首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic cerebellar astroglia in vitro   总被引:1,自引:0,他引:1  
M E Hatten 《Brain research》1984,315(2):309-313
Three types of astroglia appear during cerebellar development--radial glia and Bergmann glia, which are thought to facilitate neuronal migration, and astrocytes, which are thought to compartmentalize mature granule neurons. Cells resembling Bergmann glia and astrocytes have been described in cultures of cerebellar cells harvested from early postnatal cerebellum. In this study, we have used cell-type specific antisera to visualize embryonic forms of cerebellar astroglia and their interaction with embryonic neurons in vitro. When cells were dissociated from mouse cerebellum on the thirteenth embryonic day (E13), 3 forms of cells were stained with antisera raised against purified glial filament protein ( AbGF ), all of which had more elongated processes and less complex shapes than astroglia from postnatal day 7. The vast majority of embryonic cerebellar neurons did not contact these immature forms of astroglia.  相似文献   

2.
The normal laminar organisation of the cerebellar cortex is the result of the precisely controlled migration, differentiation and maturation of the neurons. Occasionally the migrating neurons lose their proper way of migration and form nests of grey matter in the improper place. The aim of this study was to investigate the morphological features of the lost neurons in the cerebellar white matter during development, with particular emphasis on their localisation, arrangement and differentiation. We analyzed 31 fetal and infantile brains, aged from 28 gestational weeks to 18 postnatal months. We observed different morphological patterns of cerebellar heterotopias. Clusters of grey matter reflecting the cerebellar cortical pattern with well-defined molecular layer and altered granular and Purkinje cells were most frequently observed. The compact heterotopias were composed of bands or whirls of spindle and round granule cells situated closely together, while Purkinje neurons were completely disorganised. The ectopic cortex in the white matter with a normal layered structure containing all the components of the cerebellar cortex was localised by the large vessels. Aggregations of Purkinje cells scattered in the white matter without accompanying granule cells were observed. The evaluation of the biological features of the misplaced cerebellar cortical components showed high activity of neurons.  相似文献   

3.
Wang X  Imura T  Sofroniew MV  Fushiki S 《Glia》2011,59(6):857-868
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that inhibits the Wnt/beta-catenin signaling pathway and regulates the microtubule and actin cytoskeletons. Using conditional knockout (CKO) mice in which the APC gene is inactivated in glial fibrillary acidic protein (GFAP)-expressing cells, we show a selective and critical role for APC in maintaining the morphology and function of cerebellar Bergmann glia, which are specialized astroglia that extend polarized radial processes from the Purkinje cell layer to the pial surface. APC-CKO mice developed Bergmann glia normally until the accumulation of beta-catenin started around postnatal day 10 (P10). Their radial fibers then became shortened with a marked reduction of branching collaterals and their cell bodies translocated into the molecular layer followed by loss of their pial contact and transformation into stellate-shaped cells by P21. Purkinje neurons were normal in appearance and number at P21, but there was significant loss of Purkinje neurons and cerebellar atrophy by middle age. Outside the cerebellum, neither beta-catenin accumulation nor morphological changes were identified in GFAP-expressing astroglia, indicating region-specific effects of APC deletion and an essential role for APC in maintaining the unique morphology of Bergmann glia as compared with other astroglia. These results demonstrate that loss of APC selectively disrupts the Bergmann glial scaffold in late postnatal development and leads to cerebellar degeneration with loss of Purkinje neurons in adults, providing another potential mechanism for region-specific non-cell autonomous neurodegeneration.  相似文献   

4.
Ischemia is a major cause of damage to the central nervous system as a consequence of stroke or trauma. Here, we analyzed with high temporal resolution the time course of pathological changes in the neurons (granule and Purkinje cells) and glia (Bergmann and astroglia cells) in the cerebellar cortex and white matter. The period studied ranged from 30 min to 7 days after a microsphere-induced embolism used as a model of stroke and multi-infarct dementia. Some pathological changes in the neurons in the cerebellar cortex were identified early, that is, beginning at 3 h after the microsphere-induced embolism, and glial pathology appeared only later. The pathological changes in the white matter also appeared slightly later, that is, 6 h after embolism and were less pronounced than those in the cerebellar cortex. This suggests that neuronal pathology is induced more rapidly and/or more easily than the glial pathology. In addition, BrdU staining shows that cell proliferation is limited to a 1-day period beginning about 1 day after the embolism. These data demonstrate that changes after an ischemic lesion of the cerebellum proceeds from upper cerebellar cortex to deeper cerebellar cortex or white matter and also that microsphere-induced changes proceed from neuronal to glial pathology.  相似文献   

