首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The olfactostriatum is a portion of the basal ganglia of snakes that receives substantial vomeronasal afferents through projections from the nucleus sphericus. In a preceding article, the olfactostriatum of garter snakes (Thamnophis sirtalis) was characterized on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and pattern of afferent connections [Martinez-Marcos, A., Ubeda-Banon, I., Lanuza, E., Halpern, M., 2005. Chemoarchitecture and afferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes. J. Chem. Neuroanat. 29, 49-69]. In the present study, its efferent connections have been investigated. The olfactostriatum projects to the main and accessory olfactory bulbs, lateral cortex, septal complex, ventral pallidum, external, ventral anterior and dorsolateral amygdalae, bed nucleus of the stria terminalis, preoptic area, lateral posterior hypothalamic nucleus, ventral tegmental area, substantia nigra and raphe nuclei. Tracer injections in the nucleus accumbens proper, a structure closely associated with the olfactostriatum, result in a similar pattern of efferent connections with the exception of those reaching the main and accessory olfactory bulbs, lateral cortex, external, ventral anterior and dorsolateral amygdalae and bed nucleus of the stria terminalis. These data, therefore, help to characterize the olfactostriatum, an apparently specialized area of the nucleus accumbens. Double labeling experiments after tracer injections in the nucleus sphericus and the lateral posterior hypothalamic nucleus demonstrate a pathway between these two structures through the olfactostriatum. Injections in the olfactostriatum and in the medial amygdala show parallel projections to the lateral posterior hypothalamic nucleus. Since this hypothalamic nucleus has been previously described as projecting to the hypoglossal nucleus, both, the medial amygdala and the olfactostriatum may mediate vomeronasal influence on tongue-flick behavior.  相似文献   

2.
The olfactory bulb (OB) is involved in the processing of olfactory information particularly through the activation of its afferents. To localize their cell origin in sheep, a specific retrograde fluorescent tracer, Fluoro-Gold, was injected into the olfactory bulb of seven ewes. By using immunocytochemical techniques, retrogradely labeled neurons were colocalized with choline acetyltransferase, tyrosine hydroxylase, dopamine-β-hydroxylase and serotonin to characterize cholinergic, noradrenergic and serotonergic Fluoro-Gold-labeled neurons. Most afferents originated from the ipsilateral side of the injection site. The OB received major inputs from the anterior olfactory nucleus (AON), the piriform cortex (PC), the olfactory tubercle, the diagonal band of Broca (DBB) and the amygdala. Other retrogradely labeled neurons were observed in the taenia tecta, the septum, the nucleus of the lateral olfactory tract, the preoptic area, the lateral hypothalamic area, the mediobasal hypothalamus, the lateral part of the premammillary nucleus, the paraventricular nucleus of the hypothalamus, the paraventricular thalamic nucleus, the central grey, the substantia nigra (SN), the ventral tegmental area (VTA), the lateral nucleus to the interpeduncular nucleus (lIP), the raphe and the locus coeruleus (LC). Contralateral labeling was also found in the AON, the PC, the SN compacta, the VTA, the lIP and the LC. Cholinergic Fluoro-Gold-labeled neurons belonged to the horizontal and vertical branch of the DBB. Noradrenergic afferents came from the LC and serotoninergic afferents came from the medial raphe nuclei and the lIP. These data are discussed in relation with olfactory learning in the context of maternal behavior in sheep.  相似文献   

