首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In a large collaborative screening project, 370 men with idiopathic azoospermia or severe oligozoospermia were analysed for deletions of 76 DNA loci in Yq11. In 12 individuals, we observed de novo microdeletions involving several DNA loci, while an additional patient had an inherited deletion. They were mapped to three different subregions in Yq11. One subregion coincides to the AZF region defined recently in distal Yq11. The second and third subregion were mapped proximal to it, in proximal and middle Yq11, respectively. The different deletions observed were not overlapping but the extension of the deleted Y DNA in each subregion was similar in each patient analysed. In testis tissue sections, disruption of spermatogenesis was shown to be at the same phase when the microdeletion occurred in the same Yq11 subregion but at a different phase when the microdeletion occurred in a different Yq11 subregion. Therefore, we propose the presence of not one but three spermatogenesis loci in Yq11 and that each locus is active during a different phase of male germ cell development. As the most severe phenotype after deletion of each locus is azoospermia, we designated them as: AZFa, AZFb and AZFc. Their probable phase of function in human spermatogenesis and candidate genes involved will be discussed.   相似文献   

2.
COMMENTS   总被引:4,自引:0,他引:4  
Human spermatogenesis is regulated by a network of genes located on autosomes and on sex chromosomes, but especially on the Y chromosome. Most results concerning the germ cell function of the Y genes were obtained by genomic breakpoint mapping studies of the Y chromosome of infertile patients. Although this approach has the benefit of focussing on those Y regions that contain most likely the Y genes of functional importance, its major drawback is the fact that fertile control samples were often missing. In fertile men, molecular and cytogenetic analyses of the Y chromosome has revealed highly polymorphic chromatin domains especially in the distal euchromatic part (Yq11.23) and in the heterochromatic part (Yq12) of the long arm. In sterile patients cytogenetic analyses mapped microscopically visible Y deletions and rearrangements in the same polymorphic Y regions. The presence of a Y chromosomal spermatogenesis locus was postulated to be located in Yq11.23 and designated as AZoospermia Factor (ZF). More recently, molecular deletion mapping in Yq11 has revealed a series of microdeletions that could be mapped to one of three different AZF loci: AZFa in proximal Yq11 (Yq11.21), AZFb and AZFc in two non‐overlapping Y‐regions in distal Yq11 (Yq11.23). This view was supported by the observation that AZFa and AZFb microdeletions were associated with a specific pathology in the patients' testis tissue. Only AZFc deletions were associated with a variable testicular pathology and in rare cases AZFc deletions were even found inherited from father to son. However, AZFc deletions were found with a frequency of 10–20% only in infertile men and most of them were proved to be “de novo”, i.e. the AZFc deletion was restricted to the patient's Y chromosome. Based mainly on positional cloning experiments of testis cDNA clones and on the Y chromosomal sequence now published in GenBank, a first blueprint for the putative gene content of the AZFc locus can now be given and the gene location compared to the polymorphic DNA domains. This artwork of repetitive sequence blocks called AZFc amplicons raised the question whether the AZFc chromatin is still part of the heterochromatic domain of the Y long arm well known for its polymorphic extensions or is decondensed and part of the Yq11.23 euchromatin? We discuss also the polymorphic DAZ gene family and disclose putative origins of its molecular heterogeneity in fertile and infertile men recently identified by the analyses of Single Nucleotide Variants (SNVs) in this AZFc gene locus.  相似文献   

3.
We evaluated the frequency of chromosomal aberrations and microdeletions of the Y chromosome in a sample of 204 patients included in an intracytoplasmic sperm injection (ICSI) programme. The prevalence of Y chromosome deletions in males with severely or only moderately reduced sparm counts is mainly unknown, so that patients were chosen with sperm counts ranging from mild oligozoospermia to azoospermia. While six out of 158 (3.8%) patients showed constitutional chromosomal aberrations, only two out of 204 (0.98%) patients were diagnosed with a microdeletion of Yq11. One had a terminal deletion in subinterval 6 of Yq11.23 which included the DAZ gene and a corresponding sperm count < 0.1 x 10(6) spermatozoa/ml. The second patient had an isolated deletion of marker Y6PH54c, a more proximal site in subinterval 5 on Yq11.23, but repeatedly showed sperm counts of 3-8 x 10(8) spermatozoa/ml. Thus, of the 158 patients who underwent a combined cytogenetic and Y- microdeletion screening, eight patients (5.1%) showed chromosomal abnormalities, either at the cytogenatic (n = 6) or the molecular level (n = 2). In conclusion, although rare in number, microdeletions of the Y chromosome can also be observed in patients with moderately reduced sperm counts. A more proximal site of the deletion breakpoint does not necessarily imply a more severe impairment of spermatogenesis than a distal deletion site. In our sample, the overall frequency of constitutional chromosomal aberrations exceeded the incidence of microdeletions of the Y chromosome even in patients with idiopathic azoo- or severe oligozoospermia.   相似文献   

