly reduced compared with that in sham-operated animals. There was no difference in the ratio of kidney weight to body weight among the groups. The average glomerular area was greatest, and the glomerular sclerosis index was highest, in the UrGH group. No insulin-like growth factor-I could be identified in the glomeruli. Conclusions Growth-hormone treatment augmented daily food intake, and the more rapid progression to glomerular sclerosis in hormone-treated uremic rats is probably due mainly to increased daily protein intake. This study was partly presented at both the 38th Annual Meeting of the Japanese Society of Nephrology and the Sixth Asian Pacific Congress of Nephrology  相似文献   

2.
BACKGROUND: Harmful uremic toxins, such as indoxyl sulfate (IS), 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), indoleacetate (IA), and hippurate (HA), accumulate to a high degree in uremic plasma. IS has been shown to be a substrate of rat organic anion transporter 1 (rOat1) and rOat3. However, the contribution of rOat1 and rOat3 to the renal uptake transport process of IS and other uremic toxins in the kidney remains unknown. METHODS: The cellular uptake of uremic toxins was determined using stable transfectants of rOat1/hOAT1 and rOat3/hOAT3 cells. Also, the uptake of uremic toxins by rat kidney slices was characterized to evaluate the contribution of rOat1 and rOat3 to the total uptake by kidney slices using inhibitors of rOat1 (p-aminohippurate) and rOat3 (pravastatin and benzylpenicillin). RESULTS: Saturable uptake of IS, CMPF, IA, and HA by rOat1 was observed with Km values of 18, 154, 47, and 28 micromol/L, respectively, whereas significant uptake of IS and CMPF, but not of IA or HA, was observed in rOat3-expressing cells with Km values of 174 and 11 micromol/L, respectively. Similar parameters were obtained for human OAT1 and OAT3. Kinetic analysis of the IS uptake by kidney slices revealed involvement of two saturable components with Km1 (24 micromol/L) and Km2 (196 micromol/L) values that were comparable with those of rOat1 and rOat3. The Km value of CMPF uptake by kidney slices (22 micromol/L) was comparable with that of rOat3, while the corresponding values of IA and HA (42 and 33 micromol/L, respectively) were similar to those of rOat1. PAH preferentially inhibited the uptake of IA and HA by kidney slices, while pravastatin and benzylpenicillin preferentially inhibited the uptake of CMPF. The effect of these inhibitors on the uptake of IS by kidney slices was partial. CONCLUSIONS: rOat1/hOAT1 and rOat3/hOAT3 play major roles in the renal uptake of uremic toxins on the basolateral membrane of the proximal tubules. Both OAT1 and OAT3 contribute almost equally to the renal uptake of IS. OAT3 mainly accounts for CMPF uptake by the kidney, while OAT1 mainly accounts for IA and HA uptake.  相似文献   

3.
4.
BACKGROUND: Cisplatin (CP) induced polyuria in rats is associated with a reduction in medullary hypertonicity, normally generated by the thick ascending limb (TAL) salt transporters, and the collecting duct urea transporters (UT). To investigate the molecular basis of this abnormality, we determined the protein abundance of major salt and UT isoforms in rat kidney during CP-induced polyuria. METHODS: Male Sprague-Dawley rats received either a single injection of CP (5 mg/kg, N = 6) or saline (N = 6) intraperitoneally five days before sacrifice. Urine, blood, and kidneys were collected and analyzed. RESULTS: CP-treated rats developed polyuric acute renal failure as assessed by increased blood urea nitrogen (BUN), urine volume and decreased urine osmolality. Western analysis of kidney homogenates revealed a marked reduction in band density of the bumetanide-sensitive Na-K-2Cl cotransporter in cortex (60% of control values, P < 0.05), but not in outer medulla (OM) (106% of control values). There were no differences in band densities for the renal outer medullary potassium channel (ROMK), the type III Na-H exchanger (NHE3), the alpha-subunit of Na,K-ATPase in the OM; or for UT-A1, UT-A2 or UT-A4 in outer or inner medulla. However, the band pattern of UT-A2 and UT-A4 proteins in the OM of CP-treated rats was different from the control rats, suggesting a qualitative modification of these proteins. CONCLUSIONS: Changes in the abundance of outer or inner medullary salt or urea transporters are unlikely to play a role in the CP-induced reduction in medullary hypertonicity. However, qualitative changes in UT proteins may affect their functionality and thus may have a role.  相似文献   

