首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic reprogramming is commonly observed in cancer, and is hypothesized to involve multiple mechanisms, including DNA methylation and Polycomb repressive complexes (PRCs). Here we devise a new experimental and analytical strategy using customized high-density tiling arrays to investigate coordinated patterns of gene expression, DNA methylation, and Polycomb marks which differentiate prostate cancer cells from their normal counterparts. Three major changes in the epigenomic landscape distinguish the two cell types. Developmentally significant genes containing CpG islands which are silenced by PRCs in the normal cells acquire DNA methylation silencing and lose their PRC marks (epigenetic switching). Because these genes are normally silent this switch does not cause de novo repression but might significantly reduce epigenetic plasticity. Two other groups of genes are silenced by either de novo DNA methylation without PRC occupancy (5mC reprogramming) or by de novo PRC occupancy without DNA methylation (PRC reprogramming). Our data suggest that the two silencing mechanisms act in parallel to reprogram the cancer epigenome and that DNA hypermethylation may replace Polycomb-based repression near key regulatory genes, possibly reducing their regulatory plasticity.  相似文献   

2.
3.
4.
5.
6.
7.
8.
DNA methylation and silencing of gene expression.   总被引:5,自引:0,他引:5  
DNA methylation is associated with the silencing of gene expression. The predominant mechanism involves the methylation of DNA and the subsequent recruitment of binding proteins that preferentially recognize methylated DNA. In turn, these proteins associate with histone deacetylase and chromatin remodelling complexes to cause the stabilization of condensed chromatin. Recent studies have indicated that the opposite might also hold; namely, that targeting of methylation might depend on altered chromatin structure. The family of methyltransferases and methyl-binding proteins is expanding and becoming better characterized. This review will focus on the mechanisms of methylation-associated silencing of gene expression.  相似文献   

9.
10.
11.
12.
13.
14.
Switching from acetylation to methylation at histone H3 lysine 9 (K9) has recently been shown to contribute to euchromatin gene silencing. To identify genes silenced by K9 modifications, we probed a human CpG island microarray with DNA obtained by chromatin immunoprecipitation (ChIP) in a cancer cell line using an anti-H3-K9 methylated antibody or an anti-H3-K9 acetylated antibody. Of the 27 clones with the highest signal ratio of K9 methylation over acetylation (Me/Ac), 13 contained repetitive sequences. Among 14 nonrepetitive clones, we identified 11 genes (seven known and four previously undescribed), one EST, and two unknown fragments. Using ChIP-PCR, all 18 examined clones showed higher ratios of H3-K9 Me/Ac than the active gene control, P21, thus confirming the microarray data. In addition, we found a strong correlation between the K9 Me/Ac ratio and CpG island DNA methylation (R = 0.92, P < 0.01), and five of seven genes examined (megalin, thrombospondin-4, KR18, latrophilin-3, and phosphatidylinositol-3-OH kinase P101 subunit) showed lack of expression by RT-PCR and reactivation by DNA methylation and/or histone deacetylase inhibition, suggesting that these genes are true targets of silencing through histone modifications. All five genes also showed significant DNA methylation in a cell line panel and in primary colon cancers. Our data suggest that CpG island microarray coupled with ChIP can identify novel targets of gene silencing in cancer. This unbiased approach confirms the tight coupling between DNA methylation and histone modifications in cancer and could be used to probe gene silencing in nonneoplastic conditions as well.  相似文献   

15.
16.
Epigenetic silencing of genes is now recognized to be an important mechanism for inactivation of tumor suppressor genes in carcinogenesis. Because the role of genetic alterations in colorectal carcinogenesis has been well studied, colorectal cancer also offers an excellent model for elucidation of epigenetic mechanisms involved in carcinogenesis. DNA methylation and histone modification are involved in a complex network to maintain gene silencing and cause carcinogenesis. DNA methylation of cancer-related gene promoters generally begins early in the process of tumorigenesis, affecting various types of colorectal cancer to differing degrees. These advances in the understanding of the biology of tumorigenesis can be expected to provide distinct biomarkers that will aid future diagnosis, risk assessment, and treatment methods for patients with colorectal cancer.  相似文献   

17.
Myelodysplastic syndromes (MDSs) are clonal hematologic disorders that frequently represent an intermediate disease stage before progression to acute myeloid leukemia (AML). As such, study of MDS/AML can provide insight into the mechanisms of neoplastic evolution. In 184 patients with MDS and AML, DNA methylation microarray and high-density single nucleotide polymorphism array (SNP-A) karyotyping were used to assess the relative contributions of aberrant DNA methylation and chromosomal deletions to tumor-suppressor gene (TSG) silencing during disease progression. Aberrant methylation was seen in every sample, on average affecting 91 of 1505 CpG loci in early MDS and 179 of 1505 loci after blast transformation (refractory anemia with excess blasts [RAEB]/AML). In contrast, chromosome aberrations were seen in 79% of early MDS samples and 90% of RAEB/AML samples, and were not as widely distributed over the genome. Analysis of the most frequently aberrantly methylated genes identified FZD9 as a candidate TSG on chromosome 7. In patients with chromosome deletion at the FZD9 locus, aberrant methylation of the remaining allele was associated with the poorest clinical outcome. These results indicate that aberrant methylation can cooperate with chromosome deletions to silence TSG. However, the ubiquity, extent, and correlation with disease progression suggest that aberrant DNA methylation is the dominant mechanism for TSG silencing and clonal variation in MDS evolution to AML.  相似文献   

18.
19.
The genes of the vertebrate beta-globin locus undergo a switch in expression during erythroid development whereby embryonic/fetal genes of the cluster are sequentially silenced and adult genes are activated. We describe here a role for DNA methylation and MBD2 in the silencing of the human fetal gamma-globin gene. The gamma-globin gene is reactivated upon treatment with the DNA methyltransferase inhibitor 5-azacytidine in the context of a mouse containing the entire human beta-globin locus as a yeast artificial chromosome (betaYAC) transgene. To elucidate the mechanism through which DNA methylation represses the gamma-globin gene in adult erythroid cells, betaYAC/MBD2-/- mice were generated by breeding betaYAC mice with MBD2-/- mice. Adult betaYAC/MBD2-/- mice continue to express the gamma-globin gene at a level commensurate with 5-azacytidine treatment, 10- to 20-fold over that observed with 1-acetyl-2-phenylhydrazine treatment alone. In addition, the level of gamma-globin expression is consistently higher in MBD2-/- mice in 14.5- and 16.5-days postcoitus fetal liver erythroblasts suggesting a role for MBD2 in embryonic/fetal erythroid development. DNA methylation levels are modestly decreased in MBD2-/- mice. MBD2 does not bind to the gamma-globin promoter region to maintain gamma-globin silencing. Finally, treatment of MBD2-null mice with 5-azacytidine induces only a small, nonadditive induction of gamma-globin mRNA, signifying that DNA methylation acts primarily through MBD2 to maintain gamma-globin suppression in adult erythroid cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号