3.
The nigrostriatal and mesolimbic systems of the rat were reconstructed using an organotypic culture model, whereby neonatal brain tissue was grown in vitro for approximately one month. The nigrostriatal system comprised of tissue from the substantia nigra, the dorsal striatum and the frontoparietal cortex, while the mesolimbic system included the ventral tegmental area, ventral striatum (including the fundus striati, accumbens nucleus, olfactory tubercle, lateral septum, ventral pallidum and piriform cortex) and cingulate cortex. These regions were also cultured alone or in pairs. The cultures were monitored in vitro, and after one month fixed in a formalin-picric acid solution, and processed for immunohistochemistry using antibodies raised against tyrosine hydroxylase, nitric oxide synthase, preprocholecystokinin, glutamate decarboxylase, neuropeptide Y, dopamine- and cyclic AMP-regulated phosphoprotein-32 and glial fibrillary acidic protein. The tissue survived in single, double or triple cultures, although differences were found depending upon the source and combination of cultured region. Neurons had localization and shape as in vivo. Local networks were especially prominent in the mesencephalon, where both tyrosine hydroxylase-positive axons spread from the "substantia nigra" to the rest of the tissue, and where nitric oxide synthase-positive networks also surrounded tyrosine hydroxylase-positive neurons. Glutamate decarboxylase-positive nerve terminals formed dense networks around tyrosine hydroxylase-positive neurons. In the striatum, nitric oxide synthase and dopamine- and cyclic AMP-regulated phosphoprotein-32 neurons were surrounded by tyrosine hydroxylase-positive nerve terminals. The nigral and ventral tegmental area dopamine neurons projected to striatal and cortical structures, but the projection from the ventral tegmental area to the cingulate cortex was more prominent. With regard to co-existence, preprochole-cystokinin-like immunoreactivities was found in many tyrosine hydroxylase-positive neurons and neuropeptide Y- and nitric oxide synthase-like immunoreactivity co-existed in striatal and cortical tissues. In general terms, the chemical neuroanatomy in the cultures was similar to that described earlier in vivo. Nitric oxide synthase staining was particularly intense. Taken together, the organotypic model captures many of the morphological and neurochemical features seen in vivo, providing a valuable model for studying neurocircuitries of the brain in detail, where 'normal' and 'pathological' conditions can be simulated.  相似文献   

4.
The distribution of neuropeptide Y-like immunoreactivity in the rat brain and spinal cord was investigated by means of the peroxidase-antiperoxidase procedure of Sternberger using a rabbit anti-neuropeptide Y serum. A widespread distribution of immunostained cells and fibres was detected with moderate to large numbers of cells in the following regions: olfactory bulb, anterior olfactory nucleus, olfactory tubercle, striatum, nucleus accumbens, all parts of the neocortex and the corpus callosum, septum including the anterior hippocampal rudiment, ventral pallidum, horizontal limb of the diagonal band, amygdaloid complex. Ammon's horn, dentate gyrus, subiculum, pre- and parasubiculum, lateral thalamic nucleus (intergeniculate leaflet), bed nucleus of the stria terminalis, medial preoptic area, lateral hypothalamus, mediobasal hypothalamus, supramammillary nucleus, pericentral and external nuclei of the inferior colliculus, interpeduncular nucleus, periaqueductal central gray, locus coeruleus, dorsal tegmental nucleus of Gudden, lateral superior olive, lateral reticular nucleus, medial longitudinal fasciculus, prepositus hypoglossal nucleus, nucleus of the solitary tract and spinal nucleus of the trigeminal nerve. In the spinal cord cells were found in the substantia gelatinosa at all levels, the dorsolateral funiculus and dorsal gray commissure in lumbosacral cord. The pattern of staining was found to be similar to that observed with antisera to avian and bovine pancreatic polypeptide, but to differ in some respects from that observed with antisera to molluscan cardioexcitatory peptide. The presence of neuropeptide Y immunoreactive fibres in tracts such as the corpus callosum, anterior commissure, lateral olfactory tract, fimbria, medial corticohypothalamic tract, medial forebrain bundle, stria terminalis, dorsal periventricular bundle and other periventricular areas, indicated that in addition to the localisation of neuropeptide Y-like peptide(s) in interneurons in the forebrain, neuropeptide Y may be found in long neuronal pathways throughout the brain.  相似文献   