5.
In order to investigate the role of neuron-glia interactions in the response of astroglial to a non-invasive cerebellar cortex injury, we have used two cases of the ataxic form of Creutzfeldt-Jakob disease (CJD) with distinct neuronal loss and diffuse astrogliosis. The quantitative study showed no changes in cell density of either Purkinje or Bergmann glial cells in CJ-1, whereas in the more affected CJ-2 a loss of Purkinje cells and an increase of Bergmann glial cells was found. The granular layer in both CJD cases showed a similar loss of granule cells (about 60% ) in parallel with the significant increase in GFAP+ reactive astrocytes. GFAP immunostaining revealed greater reactivity of Bergmann glia in CJ-2 than in CJ-1, as indicated by the thicker glial processes and the higher optical density. Granular layer reactive astrocytes were regularly spaced. In both CJD cases there was strict preservation of the spatial arrangement of all astroglial subtypes—Fañanas cells, Bergmann glia and granular layer astrocytes. Reactive Fañanas and Bergmann glial cells and microglia/macrophages expressed vimentin, while only a few vimentin+ reactive astrocytes were detected in the granular layer. Karyometric analysis showed that the increase in nuclear volume in reactive astrloglia was directly related with the level of glial hypertrophy. The number of nucleoli per nuclear section was constant in astroglial cells of human controls and CJD, suggesting an absence of polyploidy in reactive astroglia. Ultrastructural analysis revealed junctional complexes formed by the association of macula adherens and gap junctions. In the molecular layer numerous vacant dendritic spines were ensheathed by lamellar processes of reactive Bergmann glia. Our results suggest that quantitative (neuron/astroglia ratio) and qualitative changes in the interaction of neurons with their region-specific astroglial partners play a central role in the astroglial response pattern to the pathogenic agent of CJD.  相似文献   

6.
Postmitotic neurons migrate from a zone(s) near the ventricles to the neocortex. During this migration, neurons associate with radial glia. After serving their role as guides for neuronal migration, the radial glia transform into astrocytes. Prenatal exposure to ethanol causes abnormal neuronal migration. We examined the effects of gestational exposure to ethanol on radial glia and astrocytes. Radial glia were stained immunohistochemically with the antibody RAT-401, and astrocytes were labeled with an antibody directed against glial-fibrillary acidic protein (GFAP). The subjects were the offspring of rats fed an ethanol-containing liquid. diet (Et), pair-fed a liquid control diet (Ct), or fed chow and water (Ch). During the first postnatal week, radial glial fibers (in Et-treated rats and controls) stretched from the ventricular surface through the developing. cerebral wall to the pial surface. In the Et-treated rats, the radial processes were less dense and more poorly fasciculated than they were in the Ch-and Ct-treated rats. Moreover, by postnatal day (P) 5, there was a significant reduction in RAT-401 immunostaining in the Et-treated rats, particularly in the superficial cortex. A similar reduction in control rats did not begin until P10. In all three treatment groups, GFAP-immunoreactive astrocytes were in the cortex throughout the period from P1 to P45. In neonates, GFAP-positive cells were distributed in the marginal zone (layer I) and the intermediate zone (the white matter). The number of GFAP-positive cells in the cortical plate increased steadily with time so that, by P26, GFAP-immunoreactive astrocytes were distributed evenly through all cortical laminae. Interestingly, between P5 and P12, the number of astrocytes was significantly greater in Et-treated rats than in controls. Thus prenatal exposure to ethanol induces the premature loss of RAT-401-positive processes and the precocious increase in GFAP immunostaining. These ethanol-induced changes in glial development indicate that ethanol accelerates the transformation of radial glia into astrocytes. Moreover, the ethanol-induced premature degradation of the network of radial glial fibers may underlie the migration of late-generated neurons to ectopic sites. © 1993 Wiley-Liss, Inc.  相似文献   

