首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The predicted C-terminal dodecapeptide of the human vesicular acetylcholine transporter (VAChT), deduced from the unique open reading frame of the recently cloned human VAChT cDNA, was conjugated through an N-terminal cysteine to keyhole limpet hemocyanin and used as an immunogen to generate polyclonal antihuman VAChT antibodies in rabbits. The distribution of the VAChT antigen in representative regions of the cholinergic nervous system was examined and compared to that of the acetylcholine biosynthetic enzyme choline acetyltransferase (ChAT), a specific marker for cholinergic neurons. VAChT immunoreactivity was localized in cell bodies of neurons in the basal forebrain and ventral horn of the spinal cord, regions in which major cholinergic projection systems to the cerebral cortex and to skeletal muscle, respectively, originate. The primate caudate nucleus contained numerous VAChT-positive interneurons. VAChT immunoreactivity was visualized in both cell bodies and extensive terminals in striatal interneurons, in contrast to formalin-fixed, deparaffinized sections stained for ChAT, in which cell bodies and fibers were stained but nerve terminals were less well visualized than with the VAChT antiserum. VAChT-positive nerve fibers were visualized in routinely immersion-fixed, paraffin-embedded human cerebral cortex, comparable to the density of fibers observed in perfusion-fixed Bouin’s-postfixed monkey cerebral cortex. Extensive investment of virtually all principal ganglion cells of thoracic sympathetic ganglia of monkey and human with VAChT-positive nerve terminals was observed. VAChT-positive cell bodies, presumably corresponding to cholinergic sympathetic sudomotor neurons, were a significant fraction of the total principal cell population in monkey and human thoracic sympathetic ganglia. VAChT is a specific marker for cholinergic neurons in human and rhesus monkey, visualizing especially nerve terminals more extensively than antibodies against the cholinergic biosynthetic enzyme ChAT, in routinely fixed tissue. VAChT immunoreactivity in cholinergic nerve terminals of the central and peripheral nervous systems ought to prove useful for visualizing cholinergic synapses and neuroeffector junctions, and their functional status during development and in neurodegenerative and autonomic disease.  相似文献   

2.
3.
Although the existence of cholinergic sympathetic vasodilatory innervation in limb muscle vasculature is well established for some species, previous pharmacological studies have failed to reveal the presence of such innervation in rats. Recently, Schafer and colleagues [Schafer, M.K., Eiden, L.E., Weihe, E., 1998. Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience 84(2), 361-376] reported that vesicular acetylcholine transporter immunoreactivity (VAChT-IR), a marker for cholinergic terminals, is present in the innervation of the microvasculature of rat hindlimb skeletal muscle and concluded that rats possess cholinergic sympathetic innervation of limb muscle vasculature. Because of our interest in identifying targets of cholinergic sympathetic neurons, we have analyzed the transmitter properties of the innervation of muscle vessels in rat and mouse limbs. We found that the innervation of vasculature in muscle is noradrenergic, exhibiting robust catecholamine histofluorescence and immunoreactivity for tyrosine hydroxylase (TH) and the peptide transmitters, neuropeptide Y (NPY) and occasionally vasoactive intestinal peptide (VIP). In contrast, cholinergic phenotypic markers,VAChT-IR and acetylcholinesterase (AChE) activity, are absent. Neuron cell bodies in sympathetic ganglia, retrogradely labeled with injections of tracer into limb muscles, also lacked VAChT but contained TH-IR. The innervation of large extramuscular feed arteries in hindlimbs was also devoid of cholinergic markers, as were the cell bodies of sympathetic neurons innervating extramuscular femoral arteries. These results, like those of previous physiological studies, provide no evidence for the presence of cholinergic sympathetic innervation of muscle vasculature in rats or mice.  相似文献   