5.
The afferent input to the basal forebrain cholinergic neurons from the pontomesencephalic tegmentum was examined by retrograde transport of wheatgerm agglutinin-horseradish peroxidase in combination with immunohistochemistry. Multiple tyrosine hydroxylase-, dopamine-beta-hydroxylase-, serotonin- and choline acetyltransferase-immunoreactive fibres were observed in the vicinity of the choline acetyltransferase-immunoreactive cell bodies within the globus pallidus, substantia innominata and magnocellular preoptic nucleus. Micro-injections of horseradish peroxidase-conjugated wheatgerm agglutinin into this area of cholinergic perikarya led to retrograde labelling of a large population of neurons within the pontomesencephalic tegmentum, which included cells in the ventral tegmental area, substantia nigra, retrorubral field, raphe nuclei, reticular formation, pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, parabrachial nuclei and locus coeruleus nucleus. Of the total population of retrogradely labelled neurons, a significant (approximately 25%) proportion were tyrosine hydroxylase-immunoreactive and found in the ventral tegmental area (A10), the substantia nigra (A9), the retrorubral field (A8), the raphe nuclei (dorsalis, linearis and interfascicularis) and the locus coeruleus nucleus (A6), Another important contingent (approximately 10%) was represented by serotonin neurons of the dorsal raphe nucleus (B7), the central superior nucleus (B8) and ventral tegmentum (B9). A small proportion (less than 1%) was represented by cholinergic neurons of the pedunculopontine (Ch5) and laterodorsal (Ch6) tegmental nuclei. These results demonstrate that pontomesencephalic monoamine neurons project in large numbers up to the basal forebrain cholinergic neurons and may represent a major component of the ventral tegmental pathway that forms the extra-thalamic relay from the brainstem through the basal forebrain to the cerebral cortex.  相似文献   

6.
Zhou L  Furuta T  Kaneko T 《Neuroscience》2003,120(3):783-798
Projection neurons in the ventral striatum, the accumbens nucleus and olfactory tubercle, were examined by combining the retrograde tracing method and immunocytochemistry with antibodies against C-terminals of the preprodynorphin (PPD), preproenkephalin (PPE), preprotachykinin A (PPTA) and preprotachykinin B (PPTB). When the retrograde tracer was injected into the ventral pallidum, about 60% and 40% of retrogradely labeled neurons in the accumbens nucleus were immunoreactive for PPD and PPE, respectively. In contrast, all accumbens nucleus neurons projecting to the ventral mesencephalic regions including the substantia nigra and ventral tegmental area were immunopositive for PPD but not for PPE. Although no olfactory tubercle neurons projected fibers to the mesencephalic regions, 60% and 40% of olfactory tubercle neurons projecting to the ventrolateral portion of the ventral pallidum were immunoreactive for PPD and PPE, respectively, as were the accumbens nucleus neurons. About 70% of accumbens nucleus and olfactory tubercle neurons projecting to the ventral pallidum and all accumbens nucleus neurons projecting to the ventral mesencephalic regions showed PPTA immunoreactivity. A small population (2-12%) of accumbens neurons projecting to the ventral pallidum and mesencephalic regions displayed immunoreactivity for PPTB. Compared with the dorsal striatopallidal projection neurons that were reported to mostly express PPE, it was characteristic of the ventral striatum that only the smaller population (about 40%) of ventral striatopallidal projection neurons expressed PPE. This suggests that the ventral striatopallidal projection system is less specialized than the dorsal striatopallidal system in terms of peptide production, or that the ventral pallidum should be compared with a combined region of the globus pallidus and entopeduncular nucleus in the dorsal system.  相似文献   

7.
Previously, we established a culture system of the accessory olfactory bulb in order to investigate the functional role of each accessory olfactory bulb neurons in pheromonal signal processing. In the present study, we developed a co-culture system of cultured accessory olfactory bulb neurons with partially dissociated cells of the vomeronasal organ. The dissociated cells of the vomeronasal organ form spherical structures surrounding a central cavity in culture, referred to as the vomeronasal pockets. The projection and activity of olfactory receptor neurons affect the differentiation and maturation of main olfactory bulb neurons. It was also reported induction of tyrosine hydroxylase expression in main olfactory bulb neurons when they were co-cultured with explants of the olfactory epithelium. Thus, we investigated the effects of co-culture with vomeronasal pockets on the differentiation and/or maturation of cultured accessory olfactory bulb neurons in relation to tyrosine hydroxylase expression. The number of tyrosine hydroxylase-containing neurons developmentally increased over time in the accessory olfactory bulb culture. This increase was significantly enhanced by coculture with vomeronasal pockets. Interestingly, a significant change in tyrosine hydroxylase expression was not observed when main olfactory bulb neurons were co-cultured with vomeronasal pockets. Moreover, significant changes in tyrosine hydroxylase expression were not observed when accessory olfactory bulb neurons were co-cultured with olfactory epithelium explants, as was previously observed in co-culture of main olfactory bulb neurons and olfactory epithelium explants. These results suggest that the differentiation and/or maturation of accessory olfactory bulb neurons is modified by vomeronasal organ neurons via specific interactions between the sensory organ and its target.  相似文献   