7.
8.
The cerebellar vermis defect (CVD) rat is a new neurological mutant characterized by a cerebellar vermis defect and dysplasia in the cerebellum, especially at the cerebellopontine junctions. In this study, the cytokinetics of glia in terms of the development of cerebellar dysplasia in the CVD rat was investigated using glial fibrillary acidic protein (GFAP) and vimentin immunohistochemistry. In the cerebellar hemispheres, dislocation of the Bergmann glia was observed from postnatal day 5 (P5) in lesions with abnormally aggregated external granule cells (EGCs). Rearranging Bergmann glia were often seen around the EGCs penetrating into the white matter. In the cerebellopontine junctional areas, Bergmann glia were induced after penetration of the Purkinje cells, identified with calbindin immunohistochemistry, and EGCs into the pons from P10. Bergmann fibers were frequently arranged perivascularly. In the clusters of Purkinje cells without EGC settlement in the pons, a small number of Bergmann fibers were observed and their alignment was completely disturbed. These findings suggest that morphological changes in the Bergmann glia depend on their contact with Purkinje cells, but that the orientation of their processes may be influenced by EGC settlement. These glial fibers in the CVD rat may play an important role in the aberrant migration of EGCs, resulting in the development of cerebellar dysplasia. Received: 13 April 1999 / Revised, accepted: 20 July 1999  相似文献   

9.
Treatment of pregnant ferrets on embryonic day 24 (E24) with the antimitotic methylazoxy methanol (MAM) leads to a specific constellation of effects in newborn kits, which include a very thin and poorly laminated neocortex, disruption of radial glial cell morphology with early differentiation into astrocytes, and abnormal positioning of Cajal-Retzius cells. We suggest that MAM treatment on E24 results in this model of cortical dysplasia by eliminating a population of cells that produce a factor capable of maintaining radial glia in their normal morphology. The abnormal radial glia, either alone or in combination with other abnormal features, are likely to prevent proper migration into the cortical plate. To test the possibility that normal cortex can provide the missing substance that influences radial glia, slices of E24 MAM-treated cortex were removed at postnatal day 0 (P0) and cultured adjacent to explants of P0 normal cortical plate. By labelling a small number of cells with injections of fluorescent dextrans into the cultured slices, we found that abnormal radial glia in MAM treated slices cocultured adjacent to normal cortical plate were restored toward normal, in comparison to E24 MAM treated slices cultured alone and in other control conditions. We also found that abnormally positioned Cajal-Retzius cells move into the marginal zone and that neurons are able to migrate into the cortical plate more effectively in the coculture condition. These data indicate that normal cortical plate of ferrets contains a factor causing radial glia to maintain their elongated morphology; the improved position of radial glia encourages repositioning of Cajal-Retzius cells and improved neuronal migration into the cortical plate.  相似文献   

10.
Depletion of noradrenaline in newborn rats by 6-hydroxydopamine (6-OHDA) affects the postnatal development and reduces the granular cell area in the neocerebellum (lobules V-VII). During the first postnatal month, Bergmann glial fibers guide the migration of immature granule cells to the internal granule cell layer. Microglia and Bergmann glia may play an important role in this process, but the exact mechanism behind this phenomenon is not known. We studied the effect of systemic administration of 6-OHDA on the expression and localization on microglia and Bergmann glia in the neonatal cerebellum by immunohistochemistry. In the neocerebellum, 6-OHDA treatment caused a significant increase in the number of activated microglia. The increase was observed mainly in the granule cell layer and the cerebellar medulla. Bergmann glial cells in treated brains were abnormally located, did not form intimate associations with Purkinje cells, and the glial fibers were structurally different. Our findings indicate that a noradrenergic influence may be necessary for the normal maturation and migration of granule cells, and abnormal migration may be the result of Bergmann glia destruction and the activation of microglia. Activated microglia in the granule cell layer may be used as a marker for an injured cerebellar area.  相似文献   