4.
5.
Neurons can change their classical neurotransmitters during ontogeny, sometimes going through stages of dual release. Here, we explored the development of the neurotransmitter identity of neurons of the avian nucleus isthmi parvocellularis (Ipc), whose axon terminals are retinotopically arranged in the optic tectum (TeO) and exert a focal gating effect upon the ascending transmission of retinal inputs. Although cholinergic and glutamatergic markers are both found in Ipc neurons and terminals of adult pigeons and chicks, the mRNA expression of the vesicular acetylcholine transporter, VAChT, is weak or absent. To explore how the Ipc neurotransmitter identity is established during ontogeny, we analyzed the expression of mRNAs coding for cholinergic (ChAT, VAChT, and CHT) and glutamatergic (VGluT2 and VGluT3) markers in chick embryos at different developmental stages. We found that between E12 and E18, Ipc neurons expressed all cholinergic mRNAs and also VGluT2 mRNA; however, from E16 through posthatch stages, VAChT mRNA expression was specifically diminished. Our ex vivo deposits of tracer crystals and intracellular filling experiments revealed that Ipc axons exhibit a mature paintbrush morphology late in development, experiencing marked morphological transformations during the period of presumptive dual vesicular transmitter release. Additionally, although ChAT protein immunoassays increasingly label the growing Ipc axon, this labeling was consistently restricted to sparse portions of the terminal branches. Combined, these results suggest that the synthesis of glutamate and acetylcholine, and their vesicular release, is complexly linked to the developmental processes of branching, growing and remodeling of these unique axons.  相似文献   

6.
Expression of the acetylcholine biosynthetic enzyme choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (VAChT), and the high-affinity plasma membrane choline transporter uniquely defines the cholinergic phenotype in the mammalian central (CNS) and peripheral (PNS) nervous systems. The distribution of cells expressing the messenger RNA encoding the recently cloned VAChT in the rat CNS and PNS is described here. The pattern of expression of VAChT mRNA is consistent with anatomical, pharmacological, and histochemical information on the distribution of functional cholinergic neurons in the brain and peripheral tissues of the rat. VAChT mRNA-containing cells are present in brain areas, including neocortex and hypothalamus, in which the existence of cholinergic neurons has been the subject of debate. The demonstration that VAChT is a completely adequate marker for cholinergic neurons should allow the systematic delineation of cholinergic synapses in the rat nervous system when antibodies directed to this protein are available.  相似文献   

7.
Limited animal data suggest that the dopaminergic neurotoxin methamphetamine is not toxic to brain (striatal) cholinergic neurons. However, we previously reported that activity of choline acetyltransferase (ChAT), the cholinergic marker synthetic enzyme, can be very low in brain of some human high-dose methamphetamine users. We measured, by quantitative immunoblotting, concentrations of a second cholinergic marker, the vesicular acetylcholine transporter (VAChT), considered to be a "stable" marker of cholinergic neurons, in autopsied brain (caudate, hippocampus) of chronic users of methamphetamine and, for comparison, in brain of users of cocaine, heroin, and matched controls. Western blot analyses showed normal levels of VAChT immunoreactivity in hippocampus of all drug user groups, whereas in the dopamine-rich caudate VAChT levels were selectively elevated (+48%) in the methamphetamine group, including the three high-dose methamphetamine users who had severely reduced ChAT activity. To the extent that cholinergic neuron integrity can be inferred from VAChT concentration, our data suggest that methamphetamine does not cause loss of striatal cholinergic neurons, but might damage/downregulate brain ChAT in some high-dose users. However, the finding of increased VAChT levels suggests that brain VAChT concentration might be subject to up- and downregulation as part of a compensatory process to maintain homeostasis of neuronal cholinergic activity. This possibility should be taken into account when utilizing VAChT as a neuroimaging outcome marker for cholinergic neuron number in human studies.  相似文献   