4.
Human spermatogenesis is regulated by a network of genes located on autosomes and on sex chromosomes, but especially on the Y chromosome. Most results concerning the germ cell function of the Y genes were obtained by genomic breakpoint mapping studies of the Y chromosome of infertile patients. Although this approach has the benefit of focussing on those Y regions that contain most likely the Y genes of functional importance, its major drawback is the fact that fertile control samples were often missing. In fertile men, molecular and cytogenetic analyses of the Y chromosome has revealed highly polymorphic chromatin domains especially in the distal euchromatic part (Yq11.23) and in the heterochromatic part (Yq12) of the long arm. In sterile patients cytogenetic analyses mapped microscopically visible Y deletions and rearrangements in the same polymorphic Y regions. The presence of a Y chromosomal spermatogenesis locus was postulated to be located in Yq11.23 and designated as AZoospermia Factor (ZF). More recently, molecular deletion mapping in Yq11 has revealed a series of microdeletions that could be mapped to one of three different AZF loci: AZFa in proximal Yq11 (Yq11.21), AZFb and AZFc in two non-overlapping Y-regions in distal Yq11 (Yq11.23). This view was supported by the observation that AZFa and AZFb microdeletions were associated with a specific pathology in the patients' testis tissue. Only AZFc deletions were associated with a variable testicular pathology and in rare cases AZFc deletions were even found inherited from father to son. However, AZFc deletions were found with a frequency of 10-20% only in infertile men and most of them were proved to be "de novo", i.e. the AZFc deletion was restricted to the patient's Y chromosome. Based mainly on positional cloning experiments of testis cDNA clones and on the Y chromosomal sequence now published in GenBank, a first blueprint for the putative gene content of the AZFc locus can now be given and the gene location compared to the polymorphic DNA domains. This artwork of repetitive sequence blocks called AZFc amplicons raised the question whether the AZFc chromatin is still part of the heterochromatic domain of the Y long arm well known for its polymorphic extensions or is decondensed and part of the Yq11.23 euchromatin? We discuss also the polymorphic DAZ gene family and disclose putative origins of its molecular heterogeneity in fertile and infertile men recently identified by the analyses of Single Nucleotide Variants (SNVs) in this AZFc gene locus.  相似文献   

5.
Testicular germ cell cancer is aetiologically linked to genital malformations and male infertility and is most probably caused by a disruption of embryonic programming and gonadal development during fetal life. In some cases, germ cell neoplasia is associated with a relative reduction of Y chromosomal material (e.g. 45,X/46,XY) or other abnormalities of the Y chromosome. The euchromatic long arm of the human Y chromosome (Yq11) contains three azoospermia factors (AZFa, AZFb, AZFc) functionally important in human spermatogenesis. Microdeletions encompassing one of these three AZF loci result in the deletion of multiple genes normally expressed in testis tissue and are associated with spermatogenic failure. The aim of our study was to investigate whether AZF microdeletions, in addition to causing infertility, predispose also to germ cell neoplasia, since subjects with poor spermatogenesis have an increased risk of testicular cancer. We screened for putative deletions of AZF loci on the Y chromosome in DNA isolated from white blood cells of 160 Danish patients with testicular germ cell neoplasia. Interestingly, although AZF microdeletions are found frequently in patients with idiopathic infertility, in all cases studied of testicular germ cell cancer the Yq region was found to be intact. We conclude that the molecular aetiology of testicular germ cell neoplasia of the young adult type most likely does not involve the same pathways as male infertility caused by AZF deletions. Malignant transformation of germ cells is thus caused by the dysfunction of some other genes that still need to be identified.  相似文献   