5.
BACKGROUND: Lithium is commonly used to treat bipolar psychiatric disorders but can cause reduced urine concentrating ability. METHODS: To test whether lithium alters UT-A1 or UT-B urea transporter protein abundance or UT-A1 phosphorylation, rats were fed a standard diet supplemented with LiCl for 10 or 25 days, and then compared to pair-fed control rats. To investigate another potential mechanism for decreased urea transport, inner medullary collecting duct (IMCD) suspensions from lithium-fed or control rats were incubated with 32P-orthophosphate to measure the phosphorylation of UT-A1. RESULTS: In lithium-fed rats (25 days), UT-A1 abundance was reduced to 50% of control rats in IM tip and to 25% in IM base, and UT-B abundance was reduced to 40% in IM base. Aquaporin-2 (AQP2) protein abundance was reduced in both IM regions. Vasopressin (100 pmol/L) increased UT-A1 phosphorylation in IMCD suspensions from control but not from lithium-fed rats; a higher vasopressin concentration (100 nmol/L) increased UT-A1 phosphorylation in control and lithium-fed rats. CONCLUSIONS: Decreases in UT-A1, UT-B, and AQP2 protein abundance, and/or vasopressin-stimulated phosphorylation of UT-A1, can contribute to the reduced urine concentrating ability that occurs in lithium-treated rats.  相似文献   

6.
The effect of adrenalectomy on the enhanced protein degradation in acute uremia was investigated. Therefore, serum urea nitrogen, urea N appearance and Nt-methylhistidine were followed in bilaterally nephrectomized rats. At 48 h after induction of uremia the animals displayed serum urea nitrogen levels of 223 +/- 9.5 mg/dl as compared to 26.0 +/- 1.0 mg/dl in sham-treated rats. This increment was significantly attenuated in acutely uremic, adrenalectomized animals (176 +/- 6.0 mg/dl). When these rats were substituted with corticosterone (5 mg/kg body weight), serum urea nitrogen readily increased to levels of acutely uremic animals with intact adrenal glands (225 +/- 6.0 mg/dl). The net generation of urea, as determined by the urea N appearance, was significantly increased during acute uremia (370 +/- 26 mg/48 h) as compared to SHAM animals (220 +/- 15 mg/48 h). This increment of urea formation could almost be completely reversed by simultaneous adrenalectomy (238 +/- 20 mg/48 h). When these rats were substituted with corticosterone, the urea N appearance rebounded to values quite comparable to acutely uremic rats with intact adrenal glands (363 +/- 30 mg/48 h). To determine whether skeletal muscle proteins might serve as a source for the enhanced protein degradation in acute uremia, plasma levels of Nt-methylhistidine were measured. Bilaterally nephrectomized rats had Nt-methylhistidine values of 9.6 +/- 1.0 micrograms/ml. In acutely uremic rats without adrenal glands, Nt-methylhistidine levels were found to be significantly decreased (6.0 +/- 0.4 micrograms/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Previous studies have reported that pentoxifylline, a phosphodiesterase inhibitor, attenuates experimental mesangial proliferative glomerulonephritis. This study hypothesized that pentoxifylline could also attenuate the renal disease progression in rats with remnant kidney. After 5/6 subtotal nephrectomy, rats developed progressively elevated proteinuria and plasma creatinine, glomerulosclerosis, interstitial inflammation, and fibrosis, all of which were attenuated by 40 to 60% by pentoxifylline. However, the elevated BP was not changed by pentoxifylline. Pentoxifylline reduced the upregulation of monocyte chemoattractant protein-1 gene by 60% in the cortex of remnant kidney, as well as in a dose-dependent manner in the albumin- or angiotensin II-stimulated proximal tubular cells. It also reduced the upregulation of mitogenic and profibrogenic genes by 50%, including platelet-derived growth factor, fibroblast growth factor-2, transforming growth factor-beta(1), connective tissue growth factor, and types I and III collagen in the cortex of remnant kidney. Furthermore, pentoxifylline was found to decrease the numbers of interstitial myofibroblasts by 60% in the cortex of remnant kidney and suppress the proliferation of cultured interstitial fibroblasts. It also reduced the angiotensin II-induced or transforming growth factor-beta(1)-induced expression of connective tissue growth factor gene in cultured fibroblasts and mesangial cells. Combining pentoxifylline with an angiotensin-converting enzyme inhibitor, cilazapril, almost completely attenuated the renal disease progression in rats with remnant kidney. In conclusion, pentoxifylline alone can attenuate the chronic renal disease progression. Its combination with cilazapril has the potential to prevent the renal disease progression almost completely.  相似文献   