8.
Immunocytochemistry for choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) was used to examine the expression of these linked cholinergic markers in human basal forebrain, including cases with early stages of Alzheimer's disease (AD). Previous neurochemical studies have measured decreased ChAT activity in terminal fields, but little change or even increased levels of VAChT. To determine total cholinergic neuron numbers in the nucleus basalis of Meynert (nbM), stereologic methods were applied to tissue derived from three groups of individuals with varying levels of cognition: no cognitive impairment (NCI), mild cognitive impairment (MCI), and early-stage Alzheimer's disease (AD). Both markers were expressed robustly in nucleus basalis neurons and across all three groups. On average, there was no significant difference between the number of ChAT- (210,000) and VAChT- (174, 000) immunopositive neurons in the nbM per hemisphere in NCI cases for which the biological variation was calculated to be 17%. There was approximately a 15% nonsignificant reduction in the number of cholinergic neurons in the nbM in the AD cases with no decline in MCI cases. The number of ChAT- and VAChT-immunopositive neurons was shown to correlate significantly with the severity of dementia determined by scores on the Mini-Mental State Examination, but showed no relationship to apolipoprotein E allele status, age, gender, education, or postmortem interval when all clinical groups were combined or evaluated separately. These data suggest that cholinergic neurons, and the coexpression of ChAT and VAChT, are relatively preserved in early stages of AD.  相似文献   

9.
Pharmacological studies of narcoleptic canines indicate that exaggerated pontine cholinergic transmission promotes cataplexy. As disruption of orexin (hypocretin) signaling is a primary defect in narcolepsy with cataplexy, we investigated whether markers of cholinergic synaptic transmission might be altered in mice constitutively lacking orexin receptors (double receptor knockout; DKO). mRNA for Choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT) and the high‐affinity choline transporter (CHT1) but not acetylcholinesterase (AChE) was significantly higher in samples from DKO than wild‐type (WT) mice. This was region‐specific; levels were elevated in samples from the laterodorsal tegmental nucleus (LDT) and the fifth motor nucleus (Mo5) but not in whole brainstem samples. Consistent with region‐specific changes, we were unable to detect significant differences in Western blots for ChAT and CHT1 in isolates from brainstem, thalamus and cortex or in ChAT enzymatic activity in the pons. However, using ChAT immunocytochemistry, we found that while the number of cholinergic neurons in the LDT and Mo5 were not different, the intensity of somatic ChAT immunostaining was significantly greater in the LDT, but not Mo5, from DKO than from WT mice. We also found that ChAT activity was significantly reduced in cortical samples from DKO compared with WT mice. Collectively, these findings suggest that the orexins can regulate neurotransmitter expression and that the constitutive absence of orexin signaling results in an up‐regulation of the machinery necessary for cholinergic neurotransmission in a mesopontine population of neurons that have been associated with both normal rapid eye movement sleep and cataplexy.  相似文献   

10.
Cholinergic vesicular transporters in progressive supranuclear palsy   总被引:3,自引:0,他引:3  
Suzuki M  Desmond TJ  Albin RL  Frey KA 《Neurology》2002,58(7):1013-1018
OBJECTIVE: To determine the status of cholinergic and monoaminergic vesicular transporter binding sites in progressive supranuclear palsy (PSP). METHODS: The authors determined autoradiographically the regional expression of acetylcholine vesicular transporter (VAChT) and monoamine vesicular transporter type 2 (VMAT2) binding sites in postmortem basal ganglia samples from subjects with PSP. Comparison neurochemical measures included choline acetyltransferase (ChAT) enzyme activity and benzodiazepine (BZ) binding sites. RESULTS: VAChT expressions and ChAT activities in caudate nucleus and putamen were markedly decreased in PSP, whereas BZ binding was unaffected, consistent with selective losses of striatal cholinergic interneurons. VMAT2 density was reduced significantly in the caudate nucleus, putamen, and substantia nigra pars compacta, consistent with degeneration of dopaminergic nigrostriatal projection neurons in PSP. In the globus pallidus, BZ receptor binding sites were reduced, whereas VMAT2 and VAChT binding sites were unchanged, indicating losses of intrinsic pallidal neurons and synapses. CONCLUSIONS: These results confirm selective and marked degenerations of basal ganglia cholinergic and dopaminergic terminals in PSP. Striatal VAChT reduction may provide a unique neurochemical imaging marker for distinction of PSP from other types of basal ganglia neurodegeneration.  相似文献   