8.
We described the distribution of NADPH-diaphorase-containing neurons in relation to tyrosine hydroxylase immunoreactivity in the diencephalon and mesencephalon of the chicken. In the diencephalon, both markers were found in the lateral hypothalamus, dorsal hypothalamic area, hypothalamic periventricular nucleus, paraventricular nucleus and mamillary area. A close examination showed that the fine distribution of these markers differed slightly, so that they were never observed in the same neurons. In the mesencephalon, NADPH-diaphorase and tyrosine hydroxylase immunoreactivity were found in the ventral pedunculopontine area (nucleus tegmenti pedunculopontinus pars compacta, adjacent areas surrounding the quintofrontal tract and the nucleus mesencephalicus profundus ventralis), the coeruleus complex (locus coeruleus, ventral and dorsal subcoeruleus nuclei), the ventral tegmental area and the central gray. The majority of these neurons contained either diaphorase or tyrosine hydroxylase. Nevertheless, in a few cases both markers appeared to colocalize in the same neuron, typically in large perikarya of the ventral pedunculopontine area.  相似文献   

9.
The distribution of dopamine D1 and D2 receptor immunoreactivities in the nucleus accumbens and the olfactory tubercle of adult and postnatal male rats were compared with the distribution of tyrosine hydroxylase and dopamine transporter immunoreactivities. An overall co-distribution of D1 and D2 receptor immunoreactivities with tyrosine hydroxylase immunoreactivity was found in the nucleus accumbens and the olfactory tubercle. However, the major finding in this study was, following a more detailed analysis in coronal sections of the shell part of the nucleus accumbens, the existence of nerve cell patches of strong D1 receptor immunoreactivity associated with low D2 receptor, dopamine transporter and tyrosine hydroxylase immunoreactivities. These patches were mainly surrounded by areas of strong D2 receptor, tyrosine hydroxylase and dopamine transporter immunoreactivities and could be found also in the olfactory tubercle. Similar observations were made in postnatal rats. Serial reconstructions of the patches of strong D1 receptor immunoreactivity in the rostrocaudal direction were made. The patches formed a continuous tubular nerve cell system in the shell part of the nucleus accumbens. Since this nerve cell system was found to be surrounded by a high density of dopamine terminals, it may represent a compartment where dopamine transmission mainly acts on D1 receptors via local diffusion (i.e. via volume transmission). However, it must be noted that the D1 receptor rich patches constitute only a small fraction of the nucleus accumbens and the overall density of tyrosine hydroxylase immunoreactive terminals correlates with the density of both D1 and D2 receptors in the nucleus accumbens. In conclusion, the present paper gives new aspects on the chemical microarchitecture of the nucleus accumbens.  相似文献   