6.
Human chromosome deletions in Yq11 seem to occur frequently as de novo mutation events in men with idiopathic azoospermia or severe oligozoospermia. However, the molecular extensions of these deletions are variable. They can be large and therefore visible under the microscope or small, not visible under the microscope, and containing the deletion of one or more DNA loci recently mapped in an apparently consecutive order along the Yq11 chromosome region. The results of 20 extensive microdeletion screening programmes have now corroborated the prevalence of the deletion of three non-overlapping DNA regions in proximal, middle and distal Yq11, which were designated earlier as AZFa, AZFb and AZFc. Deletions of single DNA loci were also reported, but as de novo and as polymorphic mutation events. Their clinical significance with regard to the men's infertility should therefore initially be handled with caution. Multiple Y genes expressed in human testis have now been mapped to each AZF region. At least one of them should be functional in human spermatogenesis and, if mutated, cause azoospermia. However, gene-specific mutations leading to the azoospermia phenotype have not yet been found for any of these AZF candidate genes. This might raise the question as to whether an AZF gene really exists in Yq11 or if the azoospermia phenotypes are only observed after deletion of a complete AZF region, after deletion of its complete gene content.   相似文献   

7.
BACKGROUND: Deletions of the AZF (azoospermia factor) subregions on the Y chromosome are accompanied by a diverse spectrum of spermatogenic disturbances ranging from hypospermatogenesis to total depletion of germ cells causing infertility. The AZF region encodes gene products which are candidates for the genetic control of spermatogenesis. Although it is known which genes are involved, a general principle of cause and effect cannot yet be deciphered and the deletion type has non-uniform histological phenotypes. METHODS AND RESULTS: We analysed morphological parameters of testicular biopsies from 17 patients diagnosed for Y chromosome microdeletions. As control groups we analysed testes from patients with idiopathic Sertoli cell-only (SCO) syndrome (n = 11), mixed atrophy (n = 10) and complete spermatogenesis (n = 11). A detailed genetic analysis on the extension of the observed microdeletions revealed similar breakpoints in the distal and proximal region of the AZFc region, indicating a common mechanism of homologous recombination for such deletions, as has been suggested before. Morphometric parameters such as the diameter of the tubules, lumen, thickness of the lamina propria and height of the tubule epithelia were investigated. The diameter of the tubules from patients with microdeletions was found to be significantly smaller compared with patients with mixed atrophy. Considering also the size of the tubules, lumen and epithelia, a Y-chromosomal microdeletion represents an intermediate state between an idiopathic SCO and normal spermatogenesis. The immunohistochemical analysis of six different Sertoli cell markers, cytokeratin 18, vimentin, inhibin alpha subunit, 14-3-3 theta, FSH receptor and androgen receptor, revealed no impact of AZF deletion on the specific expression pattern of these genes. CONCLUSIONS: Our results suggest that, notwithstanding the deletion of a common region in the AZFc region, microdeletions of the Y chromosome lead to an intermediate status between idiopathic SCO and complete spermatogenesis, resulting in a heterogeneous histological profile regardless of the seminiferous activity. The Sertoli cell function seems not to be altered.  相似文献   

8.
Idiopathic Sertoli cell-only syndrome (SCOS) is characterized by azoospermia, small testes, absence of germ cells in the testes, elevated follicle stimulating hormone and normal testosterone concentrations. The Y-chromosome is involved in the regulation of spermatogenesis and in the pathogenesis of a fraction of idiopathic male infertility. An azoospermia factor (AZF) is present on the Y- chromosome long arm euchromatic region (Yq11) and two gene families (DAZ and RBM) have been identified within this region. The aim of this study was to investigate whether a specific pattern of Yq11 microdeletions may be associated with idiopathic SCOS. Eighteen idiopathic subjects showing a testicular cytological picture of bilateral SCOS were selected and tested by polymerase chain reaction for a set of 29 Y-specific sequence-tagged sites (STS). We found Yq microdeletions in 10 out of 18 patients (55.5%) while the fathers or brothers of six out of 10 patients deleted for Yq were shown to carry an intact Y-chromosome. These deletions may therefore be considered as de-novo deletions and the cause of SCOS. The analysis of the microdeletions allowed us to identify two homogeneous regions that have a high incidence of deletion. The smallest deletion, common to all patients, is located in Yq interval 5. We therefore speculate that there is a relationship between specific, well-characterized Yq11 microdeletions and a testicular picture of SCOS, identifying an Y- related region frequently deleted in this syndrome. In conclusion, the findings of this study demonstrate that a large percentage of idiopathic SCOS may be genetically determined and identify an Y-related region that seems to possess one or more still unknown genes essential for spermatogenesis.   相似文献   