11.
The structure of cerebellar malformations in the brains of two infants with 13 trisomy has been studied by means of the Golgi method. Poorly organized cerebellar dysplasias (heterotaxias) are composed of Purkinje, Golgi and granule cells arranged and oriented in a disorderly fashion. The variable orientation and organization of the dendritic arbor of Purkinje cells within these cellular aggregates is supposed to be related to abnormal distribution of parallel fibers. Large ganglion cell heterotopias are not a homogeneous group, but two distinct types may be defined. First, Purkinje cell heterotopias which are located in the white matter of the cerebellum below the normally formed folia; these are composed of large neurons with arrested migration to the cortex. Secondly, multipolar cell heterotopias which are located in the deep white matter near the dentate and the roof nuclei, formed of neurons belonging to the deep cerebellar nuclei.  相似文献   

12.
The extracellular signal regulated kinases 1 and 2 (ERK1/2) are important members of an intracellular signaling cascade that is involved in many aspects of the cellular physiology and development of neurons and glia. ERK1/2 are expressed in many brain regions including the cerebellum; however, their role during cerebellar development is poorly understood. Immunohistochemical approaches using phosphorylation-state specific antiserum that recognizes only the activated-ERK1/2 (pERK) were used to characterize the spatial and temporal patterns of activated-ERK in the developing and adult rat cerebellum. The distribution and cell type-specificity of pERK-immunoreactivity (IR) followed an age-related pattern, with the density of pERK-IR Purkinje cells decreasing between P6 and P15 and increasing at later times. Immunopositive granule cell neurons increased from P6 to P12, became decreased during much of late postnatal cerebellar development, and absent in adults. Co-localization of pERK with glial fibrillary acidic protein or the neuronal marker beta-tubulin revealed that activated ERK is present in maturing Purkinje and granule cells, and the soma of Bergmann glia on P4, P10 and P15; pERK was detected in astrocytes on P10 and P15. Associated with weaning, there was a general increase in activated-ERK in all cell types on P22. In adults, pERK-IR was confined to the Purkinje cell layer and scattered cells in the corpus medullare. In summary, a high degree of developmental plasticity was observed in the spatiotemporal distribution of cerebellar pERK-IR suggesting that the ERK-pathway plays a dynamic role in regulating neuronal and glial migration, proliferation and differentiation in the developing cerebellum. In the mature cerebellum, ERK signaling may also mediate postsynaptic information processing.  相似文献   

13.
Summary A rare case of hamartoma of the left cerebellar hemisphere was recognized in an 11-monthold male infant whose mother had a history of unspecified medication in the early gestational period and had a difficult delivery. A notably large head and marked developmental disorders, like hypotonic cerebral palsy, were observed soon after birth. A computed tomogram revealed an iso-minimally enhanced large mass in the left cerebellar hemisphere, which deformed the fourth ventricle and compressed the right cerebellum, as well as moderate cerebral atrophy. Histologically, the border between the cerebellar cortex and this tumor was not apparent. The main tumor, located in the cerebellar white matter, was composed of numerous scattered Purkinje cell-like neurons and glial cells surrounded by abundant GFAP-positive matrix. The small part of the tumor, located near the choroid plexus, was composed of intensely proliferated capillaries such as in capillary hemangioma, and numerous fibrocytes, which were intermingled with several large Purkinje cell-like neurons and some GFAP-positive glial cells. The cerebellar cortex showed a thin molecular layer with some residual external granular cells, a marked decrease of Purkinje cells and a moderate decrease in the internal granular layer, in which large Purkinje cell-like neurons were scattered. Purkinje cells and large Purkinje cell-like neurons scattered in the internal granular layer, cerebellar white matter and choroid plexus showed positive immunoreactivity for anti-Leu-4 monoclonal antibody, which is known to be a marker for Purkinje cells. These findings suggest that this case had the background of abnormal cell migration caused by some kind of disorder during pregnancy.  相似文献   