10.
Patterns of immunoreactivity for calcium-binding protein, tyrosine hydroxylase and four neuropeptides in the ventral striatum (nucleus accumbens, olfactory tubercle and ventromedial parts of the caudate nucleus and putamen) were compared to patterns of these markers in the dorsal striatum (the majority of the neostriatum) in rhesus monkey. The striatal mosaic was delineated by calcium-binding protein and tyrosine hydroxylase immunoreactivities. Both markers were found preferentially in the matrix of the dorsal striatum. The mosaic configurations of tyrosine hydroxylase, but not calcium-binding protein immunoreactivity, were similar in dorsal and ventral striatal regions. Substance P and leucine-enkephalin were not distributed homogeneously; distinct types and the prevalence of patches of substance P and leucine-enkephalin immunoreactivity distinguish the dorsal striatum from the ventral striatum and distinguish the caudate nucleus from the putamen. In the dorsal striatum, substance P and leucine-enkephalin patches consist of dense islands of immunoreactive neurons and puncta or clusters of immunoreactive neurons marginated by a dense rim of terminal-like puncta; the matrix was also enriched in leucine-enkephalin-immunoreactive neurons but contained less substance P-immunoreactive neurons. Patches were more prominent in the caudate nucleus than in the putamen. In the caudate, compartments low in tyrosine hydroxylase and calcium-binding protein immunoreactivities corresponded to cytologically identified cell islands and to patches enriched in substance P and leucine-enkephalin. These patches had a discrete infrastructure based on the location of substance P and leucine-enkephalin-immunoreactive neurons and terminals. In the ventral striatum, patches that showed low levels of substance P and leucine-enkephalin immunoreactivities were embedded in a matrix rich in immunoreactive cell bodies, fibers and terminals. In the accumbens, regions showing little tyrosine hydroxylase were in spatial register with patches low in substance P and leucine-enkephalin. Neurotensin- and somatostatin-immunoreactive neurons or processes were also compartmentally organized, particularly in the ventral striatum. Neurotensin-immunoreactive neurons were present predominantly in the nucleus accumbens but not in the dorsal striatum. Some regions enriched in neurotensin immunoreactivity were spatially registered with zones low in tyrosine hydroxylase, substance P and zones enriched in leucine-enkephalin. Areas enriched in somatostatin-immunoreactive processes overlapped with both tyrosine hydroxylase-rich and -poor regions in the ventral striatum. Our results show that the chemoarchitectonic topography of the striatal mosaic is different in the dorsal and ventral striatum of rhesus monkey and that the compartmental organization of some neurotransmitters/neuropeptides in the ventral striatum is variable and not as easily divisible into conventional patch and matrix regions as in the dorsal striatum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The afferent connections of the nucleus accumbens septi from subcortical centers in the cat were studied with the aid of two different retrograde tracer substances. In most experiments horseradish peroxidase was injected in the nucleus accumbens, either mechanically or by microiontophoresis. In a few cats injections of bisbenzimid were placed and subsequently the retrogradely labelled cells were visualized with fluorescence microscopy. In a number of experiments neighbouring nuclei of the nucleus accumbens were involved in the injection site. Control injections were placed in the nucleus caudatus.With both tracers the same topography of labelled cells could be demonstrated following injections into the nucleus accumbens. Labelled cells were found in the basolateral nucleus of the amygdaloid complex. In the thalamus the nucleus paraventricularis and the nucleus parataenialis were most heavily labelled. Other midline nuclei, which showed fewer labelled cells, included the nucleus interanteromedialis, the nucleus rhomboidalis, the nucleus centralis medialis and the nucleus reuniens. Some projections were also found to originate from the medial part of the parafascicular nucleus. In the mesencephalic tegmentum the ventral tegmental area of Tsai, the interfascicular nucleus and the retrorubral nucleus contained labelled cells. A smaller number of cells was found to be labelled in the substantia nigra proper. In addition, the rostral linear nucleus, the central linear nucleus and the dorsal raphe nucleus, all belonging to the raphe nuclei, showed labelling of cells.A comparison with the distribution of labelled cells following injections into the caudate nucleus showed that the accumbens and caudate nuclei share many projections from the mesencephalon and the thalamus. However, the accumbens can be distinguished from the caudate because it receives afferents from the amygdala.  相似文献   