8.
Regulation of renal urea transporters   总被引:3,自引:0,他引:3  
Urea is important for the conservation of body water due to its role in the production of concentrated urine in the renal inner medulla. Physiologic data demonstrate that urea is transported by facilitated and by active urea transporter proteins. The facilitated urea transporter (UT-A) in the terminal inner medullary collecting duct (IMCD) permits very high rates of transepithelial urea transport and results in the delivery of large amounts of urea into the deepest portions of the inner medulla where it is needed to maintain a high interstitial osmolality for concentrating the urine maximally. Four isoforms of the UT-A urea transporter family have been cloned to date. The facilitated urea transporter (UT-B) in erythrocytes permits these cells to lose urea rapidly as they traverse the ascending vasa recta, thereby preventing loss of urea from the medulla and decreasing urine-concentrating ability by decreasing the efficiency of countercurrent exchange, as occurs in Jk null individuals (who lack Kidd antigen). In addition to these facilitated urea transporters, three sodium-dependent, secondary active urea transport mechanisms have been characterized functionally in IMCD subsegments: (1) active urea reabsorption in the apical membrane of initial IMCD from low-protein fed or hypercalcemic rats; (2) active urea reabsorption in the basolateral membrane of initial IMCD from furosemide-treated rats; and (3) active urea secretion in the apical membrane of terminal IMCD from untreated rats. This review focuses on the physiologic, biophysical, and molecular evidence for facilitated and active urea transporters, and integrative studies of their acute and long-term regulation in rats with reduced urine-concentrating ability.  相似文献   

9.
BACKGROUND: Hyperuricemia has been associated with renal disease. Because glomerular hemodynamic alterations critically contribute to initiation and progression of renal disease, we evaluated the effect of mild hyperuricemia in glomerular microcirculatory changes in rats under normal conditions and with renal injury induced by subtotal renal ablation (RK). METHODS: Hyperuricemia was induced in normal and remnant kidney (RK) rats on a normal sodium diet by administration of oxonic acid (OA). To prevent hyperuricemia, allopurinol (AP) was administered concomitantly. Glomerular hemodynamics were evaluated by micropuncture techniques. Systolic blood pressure (SBP), proteinuria, arterial morphology, and serum uric acid were measured. In RK rats, glomerulosclerosis, fibrosis, and inflammatory cell infiltration (CD5+) were also assessed. RESULTS: In normal rats, hyperuricemia resulted in afferent arteriole thickening associated with renal cortical vasoconstriction [single nephron glomerular filtration rate (SNGFR) -35%, P < 0.05) and glomerular hypertension (P < 0.05). Allopurinol treatment prevented structural and functional alterations. In RK rats, hyperuricemia produced more renal vascular damage than control animals coupled with severe cortical vasoconstriction (SNGFR -40%, P < 0.05) and persistent glomerular hypertension. Allopurinol partially prevented cortical vasoconstriction, and fully prevented arteriolopathy and glomerular hypertension associated with significantly less infiltration of CD5+ cells. CONCLUSION: Hyperuricemia induces arteriolopathy of preglomerular vessels, which impairs the autoregulatory response of afferent arterioles, resulting in glomerular hypertension. Lumen obliteration induced by vascular wall thickening produces severe renal hypoperfusion. The resulting ischemia is a potent stimulus that induces tubulointerstitial inflammation and fibrosis, as well as arterial hypertension. These studies provide a potential mechanism by which hyperuricemia can mediate hypertension and renal disease.  相似文献   

10.
A J Adler  G M Berlyne 《Nephron》1985,41(4):354-358
The exchange of calcium between serum, cerebrum and cerebral mitochondria was studied in chronically uremic rats. Chemical and radiocalcium assays were performed at periods from 1 to 48 h following intracardiac injection of 45Ca. The disappearance of 45Ca from the serum of uremic rats was identical to that observed in normals. Maximal uptake and equilibration with serum by both cerebrum and cerebral mitochondria were assessed in uremic rats by means of relative specific activities (RSAs) and found not to differ significantly from normal. Peak levels occurred at 6 h for cerebrum and between 4 and 6 h for mitochondria. These results indicate that in the rat, calcium uptake by the brain over a period of 48 h is not altered by chronic renal failure. Moreover, the findings in brain mitochondria suggest that the intracellular calcium burden may not be increased by uremia.  相似文献   