9.
We have developed a rapid screening protocol for deletion analysis of the complete AZFa sequence (i.e. 792 kb) on the Y chromosome of patients with idiopathic Sertoli-cell-only (SCO) syndrome. This Y deletion was mapped earlier in proximal Yq11 and first found in the Y chromosome of the SCO patient JOLAR, now designated as the AZFa reference patient. We now show that similar AZFa deletions occur with a frequency of 9% in the SCO patient group. In two multiplex polymerase chain reaction experiments, deletions of the complete AZFa sequence were identified by a typical deletion pattern of four new sequence-tagged sites (STS): AZFa-prox1, positive; AZFa-prox2, negative; AZFa-dist1, negative; AZFa-dist2, positive. The STS were established in the proximal and distal neighbourhoods of the two retroviral sequence blocks (HERV15yq1 and HERV15yq2) which encompass the break-point sites for AZFa deletions of the human Y chromosome. We have found deletions of the complete AZFa sequence always associated with a uniform SCO pattern on testicular biopsies. Patients with other testicular histologies as described in the literature and in this paper have only partial AZFa deletions. The current AZFa screening protocols can therefore be improved by analysing the extension of AZFa deletions. This may provide a valuable prognostic tool for infertility clinics performing testicular sperm extraction, as it would enable the exclusion of AZFa patients with a complete SCO syndrome.  相似文献   

10.
目的探讨非梗阻性无精子症和严重少精子症患者的细胞与分子遗传学特点。方法应用染色体核型分析、Y染色体微缺失检测和荧光原位杂交(FISH)、PCR等技术对非梗阻性无精子症(n=291)和严重少精子症患者(n=133)男性不育患者(共424例)进行细胞和分子遗传学检测。结果424例患者中有98例明确为遗传异常引起的,其中66例检测到染色体畸变,44例Y染色体微缺失检测见缺失,12例患者染色体核型和微缺失检测均见异常。部分AZF缺失患者精液或睾丸中有精子,但其生精功能呈进行性下降的特点。结论男性不育最常见的遗传学病因为K linefelter综合征和Y染色体AZFc缺失。Y染色体微缺失检测对Y染色体长臂异染色质区缺失是否为多态性具有明确诊断的作用。细胞与分子遗传学检测为男性不育的诊断、治疗和预后以及ICSI治疗前遗传咨询提供重要依据。  相似文献   

11.
BACKGROUND: Patients with oligoasthenoteratozoospermia (OAT) and normal karyotypes have an increased sperm aneuploidy rate. This may be due to an altered intratesticular environment that affects the chromosomal segregation mechanism(s). Alternatively, it may be due to a generalized meiotic and mitotic abnormality. In this case, patients with abnormal spermatogenesis should also have an increased somatic cell aneuploidy rate. To test this hypothesis, we evaluated peripheral leukocyte aneuploidy rate in patients with spermatogenic impairment. METHODS: In all, 38 patients were enrolled, of whom 20 had OAT, 15 non-obstructive azoospermia and three Y chromosome (Yq) microdeletions (AZF). Eight healthy normozoospermic men with proven fertility were recruited as controls. Conventional karyotype analysis, AZF microdeletion evaluation and triple-colour FISH for chromosomes X, Y and 12 were conducted in all patients and controls. A total of 1000 lymphocytes were scored for each patient and control. RESULTS: All patients and controls had a normal karyotype. Sex chromosome aneuploidy rates in peripheral lymphocytes was significantly higher in patients with OAT (0.74+/-0.09%), azoospermia (1.15+/-0.15%) or Yq microdeleted (1.54+/-0.40%), compared with controls (0.15+/-0.03%) (P <0.05). CONCLUSIONS: Patients with OAT, azoospermia or Yq microdeletions had a slight, but significant, increase of sex chromosome aneuploidy rate in lymphocytes, suggesting the presence of a generalized defective cell division mechanism. In contrast with recent observations, Yq microdeletions do not seem to predispose to a higher number of malsegregation events in somatic cells compared with patients with azoospermia.  相似文献   