12.
We examined the regions projecting to the supramammillary nucleus of the rat with retrograde transport of WGA-HRP and WGA, and anterograde transport of Phaseolus vulgaris leucoagglutinin. The supramammillary nucleus receives major descending afferents from the infralimbic cortex, the dorsal peduncular cortex, the nucleus of the diagonal band of Broca, the medial and lateral preoptic nuclei, bilaterally. The major ascending afferents come from the pars compacta of the nucleus centralis superior, the ventral tegmental nucleus, and the laterodorsal tegmental nucleus. The supramammillary nucleus also receives a few (but distinct) fibers from the anterior and lateral hypothalamic nuclei, the ventral premammillary nucleus, the interpeduncular nucleus, the cuneiform nucleus, the dorsal raphe nucleus, the incertus nucleus, and the C3 region including the prepositus hypoglossi nucleus. All descending fibers run through the medial forebrain bundle. Almost all ascending fibers from the pars compacta of the nucleus centralis superior and the laterodorsal tegmental nucleus run through the mammillary peduncle, and terminate throughout the supramammillary nucleus. A few fibers from the laterodorsal tegmental nucleus and the C3 region run through the fasciculus longitudinalis dorsalis and terminate in the dorsal part of the supramammillary nucleus including the supramammillary decussation.Abbreviations a anterior commissure - AC accumbens nucleus - AR arcuate nucleus - BS bed nucleus of the stria terminalis - C3 C3 adrenergic region - CA interstitial nucleus of Cajal - CC pars compacta of the nucleus centralis superior - CS nucleus centralis superior - CU cuneiform nucleus - CX cingulate cortex - DB nucleus of the diagonal band of Broca - DH dorsomedial hypothalamic nucleus - ds decussation of the superior cerebellar peduncle - DX dorsal peduncular cortex - f fornix - fld fasciculus longitudinalis dorsalis - flm fasciculus longitudinalis medialis - IN incertus nucleus - IX infralimbic cortex - LC nucleus of the locus ceruleus - le lemniscus medialis - LH lateral hypothalamic nucleus - LM lateral mammillary nucleus - LO lateral preoptic nucleus - LS lateral septal nucleus - LT laterodorsal tegmental nucleus - mfb medial forebrain bundle - MM medial mammillary nucleus - MO medial preoptic nucleus - mp mammillary peduncle - mt mammillothalamic tract - MV medial vestibular nucleus - PD dorsal premammillary nucleus - PH prepositus hypoglossi nucleus - PV ventral premammillary nucleus - RD dorsal raphe nucleus - rf fasciculus retroflexus - SUM supramammillary nucleus - sx supramammillary decussation - T tenia tecta - TD dorsal tegmental nucleus - TM tuberomammillary nucleus - TV ventral tegmental nucleus - VT ventral tegmental area of Tsai  相似文献   

13.
We have investigated with histochemical techniques the expression of peptides and other neurochemical markers in the hypothalamus and olfactory bulb of male mice, in which the genes encoding the alpha and beta thyroid hormone receptors (TRalpha1, TRbeta1 and TRbeta2) have been deleted. Thyrotropin-releasing hormone messenger RNA levels were increased in the hypothalamic paraventricular nucleus and in the medullary raphe nuclei of mutant mice lacking the thyroid hormone receptors alpha1 and beta (alpha1(-/-)beta(-/-)), as compared to wild-type mice. In contrast, galanin messenger RNA levels were lower in the hypothalamic paraventricular nucleus of mutant animals, as was galanin-like immunoreactivity in the internal layer of the median eminence. Substance P messenger RNA levels were unchanged in the medullary raphe nuclei. Thyrotropin-releasing hormone receptor messenger RNA levels were increased in motoneurons, unchanged in the subiculum, and lower in the amygdala of mutant animals. Galanin messenger RNA levels were unchanged in the hypothalamic dorsomedial and arcuate nuclei of the thyroid hormone receptor alpha1(-/-)beta(-/-) mice, as was the immunocytochemistry for oxytocin and for vasopressin in the hypothalamic paraventricular nucleus. A reduction in tyrosine hydroxylase messenger RNA levels was found in the arcuate nucleus of mutant mice. In the olfactory bulb, immunohistochemistry for calbindin and for tyrosine hydroxylase revealed a reduction in the intensity of labeling of nerve processes in the glomerular layer of thyroid hormone receptor alpha1(-/-)beta(-/-) mice. The tyrosine hydroxylase messenger RNA levels were also slightly reduced. In contrast, the levels of galanin and neuropeptide Y messenger RNA in this region were unchanged in thyroid hormone receptor alpha1(-/-)beta(-/-) mice as compared to wild-type mice.Together these studies reveal many regional and neurochemically selective alterations in neuronal phenotype of mice devoid of all known thyroid hormone receptors.  相似文献   