11.
12.
Acetylcholine (ACh) is synthesized by choline acetyltransferase (ChAT) in the cytoplasm of cholinergic nerve terminals and transported into synaptic vesicles by vesicular ACh transporter (VAChT). The genes encoding ChAT and VAChT are colocalized within the genome, and their products are known to be coregulated by various neurotrophic factors. In the present study, nerve growth factor (NGF; 100 ng/ml) was shown to enhance expression of VAChT and ChAT mRNA in primary cultured rat embryonic septal cells. By using a radioimmunoassay, we also found that NGF increased both neuronal content and spontaneous release of ACh, which were first detected on day 2 of culture and time-dependently increased up to day 10. Stimulated release of ACh elicited by high K+ (50 mM KCl) was also significantly greater in NGF-treated cells than in control cells. NGF enhanced immunoreactivity to antiserum against VAChT, indicating that the augmented responses were due to, at least in part, increased expression of VAChT protein. In contrast, the numbers of immunocytochemically positive cells were unaffected. Thus, NGF appears to augment ACh synthesis, its transport into synaptic vesicles, and its subsequent release. The data also suggest that NGF facilitates growth and development of cholinergic neurons, but not their survival.  相似文献   

13.
The distribution and chemical coding of neurons supplying urinary bladder in the male pig were studied in the sympathetic chain ganglia, inferior mesenteric ganglia and anterior pelvic ganglia. The combined retrograde tracing and immunohistochemistry for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP), substance P (SP), choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) were applied in the experiment. Bladder-projecting neurons were found in all the ganglia studied. The majority of sympathetic ganglia neurons (inferior mesenteric ganglia and sympathetic chain ganglia) expressed immunoreactivity (IR) to DBH. In sympathetic chain ganglia these neurons simultaneously expressed NPY, GAL or VAChT, while in inferior mesenteric ganglia they contained NPY, SOM and/or GAL. A small number of these bladder-projecting neurons was VAChT-IR and some contained NPY. In the pelvic ganglia bladder-projecting neurons formed two populations: DBH- and VAChT-IR. Some of DBH-IR neurons contained IR to NPY, SOM or GAL, while VAChT-IR neurons were NPY-, SOM- or NOS-IR. The results indicate that sympathetic ganglia contain mainly adrenergic neurons, while pelvic ganglia contain both adrenergic and cholinergic neurons. All these neurons contain typical combinations of neuropeptides.  相似文献   

14.
Markers of identified neuronal populations have previously suggested selective degeneration of projection neurons in Huntington's disease (HD) striatum. Interpretations are, however, limited by effects of compensatory regulation and atrophy. Studies of the vesicular monoamine transporter type-2 (VMAT2) and of the vesicular acetylcholine transporter (VAChT) in experimental animals indicate that they are robust markers of presynaptic integrity and are not subject to regulation. We measured dopamine and acetylcholine vesicular transporters to characterize the selectivity of degeneration in HD striatum. Brains were obtained at autopsy from four HD patients and five controls. Autoradiography was used to quantify radioligand binding to VMAT2, VAChT, the dopamine plasmalemmal transporter (DAT), benzodiazepine (BZ) binding sites, and D2-type dopamine receptors. The activity of choline acetyltransferase (ChAT) was determined as an additional marker of cholinergic neurons. Autoradiograms were analyzed by video-assisted densitometry and assessment of atrophy was made from regional structural areas in the coronal projection. Striatal VMAT2, DAT, and VAChT concentrations were unchanged or increased, while D2 and BZ binding and ChAT activity were decreased in HD. After atrophy correction, all striatal binding sites were decreased. However, the decrease in ChAT activity was 3-fold greater than that of VAChT binding. In addition to degeneration of striatal projection neurons, there are losses of extrinsic nigrostriatal projections and of striatal cholinergic interneurons in HD on the basis of vesicular transporter measures. There is also markedly reduced expression of ChAT by surviving cholinergic striatal interneurons.  相似文献   