14.
Lithium, the most prevalent treatment for manic-depressive illness, might have a neuroprotective effect after brain injury. In culture, lithium can exert neurotoxic effects associated with reduction in polyamine synthesis but neuroprotective effects as cultured neurons mature. Cumulative evidence suggests that lithium may exert some of its effects on neurons indirectly, by initially acting on glial cells. We used rat cerebellar cultures to ascertain the effects of lithium on ornithine decarboxylase (ODC) activity, the enzyme catalyzing the first step in polyamine synthesis, and to compare effects of lithium with those of the ODC inhibitor alpha-difluoromethylornithine (DFMO) on neuron survival and glial growth. Switching cultures from high (25 mM) to low (5 mM) KCl concentrations served as the traumatic neuronal insult. The results indicate the following. 1) Whereas high depolarizing KCl concentration enhances neuron survival, it inhibits astroglial growth. 2) Lithium (LiCl; 1-5 mM) enhances neuronal survival but inhibits astroglial growth. 3) Lithium treatment leads to reduced ODC activity. 4) DFMO enhances neuron survival but inhibits astroglial growth. 5) Lithium and DFMO lead to transformation of astroglia from epithelioid (flat) to process-bearing morphology and to increased numbers of microglia. 6) Combined lithium plus DFMO treatment is cytolethal to both neurons and glia in culture. In conclusion, lithium treatment results in growth retardation and altered cell morphology of cultured astroglia and increased microglia proliferation, and these effects may be associated with inhibition of polyamine synthesis. This implies that direct effects on astrocytes and microglia may contribute to the effects of lithium on neurons.  相似文献   

15.
In this paper we present evidence that the 48-kD intermediate filament-associated protein (IFAP) is expressed relatively late in maturation of astrocytes, after they have acquired the glial fibrillary acidic protein (GFAP). In the astrocytes of white matter in the cerebellum the GFAP is detected at P3, whereas the 48-kD IFAP is detected only at P11. In the periventricular region and the hippocampus the 48-kD IFAP was detected at P6, long after the appearance of GFAP. In adult mice the 48-kD IFAP was observed in GFAP-positive astrocytes in the white matter of cerebellum, spinal cord, brainstem, and corpus callosum as well as in GFAP-positive cells in the grey matter of cerebral cortex and spinal cord. The 48-kD IFAP was not, however, detected in radial glia and their derivatives, in Bergmann glia or in Müller glia. Thus, not all the GFAP-positive astroglia express the 48-kD IFAP. Similarly, 48-kD IFAP was not detected in cells which were GFAP-negative.  相似文献   

16.
Dana Giulian 《Glia》1993,7(1):102-110
Reactive gliosis is a response noted after nearly every type of CNS injury and involves both activated microglia and astroglia. Although many investigators believe that reactive glia in some way regulate the survival of injured neurons, the influence of glial elements upon damaged neural tissues remains uncertain. To examine relationships between reactive glia and neurons, secretion products from both microglia and astroglia are tested for their effects upon the survival of cultured neurons. Microglia are found to secrete neurotoxic agents, while astroglia are a source of neuronotrophic factors. Similar patterns of soluble factor production are noted for astroglia-rich or microglia-rich regions of rat neocortex damaged by ischemia. These observations suggest that microglia and astroglia compete for control of neuronal survival. Importantly, microglial neurotoxins might hinder the recovery of neurologic function at sites of inflammation.  相似文献   

17.
Developmental changes in expression of two-pore domain K+ channels, TASK-1 and TREK-1, were investigated in the juvenile (postnatal day 13; P13) and adult (P105) rat brain stem and cerebellum using immunohistochemistry. In the juvenile, extensive TASK-1-like immunoreactivity (TASK-1-LIR) was seen among glial cells in the white matter (e.g., radial glia), which showed marked reduction in the adult. In contrast, TASK-1-LIR in neurons including cerebellar Purkinje and granule cells, hypoglossal and facial motoneurons, and ventrolateral medulla neurons was increased in the adult. TASK-1-LIR in neuroglia surrounding peripheral axons of cranial nerves was persistent. TREK-1-LIR was similar between ages, although TREK-1-LIR was neuronal and present only in juvenile cerebellar external germinal layer. Present results suggest roles for TASK-1 and K+ homeostasis in neuro-glial interaction, neurogenesis, differentiation, migration, axon guidance, synaptogenesis and myelination.  相似文献   