12.
The Y chromosome carries several genes involved in spermatogenesis, which are distributed in three regions in the euchromatic part of the long arm, called AZFa (azoospermia factor a), AZFb, and AZFc. Microdeletions in these regions have been seen in 10-15% of sterile males with azoospermia or severe oligozoospermia. The relatively high de novo occurrence of these microdeletion events might be due to particular chromosome arrangements associated with certain Y chromosome haplogroups. To test whether there is any association between Y chromosome types and male infertility, we studied a sample of 84 Japanese oligozoospermic or azoospermic males. The patients were analyzed for the presence of Yq microdeletions and also typed with a battery of unique event polymorphisms (UEPs) to define their Y haplogroups. Six of the infertile patients presented likely pathological microdeletions detectable with the sequence tagged sites (STS) markers used. There was no significant association between Y chromosome haplogroups and the microdeletions. We also compared the Y haplogroup frequencies in our subset sample of 51 idiopathic azoospermia patients with 57 fertile control Japanese males, and did not observe any significant differences. Contrary to previous reports, our data suggest that Y microdeletions and other molecular events causally associated with male infertility in Japan occur independently of the Y chromosome background.  相似文献   

13.
Submicroscopic deletions of the Y chromosome and polymorphisms of the androgen receptor (AR) gene in the X chromosome have been observed in men with defective spermatogenesis. To further define the subregions/genes in the Y chromosome causing male infertility and its relationship to polymorphisms of the AR polyglutamine tract, we screened the genomic DNA of 202 subfertile males and 101 healthy fertile controls of predominantly Chinese ethnic origin. Y microdeletions were examined with 16 sequence-tagged site (STS) probes, including the RBM and DAZ genes, spanning the AZFb and AZFc subregions of Yq11, and related to the size of trinucleotide repeat encoding the AR polyglutamine tract. Y microdeletions were detected and confirmed in three out of 44 (6.8%) of azoospermic and three out of 86 (3.5%) severely oligozoospermic patients. No deletions were detected in any of the patients with sperm counts of >0.5 x 10(6)/ml, nor in any of the 101 fertile controls. All six affected patients had almost contiguous Y microdeletions spanning the entire AZFc region including the DAZ gene. The AZFb region, containing the RBM1 gene, was intact in five of the six subjects. Y deletions were not found in those with long AR polyglutamine tracts. Our study, the first in a Chinese population, suggest a cause and effect relationship between Y microdeletions in the AZFc region (possibly DAZ), and azoospermia or near-azoospermia. Y microdeletions and long AR polyglutamine tracts appear to be independent contributors to male infertility.   相似文献   

14.
目的 检测我国无精和严重少精子症患者Y染色体微缺失的发生情况和位点,及其与睾丸病理学类型的关系.方法 取584例无精子症和80例严重少精子症患者精液中细胞或外周血白细胞,裂解提取DNA,用4组多重聚合酶链反应检测分布于AZFa、AZFb、AZFc区,包括欧洲男科学会和欧洲分子遗传学质量控制体系推荐的6个位点在内的共15个序列标签位点(sequence tagged site,SIS)的缺失.对部分有Y染色体微缺失患者进行睾丸细针抽吸活检,检查睾丸病理学类型.结果 584例无精子症患者中,共有66例(11.3%)发生Y染色体微缺失,各区发生率构成比由高到低依次为:AZFc区48例(72.7%),AZFb+c区9例(13.6%),AZFa+b+c区4例(6.1%),AZFb区3例(4.5%),A2Fa区2例(3.0%).80例严重少精子症患者共有10例发生Y染色体微缺失(12.5%),均为AZFc区缺失.AZFc区缺失患者(19例)睾丸病理学类型多样化;AZFb+c区或AZFa+b+c区缺失患者(7例)睾丸病理学类型为唯支持细胞综合征或生精阻滞于精原细胞.结论 Y染色体微缺失在我国的发生情况与其他国家大多数报道基本一致,跨区大缺失对精子发生造成严重影响.  相似文献   