15.
Many cholinergic parasympathetic and enteric neurons require neurturin signaling through GDNF family receptor GFRalpha2 for target innervation. Since a distinct minority of sympathetic neurons are cholinergic, we examined whether GFRalpha2 is important for their development. We detected GFRalpha2 in neonatal sympathetic cholinergic neurons and neurturin mRNA in their target tissues, sweat glands in footpads, and periosteum. Lack of GFRalpha2 in mice did not affect the number of sympathetic cholinergic neurons, but their soma size was decreased in comparison to wild types. In adult and in 3-week-old GFRalpha2 knockout mice, the density of sympathetic cholinergic innervation was reduced by 50-70% in the sweat glands, and was completely absent in the periosteum. Sympathetic noradrenergic innervation of blood vessels in the footpads was unchanged. The density of sympathetic axons in sweat glands was unaffected at postnatal day P4 reflecting successful growth into the target area. Our results indicate that the cholinergic subpopulation of sympathetic neurons requires GFRalpha2 signaling for soma size and for growth or maintenance of target innervation. Thus, neurturin may be a general target-derived innervation factor for postganglionic cholinergic neurons in all parts of the autonomic nervous system.  相似文献   

16.
Avian embryonic sympathetic ganglia possess both catecholaminergic and cholinergic features and can synthesize noradrenaline (NAd) and acetylcholine (ACh) simultaneously. In the present study we sought to determine (1) whether or not this coproduction of NAd and ACh corresponds to the existence of two non-overlapping populations, and (2) to what extent the levels of synthesis are influenced by non-neuronal ganglion cells. We have focused on the correlation between the immunocytochemically demonstrable presence of the noradrenergic and cholinergic enzymes tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT), respectively, and the synthesis of the corresponding neurotransmitters in embryonic quail sympathetic neuronal and non-neuronal cells purified by fluorescence-activated cell sorting. We show that (1) freshly sorted neurons synthesize both NAd and ACh, whereas non-neuronal cells produce neither; (2) the overwhelming majority of the sympathetic neurons display TH immunoreactivity; (3) about half of the TH-positive neurons are recognized by an anti-ChAT antibody in an artificial medium that selectively enhances synthesis and/or accumulation of ACh; (4) the non-neuronal cells are important for survival of the neurons and potentiate their synthesis of ACh in this medium, and (5) finally, we present evidence that expression of TH in noradrenergic neurons and in small intensely fluorescent cells of sympathetic ganglia is differentially regulated.  相似文献   

17.
Borna disease virus (BDV)-induced meningoencephalitis is associated with the dysfunction of the cholinergic system. Temporal development of this cholinergic decline during pre-encephalitic and encephalitic stages of BDV infection remains however elusive. Changes in choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities were therefore determined in the cerebral cortex, hippocampus, striatum, amygdala and cholinergic basal forebrain nuclei (ChBFN) of rats infected with BDV. Immunocytochemistry for ChAT and vesicular acetylcholine transporter (VAChT) was employed to identify morphological consequences of BDV infection on cholinergic neurons. Whereas both ChAT and AChE activities changed only slightly under pre-encephalitic conditions, the encephalitic stage was characterized by a significant decrease of ChAT activity in the cerebral cortex, horizontal diagonal band of Broca (hDBB), hippocampus and amygdala concomitant with a marked reduction of AChE activity in the cerebral cortex, hDBB and hippocampus. The striatum and medial septum remained unaffected. ChAT and VAChT immunocytochemistry revealed prominent axonal degeneration in affected cortical and limbic projection areas of ChBFN. In summary, our data indicate progressive deterioration of forebrain cholinergic systems that parallels the progression of BDV encephalitis.  相似文献   