11.
The control of serum phosphorus (P) and calcium-phosphate (Ca x P) product is critical to the prevention of ectopic calcification in chronic renal failure (CRF). Whereas calcium (Ca) salts, the most commonly used phosphate binders, markedly increase serum Ca and positive Ca balance, the new calcium- and aluminum-free phosphate binder, sevelamer hydrochloride (RenaGel), reduces serum P without altering serum Ca in hemodialysis patients. Using an experimental model of CRF, these studies compare sevelamer and calcium carbonate (CaCO(3)) in the control of serum P, secondary hyperparathyroidism (SH), and ectopic calcifications. 5/6 nephrectomized rats underwent one of the following treatments for 3 mo: uremic + high-P diet (U-HP); UHP + 3% CaCO(3) (U-HP+C); UHP + 3% sevelamer (U-HP+S). Sevelamer treatment controlled serum P independent of increases in serum Ca, thus reducing serum Ca x P product and further deterioration of renal function, as indicated by the highest creatinine clearances. Sevelamer was as effective as CaCO(3) in the control of high-P-induced SH, as shown by similar serum PTH levels, parathyroid (PT) gland weight, and markers of PT hyperplasia. Also, both P binders elicited similar efficacy in reducing the myocardial and hepatic calcifications induced by uremia. However, sevelamer caused a dramatic reduction of renal Ca deposition (29.8 +/- 8.6 micro g/g wet tissue) compared with both U-HP (175.5 +/- 45.7 micro g/g wet tissue, P < 0.01) and the U-HP+C (58.9 +/- 13.7 micro g/g wet tissue, P < 0.04). Histochemical analyses using Von Kossa and Alizarin red S staining of kidney sections confirmed these findings. The high number of foci of calcification in the kidney of uremic controls (108 +/- 25) was reduced to 33.0 +/- 11.3 by CaCO(3) and decreased even further with sevelamer (16.4 +/- 8.9, P < 0.02 versus CaCO(3)). Importantly, the degree of tubulointerstitial fibrosis was also markedly lower in U-HP+S (5%) compared with either U-HP+C (30%) or U-HP (50%). It is concluded that in experimental CRF in rats, despite a similar control of serum P and SH, sevelamer is more effective than CaCO(3) in preventing renal Ca deposition and tubulointerstitial fibrosis, including better preservation of renal function. These findings cannot be extrapolated to human disease, and further studies in patients are necessary to determine the benefits of either P binder.  相似文献   

12.
BACKGROUND: Regulation of vitamin D hydroxylase genes in the early stage of chronic renal failure is not fully understood. Using nephrectomized rats, we examined changes in mRNA levels of CYP27B1 (25-hydroxyvitamin D3-1 alpha-hydroxylase), CYP24 (25-hydroxyvitamin D3-24-hydroxylase), and vitamin D receptor in relation to megalin, recently found to participate in renal vitamin D metabolism. METHODS: A rat model of moderate renal failure was induced by 3/4 nephrectomy. Plasma parameters, including vitamin D metabolite concentrations, were measured at weeks 2, 4 and 8, and poly(A)+ RNA extracted from the remnant kidneys was subjected to Northern blot hybridization. RESULTS: Plasma creatinine concentration at week 2 was 0.40 +/- 0.02 mg/dL in the sham-operated and 0.93 +/- 0.15 mg/dL in the nephrectomized rats, and both values remained constant up to week 8. Plasma concentrations of 25(OH)D3, 1 alpha,25(OH)2D3, and 24,25(OH)2D3 were unchanged between nephrectomized and sham-operated rats at week 8. Intact parathyroid hormone (PTH) increased at week 8 in nephrectomized rats. CYP27B1 mRNA in nephrectomized rats did not vary at week 2, but increased approximately two- and four-fold at weeks 4 and 8, respectively, compared to the sham-operated rats. CYP24 and megalin mRNAs, on the other hand, began to decline as early as at week 2 in nephrectomized rats and kept decreasing throughout the experiment. The expression of vitamin D receptor was modestly but significantly decreased only at week 8. CONCLUSION: Coordinated and reciprocal alterations of the increase in CYP27B1 mRNA and the decrease in CYP24 mRNA may play a pivotal role in maintaining the plasma level of 1 alpha,25(OH)2D3 in the face of reduced nephron mass and/or megalin expression.  相似文献   