15.
Disturbed spermatogenesis and azoospermia are reported in a man with a deleted Y chromosome. The anomalous Y chromosome appears in the karyotype as a small metacentric marker. In situ hybridisation using three different Y specific DNA probes shows that deletion at Yq11 has resulted in loss of all distal heterochromatin. The sterility of the patient indicates loss also of the azoospermia factor (AZF) located at the Yq distal euchromatic/heterochromatic interface. Microspread and air dried meiotic preparations show a severe impairment of spermatogenesis but rare cells are seen to be progressing to the late prophase stage. The testicular histology shows most of the seminiferous tubules to be completely hyalinised. The father and a fertile brother of the proband show a satellited Y chromosome (Yqs) in their karyotypes. The case appears to be the first of its kind reported in which a father with a satellited Y chromosome has produced a son carrying a different Y chromosome anomaly. The possible derivation of the one from the other is discussed.  相似文献   

16.
Microdeletions in Yq11 overlapping three distinct 'azoospermia factors' (AZFa-c) represent the aetiological factor of 10-15% of idiopathic azoospermia and severe oligozoospermia, with higher prevalence in more severe testiculopathies, such as Sertoli cell-only syndrome. Using a PCR-based screening, we analysed Yq microdeletions in 180 infertile patients affected by idiopathic Sertoli cell-only syndrome and different degrees of hypospermatogenesis, compared with 50 patients with known causes of testicular alteration, 30 with obstructive azoospermia, and 100 normal fertile men. In idiopathic severe testiculopathies (Sertoli cell-only syndrome and severe hypospermatogenesis), a high prevalence of microdeletions (34.5% and 24.7% respectively) was found, while milder forms were not associated with Yq alteration. No deletions were found in testiculopathies of known aetiology, obstructive azoospermia, normal fertile men and male relatives of patients with deletions. Deletions in the AZFc region involving the DAZ gene were the most frequent finding and they were more often observed in severe hypospermatogenesis than in Sertoli cell-only syndrome, suggesting that deletions of this region are not sufficient to cause complete loss of the spermatogenic line. Deletions in AZFb involving the RBM gene were less frequently detected and there was no correlation with testicular phenotype, with an apparent minor role for such gene in spermatogenesis. The DFFRY gene was absent in a fraction of patients, making it a candidate AZFa gene. Our data suggest that larger deletions involving more than one AZF-candidate gene are associated with a more severe testicular phenotype.  相似文献   

17.
AZF deletions are genomic deletions in the euchromatic part of the long arm of the human Y chromosome (Yq11) associated with azoospermia or severe oligozoospermia. Consequently, it can be assumed that these deletions remove Y chromosomal genes required for spermatogenesis. However, these 'classical' or 'complete' AZF deletions, AZFa, AZFb and AZFc, represent only a subset of rearrangements in Yq11. With the benefit of the Y chromosome sequence, more rearrangements (deletions, duplications, inversions) inside and outside the classical AZF deletion intervals have been elucidated and intra-chromosomal non-allelic homologous recombinations (NAHRs) of repetitive sequence blocks have been identified as their major cause. These include duplications in AZFa, AZFb and AZFc and the partial AZFb and AZFc deletions of which some were summarized under the pseudonym 'gr/gr' deletions. At least some of these rearrangements are associated with distinct Y chromosomal haplogroups and are present with similar frequencies in fertile and infertile men. This suggests a functional redundancy of the AZFb/AZFc multi-copy genes. Alternatively, the functional contribution(s) of these genes to human spermatogenesis might be different in men of different Y haplogroups. That raises the question whether, the frequency of Y haplogroups with different AZF gene contents in distinct human populations leads to a male fertility status that varies between populations or whether, the presence of the multiple Y haplogroups implies a balancing selection via genomic deletion/amplification mechanisms.  相似文献   