18.
Previous studies utilizing apolipoprotein E (apoE)-deficient mice revealed distinctdecreases in the levels of cholinergic synaptic markers of projecting basal forebrain cholinergicneurons and no such alterations in other brain cholinergic systems. In order to investigate themechanisms underlying these neuron-specific cholinergic effects, primary neuronal cultures fromapoE-deficient and control mice were prepared and characterized. These include basal forebraincultures, which are enriched in projecting cholinergic neurons, and cortical cultures, which containcholinergic interneurons. The levels of cholinergic nerve terminals in these cultures were assessedby ligand binding measurements of the levels of the vesicular acetylcholine transporter (VAChT).This revealed that basal forebrain cultures of apoE-deficient mice contain markedly lower VAChTlevels (50%) than do control cultures, but that VAChT levels of the corresponding corticalcultures of the apoE-deficient and control mice were the same. Time course studies revealed thatVAChT levels of the basal forebrain cultures increased with culture age, but that the relativereduction in VAChT levels of the apoE-deficient cholinergic neurons was unaltered and was thesame for freshly prepared and for 96 h old cultures. These in vitro observations are inaccordance with the in vivo findings and suggest that projecting basal forebraincholinergic neurons, but not cholinergic interneurons, are markedly dependent on apoE and thatsimilar mechanisms mediate the in vivo and in vitro effects of apoE deficiencyon cholinergic function.  相似文献   

19.
Although it is well known that magnocellular cholinergic basal forebrain neurons are trophically responsive to nerve growth factor (NGF) and contain NGF receptors (NGFr), the exact distribution of forebrain NGFr-immunoreactive neurons and the degree to which cholinergic neurons are colocalized with them have remained in question. In this study we employed a very sensitive double-labelling method and examined in the same tissue section the distribution and cellular features of NGFr-positive and choline acetyltransferase (ChAT)-immunolabelled neurons within the rat basal forebrain. Throughout this region the majority of magnocellular basal forebrain neurons were immunoreactive for both NGFr and ChAT. However, a small percentage of neurons in the ventral portion of the vertical limb of the diagonal band of Broca were immunoreactive only for NGFr, whereas a larger population of magnocellular neurons in the substantia innominata exhibited only ChAT immunoreactivity. No NGFr-immunoreactive cells were found associated with ChAT-positive neurons in the striatum, neocortex, or hippocampus, and no single-labelled NGFr-immunoreactive neurons were found outside the basal forebrain area, except for a large number of positive-labelled cells along the ventricular walls of the third ventricle. In addition to its function in maintaining the normal integrity of the basal forebrain and cholinergic, peripheral sympathetic, and neural-crest-derived sensory neurons, NGF may also have a role in the growth of these neurons after damage to the nervous system. To examine this postulate the hippocampus was denervated of its septal input and examined 8 weeks later. Two populations of neurons were found to have undergone collateral sprouting--namely, the midline magnocellular cholinergic neurons of the dorsal hippocampus and the sympathetic noradrenergic neurons of the superior cervical ganglion. Both of these neuronal populations also stained strongly for NGFr. In contrast, the small intrinsic cholinergic neurons of the hippocampus exhibited neither sprouting response nor staining for NGFr. In view of these results, we suggest that the differing sprouting responses demonstrated by these three neuronal populations may be due to their responsiveness to NGF, as indicated by the presence or absence of NGF receptors.  相似文献   

20.
Acetylcholine is synthesized by different types of neurons, showing a distinct biochemical phenotype. Aggregates of RIalpha regulatory subunit of cAMP-dependent protein kinases are visualized by immunohistochemistry only in some cholinergic neurons, since they tightly colocalize with two different markers, choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). These neurons are present mainly in brain areas related to the limbic system. None of the other regulatory subunits of cAMP dependent kinases colocalize with cholinergic markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号