18.
A M Goffinet 《Brain research》1984,319(3):261-296
The purpose of the present work is to examine some of the mechanisms responsible for the early architectonic differentiation of the central nervous system, as well as for the abnormal development which occurs in certain hereditary malformations. In order to approach these questions, the embryonic development of the cerebral cortex, the cerebellum, the inferior olivary complex and the facial nerve nucleus has been studied in normal and reeler mutant mice, using morphological methods. The adult reeler phenotype is characterized not only by extreme laminar abnormalities of cell positioning in the telencephalic and cerebellar cortices, but also by relatively less extreme, though distinct abnormal architectonics in non-cortical structures such as the inferior olive and the facial nerve nucleus. Study of the embryonic development of these structures reveals that neurons are generated at the normal time and migrate along normal pathways. Moreover, the processes of directional axonal growth, differentiation of class specific features of neurons and glia, and synaptogenesis appear similar in both genotypes and are probably not directly affected by the reeler mutation. However, in all instances, the early architectonic organization achieved by reeler cortical, Purkinje, olivary or facial neurons at the end of their migration is consistently less regular than in normal embryos. In addition, these anomalies become amplified during the later developmental period. This evidence for the early appearance of abnormalities in reeler embryos indicates that the disposition of neurons at maturity cannot be exclusively regarded as secondary to the maturation of cells, neurites and connections, but is contingent upon a specific mechanism. One may infer that the presence of a normal allele at the reeler locus is necessary for the normal completion of this histogenetic step, which consequently is submitted to genetic control. Although the factor(s) responsible for the stable configuration of the early architectonics is unknown, various hypotheses are considered. Several lines of evidence are presented which argue against a major role being played by diffusible factors, mesodermal components and afferent fiber systems. Two mechanisms are considered particularly worth evaluating: (1) a diminution of relative adhesivity between neurons and radial glial fibers at the end of migration, and (2) a stabilization of neuronal configuration by selective recognition-adhesion among postmigratory neurons. The reeler gene could, directly or indirectly, affect these cell-cell interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The appearance of cyclic guanosine 3':5'-monophosphate-dependent protein kinase (cGK), an enzyme that may be involved in the regulation of various aspects of neuronal function and that is highly concentrated in cerebellar Purkinje cells, was studied in the developing and adult monkey cerebellum by indirect immunofluorescent staining. The appearance and distribution of cGK immunoreactivity were then correlated with the stages of Purkinje cell differentiation and with the establishment of synaptic inputs to Purkinje cells as revealed by electron microscopy and by the presence of synapsin I, a specific nerve terminal marker. In the adult monkey, in analogy with previous observations in the adult rat, cGK immunoreactivity was detected throughout the cytoplasm of all Purkinje cells and was not seen in other neurons. During ontogenesis, cGK immunoreactivity appeared for the first time in Purkinje cells at the 97th embryonic day (E97). On this day it was detectable in Purkinje cells situated in the posterior lobe concurrently with the emergence of synapsin I immunoreactivity surrounding their somata. The cGK-positive cells had entered the phase of rapid dendritic growth and had begun establishing axosomatic synapses. By E102, Purkinje cells in the posterior lobe and in most of the anterior lobe were cGK positive. By E125, all Purkinje cells had received synaptic contacts and had become cGK positive. In addition to typical Purkinje cells situated in the cortex, we found another population of cGK-positive neurons present transiently in the prospective cerebellar white matter. These neurons, which were observed only during the second half of gestation, had morphological similarities to Purkinje cells. The emergence of cGK in these neurons also coincided with their dendritic proliferation and with the appearance of synapsin I immunoreactivity around their cell bodies. Subcortical cGK-positive cells were not observed in postnatal animals. Such neurons may be Purkinje cells which, failing to reach the cortical plate, subsequently degenerate. The close temporal correlation between appearance of cGK immunoreactivity, onset of synaptic inputs, and dendritic proliferation, both in typical Purkinje cells and in the Purkinje cell-like cells in subcortical areas, suggests that expression of high levels of cGK may be an important aspect of the neuronal differentiation of these cells.  相似文献   

20.
Immunohistochemical studies of a peroxisomal enzyme, bifunctional protein, were performed on human brains (occipital cortex, cerebellum, pons) from fetus to young adult. Bifunctional protein-positive neurons appeared at 23–25 weeks of gestation in the facial nuclei of pons, at 27–28 weeks in the occipital cortex and Purkinje cells of vermis, and at 36–38 weeks in the Purkinje cells of the cerebellar hemisphere and pontine nuclei. They then increased in number with gestational age. However, bifunctional protein-positive glia appeared early in the occipital deep white matter at 17–20 weeks of gestation, their appearance shifting from the deep to the superficial white matter with increasing age. These results suggest that bifunctional protein is closely related to neuronal maturation and gliogenesis of premyelination in the human brain during development as other peroxisomal enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号