18.
IntroductionInfertility is a burning problem in gynecological, andrological, endocrine and genetic practice. Of the myriad factors responsible for male infertility, which may be manifested as oligozoospermia or azoospermia, the exact causes of the latter are still unknown or debatable. Among the known parameters, the occurrence of microdeletions in the long arm of the Y chromosome are of great importance, as they have been consistently associated with defects in spermatogenesis. The microdeletions of the Y chromosome have been mapped to three regions in interval 6 named azoospermia factor regions (AZF), AZFa, AZFb and AZFc.MethodsIn the present study 80 males suffering from oligozoospermia or azoospermia were taken from both rural and urban infertility clinics and subjected to Polymerase Chain Reaction (PCR) of DNA from blood samples using a total of 11 STS primers. These primers correspond to different segments of the AZF regions (AZFa, AZFb and AZFc) and are known as Sequence Tagged Sites (STS). This was followed by agar gel electrophoresis to look for deletions in the AZF regions corresponding to the STF primers.ResultThese tests were able to detect microdeletions in the long arm of the Y chromosome in 4 patients.DiscussionIn majority of patients PCR detects no abnormality but in cases having microdeletions, appropriate advice could be given to the patients. These patients were told to avoid the use of their sperm in assisted reproduction procedures and accept the use of donor sperm or adoption procedures as a solution to their problems of infertility.  相似文献   

19.
25例无精症患者的分子细胞遗传学研究   总被引:1,自引:0,他引:1  
目的 通过对无精症患者异常染色体及Y染色体(Yq11.2区段)无精症因子(azoospermic factor,AZF)微缺失的分析,探讨无精症与染色体异常的关系.方法 对25例原因不明的无精症患者进行G带染色体核型分析、荧光Q-显带、荧光原位杂交(fluorescence in situ hybridization,FISH)和AZF微缺失PCR检测.结果 25例原因不明的无精症患者中染色体核型异常7例,异常发生率为28%;对8例无精症患者进行AZF微缺失检测:AZF区微缺失2例,分别为AZFb(SYl27,SYl34)+AZFe(SY254,SY255)缺失、AZFe(SY243,sYl58)缺失.结论 染色体异常及Y染色体AZF微缺失是引起无精症并造成男性不育的重要原因之一,对无精症等不育男性患者在排除睾丸病变、阻塞性无精症、内分泌及免疫系统等临床病理学因素后,包括配偶有不明原因习惯性流产的男性均需做外周血染色体常规GTG-显带、荧光Q-显带检查.Q-带阴性的患者说明其Y染色体长臂缺失的断裂点高于Yq12,在Yq11.2区段,则需要结合FISH和AZF微缺失的PCR检测,以确诊Y染色体的微缺失区段,为患者的临床进一步治疗提供可靠的依据.  相似文献   

20.
The potential of assisted reproduction techniques to transmit genetic defects causing male infertility raises questions concerning the need for a systematic genetic screen and counselling. Deletions of the long arm of the Y chromosome are frequently associated with a failure of spermatogenesis. The search for Y specific sequences and for the gene families RNA binding motif (RBM) and deleted in azoospermia (DAZ) have been introduced in many laboratories. The incidence of Y microdeletions varies widely between studies, from 1-55%. These differences are mainly related to study design. The highest incidence of microdeletions has been reported in well selected idiopathic azoospermic patients. Since microdeletions have been reported also in non-idiopathic patients, it is important to define what is the deletion frequency in unselected patients. We report Y chromosome microdeletion screening in 134 unselected patients undergoing intracytoplasmic sperm injection (ICSI). In the first part of the study we tested six Y chromosome markers. We found three patients with microdeletions (2.2%). Subdivision of the study population revealed a deletion incidence of 4.7% in azoospermic/cryptozoospermic patients; an incidence of 7% in idiopathic patients and an incidence of 16% in idiopathic azoospermic/cryptozoospermic patients. The second part of the study consisted of a screen for the presence of the Y chromosome genes, DBY, CDY, XKRY, eIF-1A, DAZ and BPY2. No additional gene-specific deletions were found. Further data on gene specific screening are needed especially for selected idiopathic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号