14.
Nocjar C  Roth BL  Pehek EA 《Neuroscience》2002,111(1):163-176
Considerable evidence suggests that a dysfunction of the dopamine and serotonin (5-hydroxytryptamine or 5-HT) neurotransmitter systems contributes to a diverse range of pathological conditions including schizophrenia, depression and drug abuse. Recent electrophysiological and behavioral studies suggest that 5-HT modulates dopaminergic neurons in the ventral tegmental area via activation of 5-HT(2A) receptors. It is currently unknown if 5-HT(2A) receptors mediate their actions on dopaminergic neurons in the ventral tegmental area via direct or indirect mechanisms. This study investigated whether 5-HT(2A) receptors were localized on dopamine cells within the A10 dopamine subnuclei of the rat, including the ventral tegmental area. We discovered that 5-HT(2A) receptor-like immunoreactivity colocalized with tyrosine hydroxylase, a marker for dopamine neurons, throughout the A10 dopamine cell population. Colocalization was most prominent in rostral and mid A10 regions, including the paranigral, parabrachial, and interfascicular subnuclei. Though more rare, non-dopaminergic neurons also expressed 5-HT(2A) receptor immunoreactivity in the ventral tegmental area. Additionally, although a dense population of 5-HT(2A) immunoreactive cells was observed in the rostral dorsal raphe nucleus, rarely were these cells immunoreactive for tyrosine hydroxylase. The linear raphe A10 dopamine subdivisions also displayed a low degree of 5-HT(2A) receptor and tyrosine hydroxylase colocalization.These findings provide an anatomical basis for the physiological modulation of dopamine neurons in the rostral ventral tegmental area either directly, by 5-HT(2A) receptors localized on dopamine cells, or indirectly, through a non-dopaminergic mechanism. Interestingly, 5-HT(2A) receptors were expressed on dopamine neurons in several A10 subnuclei that project to mesolimbic forebrain regions implicated in drug addiction, and recent evidence indicates that ventral tegmental area 5-HT(2A) receptor activation may modulate reward-related behavior in rodents. 5-HT(2A) receptors were also expressed on dopamine cells in A10 subnuclei that project to forebrain areas that have been implicated in schizophrenia, and atypical antipsychotic drugs have high affinities for 5-HT(2A) receptors. Thus, findings in this study could have important implications for understanding 5-HT and dopamine circuitry dysfunction in schizophrenia.  相似文献   

15.
The retrochiasmatic area contains the A15 catecholaminergic group and numerous monoaminergic afferents whose discrete cell origins are unknown in sheep. Using tract-tracing methods with a specific retrograde fluorescent tracer, fluorogold, we examined the cells of origin of afferents to the retrochiasmatic area in sheep. The retrogradely labeled cells were seen by observation of the tracer by direct fluorescence or by immunohistochemistry with specific antibodies raised in rabbits or horses. Among the retrogradely labeled neurons, double immunohistochemistry for tyrosine hydroxylase, dopamine-beta-hydroxylase, and serotonin were used to characterize catecholamine and serotonin FG labeled neurons. The retrochiasmatic area, which included the A15 dopaminergic group and the accessory supraoptic nucleus (SON), received major inputs from the lateral septum (LS), the bed nucleus of the stria terminalis (BNST), the thalamic paraventricular nucleus, hypothalamic paraventricular and supraoptic nuclei, the perimamillary area, the amygdala, the ventral part of the hippocampus and the parabrachial nucleus (PBN). Further, numerous scattered retrogradely labeled neurons were observed in the preoptic area, the ventromedial part of the hypothalamus. the periventricular area, the periaqueductal central gray (CG), the ventrolateral medulla and the dorsal vagal complex. Most of the noradrenergic afferents came from the ventro-lateral medulla (Al group), and only a few from the locus coeruleus complex (A6/A7 groups). A few dopaminergic neurons retrogradely labeled with flurogold were observed in the periventricular area of the hypothalamus. Rare serotoninergic fluorogold labeled neurons belonged to the dorsal raphe nucleus. Most of these afferents came from both sides of the brain, except for hypothalamic supraoptic and paraventricular nuclei. In the light of these anatomical data, we compared our results with data obtained from rats, and we discussed the putative role of these afferents in sheep in the regulation of several specific functions in which the retrochiasmatic area may be involved, such as reproduction.  相似文献   