13.
Reactive oxygen intermediates play a role in chronic renal injury and glomerulosclerosis. We investigate changes in renal cortex antioxidant enzyme gene expression in the rat remnant-kidney model of chronic renal failure and compare the new data to enzyme activities published earlier. Antioxidant enzyme gene expression is evaluated by Northern blot analysis of cortex mRNA, using cDNA probes for catalase, copper/zinc-containing superoxide dismutase, and glutathione peroxidase. Catalase gene expression decreases during development of renal failure; this decrease is accompanied by decreased catalase activity during the glomerulosclerosis phase of the remnant-kidney model. Copper/zinc superoxide dismutase and glutathione peroxidase gene expression remain at a normal level during progression of the model, whereas their activities show a temporary decrease in the early remnant kidney. In the remnant-kidney model, catalase seems to be more vulnerable to reactive oxygen intermediates than superoxide dismutase and glutathione peroxidase. Our results show that antioxidant enzyme activity and gene expression do not change in the same direction at all times during disease development and that all antioxidant enzymes do not respond in the same way.  相似文献   

14.
Mesangial structure and function in the remnant kidney   总被引:1,自引:0,他引:1  
The pathogenetic significance of changes in mesangial structure and function were studied in hypertensive (HT) (BP +/- SD = 173 +/- 23 mm Hg, N = 13) and normotensive (NT) (130 +/- 17 mm Hg, N = 12) WKY rats with 5/6 nephrectomy and compared to sham-operated controls (SHAM) (121 +/- 11 mm Hg, N = 12). Rats were fed a 24% protein diet and studied six to eight week after surgery. Acute glomerular necrosis was present in 6/13 HT, 1/12 NT, and 0/12 SHAM, and glomerular sclerosis was seen in 7/13 HT, 4/12 NT, and 0/12 SHAM. HT and NT had glomerular and tubular hypertrophy compared to SHAM (mean glomerular diameter +/- SD. HT = 174 +/- 17 mu and NT = 171 +/- 12 cf. SHAM = 142 +/- 11, P = 0.0012, ANOVA). The fractional mesangial volumes, determined by ultrastructural morphometry, were similar in all groups, but the absolute volumes were increased in the HT and NT (HT = 323 +/- 103 mu3 x 10(-3) and NT = 335 +/- 75 cf. SHAM = 164 +/- 20, P = 0.01, ANOVA). Mesangial clearance of aggregated rat IgG (AgRalgG) was studied in serial biopsies by immunofluorescence microscopy. Following i.v. injection, mesangial AgRalgG appeared increased in HT and NT over SHAM for four hours, but after 24 hours, the label had disappeared from the mesangium in all groups. We conclude that neither increased mesangial volume nor abnormalities of mesangial clearance of macromolecules plays a role in the pathogenesis of the acute, necrotizing glomerular lesion which was mainly seen in HT rats. On the other hand glomerular sclerosis, seen in both NT and HT rats but not sham controls, may result from more than one mechanism. In the HT rats scarring may result from healing of the acute glomerular lesions. Although we have excluded the mesangial clearance function as a factor in the pathogenesis of glomerular sclerosis, the presence of glomerular scarring in NT rats suggests that the lesions may result from dysfunction of other glomerular cells or unmeasured mesangial cell functions.  相似文献   

15.
Previous studies have demonstrated that inhibition of thromboxane A2-dependent platelet aggregation by the thromboxane A2 synthase inhibitor, OKY 1581, ameliorated the progressive kidney disease of rats with subtotal renal ablation. OKY 1581 also decreased the excessive renal thromboxane A2 synthesis and lowered systemic blood pressure. In the same model, a low dose aspirin and a specific thromboxane A2 receptor antagonist failed to influence proteinuria, glomerulosclerosis, and hypertension, thus excluding a role for either platelet or renal thromboxane A2 in renal disease progression. The aims of this study were to establish (1) whether a thromboxane A2 synthase inhibitor different from OKY 1581 could retard the progression of glomerular disease in rats with remnant kidney and (2) whether this effect was associated with an increase in renal synthesis of the vasodilatory prostacyclin. Treatment of rats with renal mass ablation with FCE 22178 (100 mg/kg by gavage and 200 mg/kg in the drinking water) for 35 days starting 10 days after surgical ablation was associated with an improvement in renal function in comparison with rats receiving the vehicle alone. Proteinuria was significantly lower, and rats were partially protected from the development of glomerulosclerosis. Systolic blood pressure was significantly lower than in animals given the vehicle. Urinary thromboxane B2 excretion was significantly decreased, and urinary 6-keto-prostaglandin F1 alpha increased in respect to vehicle-treated rats. We conclude that FCE 22178 limits glomerular injury in rats with remnant kidney.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号