16.
The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.  相似文献   

17.
蓝薇  丁玉强 《解剖学报》2014,45(1):41-46
目的探讨酪氨酸羟化酶(TH)和色氨酸羟化酶2(Tph2)在成年树鼩中枢神经系统(CNS)中的分布特征。方法利用免疫组织化学技术观察TH和Tph2在成年树鼩CNS的分布特征。结果在成年树鼩CNS中,TH阳性信号主要分布于嗅球小球层、纹状体、第3脑室周围区域、未定带、黑质、腹侧被盖区、中央管周围灰质和蓝斑;而成年树鼩CNS中的Tph2阳性信号主要分布于中脑和脑桥中缝复合结构中。结论树鼩TH和Tph2阳性信号的分布模式与脊椎动物的总体分布模式大致相同;某些细节特征显示,树鼩在进化上更接近灵长动物。  相似文献   

18.
Kippin TE  Cain SW  Pfaus JG 《Neuroscience》2003,117(4):971-979
Olfactory stimuli play important roles in sexual behavior. Previous studies have demonstrated that both estrous odors and initially neutral odors paired with copulation influence the sexual behavior of male rats. The present study examines the pattern of neural activation as revealed by Fos immunoreactivity (Fos-IR) following exposure to bedding scented with either a neutral odor (almond) paired previously with copulation, estrous odors or no odor. Following exposure to estrous odors Fos-IR increased in the accessory olfactory bulb, medial amygdala, medial bed nucleus of the stria terminalis, medial preoptic area, ventromedial hypothalamus, ventral tegmental area, and both the nucleus accumbens core and shell. Conversely, following exposure to the sexually conditioned odor Fos-IR increased in the piriform cortex, basolateral amygdala, nucleus accumbens core, and the anterior portion of the lateral hypothalamic area. In addition, following exposure to almond odor Fos-IR increased in the main olfactory bulb independent of its pairing with copulation. These patterns of Fos-IR following exposure to estrous or sexually conditioned odors were not influenced by either the addition or omission of the other type of odor. These findings demonstrate that estrous and sexually conditioned odors are processed by distinct neural pathways and converge in the nucleus accumbens core, suggesting that this structure has a unique role in processing sexual stimuli of both pheromonal and olfactory natures.  相似文献   

19.
20.
The objective of the present study was to determine with precision the localization of neurons and fibers immunoreactive (ir) for aromatic l-amino acid decarboxylase (AADC), the second-step enzyme responsible for conversion of l-dihydroxyphenylalanine (l-DOPA) to dopamine (DA) and 5-hydroxytryptophan (5-HTP) to serotonin (5-hydroxytryptamine: 5-HT) in the midbrain, pons, and medulla oblongata of the adult human brain. Intense AADC immunoreactivity was observed in a large number of presumptive 5-HT neuronal cell bodies distributed in all of the raphe nuclei, as well as in regions outside the raphe nuclei such as the ventral portions of the pons and medulla. Moderate to strong immunoreaction was observable in presumptive DA cells in the mesencephalic reticular formation, substantia nigra, and ventral tegmental area of Tsai, as well as in presumptive noradrenergic (NA) cells, which were aggregated in the locus coeruleus and dispersed in the subcoeruleus nuclei. In the medulla oblongata, immunoreaction of moderate intensity was distributed in the mid and ventrolateral portions of the intermediate reticular nucleus, which constitutes the oblique plate of A1/C1 presumptive adrenergic and/or NA neurons. The dorsal vagal AADC-ir neurons were fewer in number and stained more weakly than cells immunoreactive for tyrosine hydroxylase (TH). AADC immunoreactivity was not identified in an aggregate of TH-ir neurons lying in the gelatinous subnucleus of the solitary nucleus, a restricted region just rostroventral to the area postrema. Nonaminergic AADC-positive neurons (D neurons), which are abundant in the rat and cat midbrain, pons, and medulla, were hardly detectable in homologous regions in the human brain, although they were clearly distinguishable in the forebrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号