首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND PURPOSE: It has been found that 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert various vascular protective effects, beyond their cholesterol-lowering property, including inhibition of platelet-dependent thrombus formation. The objective of the present study was to determine whether the nitric oxide (NO)/cyclic GMP-mediated processes in platelets contribute to the anti-aggregatory activity of simvastatin. EXPERIMENTAL APPROACH: After rabbit platelets were incubated with simvastatin for 5 min, aggregation was induced and the platelet aggregation, nitric oxide synthase activity, guanylyl cyclase activity, NO and cyclic GMP formation were measured appropriately. KEY RESULTS: Treatment with simvastatin concentration-dependently inhibited platelet aggregation induced by collagen or arachidonic acid with an IC(50) range of 52-158 microM. We also demonstrated that simvastatin (20-80 microM) concentration-dependently further enhanced collagen-induced NO and cyclic GMP formation through increasing NOS activity (from 2.64+/-0.12 to 3.52+/-0.21-5.10+/-0.14 micromol min(-1) mg protein(-1)) and guanylyl cyclase activity (from 142.9+/-7.2 to 163.5+/-17.5-283.8+/-19.5 pmol min(-1) mg protein(-1)) in the platelets. On the contrary, inhibition of platelet aggregation by simvastatin was markedly attenuated (by about 50%) by addition of a nitric oxide synthase inhibitor, a NO scavenger or a NO-sensitive guanylyl cyclase inhibitor. The anti-aggregatory effects of simvastatin were significantly increased by addition of a selective inhibitor of cyclic GMP phosphodiesterase. CONCLUSIONS AND IMPLICATIONS: Our findings indicate that enhancement of a NO/cyclic GMP-mediated process plays an important role in the anti-aggregatory activity of simvastatin.  相似文献   

2.
The antiplatelet effects of a novel guanidine derivative, KR-32570 ([5-(2-methoxy-5-chlorophenyl) furan-2-ylcarbonyl]guanidine), were investigated with an emphasis on the mechanisms underlying its inhibition of collagen-induced platelet aggregation. KR-32570 significantly inhibited the aggregation of washed rabbit platelets induced by collagen (10 microg/mL), thrombin (0.05 U/mL), arachidonic acid (100 microM), a thromboxane (TX) A2 mimetic agent U46619 (9,11-dideoxy-9,11-methanoepoxy-prostaglandin F2, 1 microM) and a Ca2+ ATPase inhibitor thapsigargin (0.5 microM) (IC50 values: 13.8 +/- 1.8, 26.3 +/- 1.2, 8.5 +/- 0.9, 4.3 +/- 1.7 and 49.8 +/- 1.4 microM, respectively). KR-32570 inhibited the collagen-induced liberation of [3H]arachidonic acid from the platelets in a concentration dependent manner with complete inhibition being observed at 50 microM. The TXA2 synthase assay showed that KR-32570 also inhibited the conversion of the substrate PGH2 to TXB2 at all concentrations. Furthermore, KR-32570 significantly inhibited the [Ca2+]i mobilization induced by collagen at 50 microM, which is the concentration that completely inhibits platelet aggregation. KR-32570 also decreased the level of collagen (10 microg/mL)-induced secretion of serotonin from the dense-granule contents of platelets, and inhibited the NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. These results suggest that the antiplatelet activity of KR-32570 against collagen-induced platelet aggregation is mediated mainly by inhibiting the release of arachidonic acid, TXA2 synthase, the mobilization of cytosolic Ca2+ and NHE-1.  相似文献   

3.
Gabapentin (Neurontin) is an analogue of gamma-aminobutyric acid (GABA) that is effective against partial seizures. Gabapentin has been reported to modulate serotonin release from platelets, but the effects of gabapentin on platelet activation have not been explored. In this study, gabapentin concentration-dependently (60-240 microM) inhibited platelet aggregation in washed platelets stimulated by collagen (1 microg mL(-1)), ADP (20 microM) and arachidonic acid (60 microM). Gabapentin (120 and 240 microM) also concentration-dependently inhibited collagen (1 microg mL(-1))-induced phosphoinositide breakdown, intracellular Ca(2+) mobilization, thromboxane A(2) formation, and p38 MAPK phosphorylation in human platelets. In conclusion, the most important findings of this study suggest that gabapentin inhibits platelet aggregation, at least in part, through the phospholipase C-inositol 1,4,5-trisphosphate-thromboxane A(2)-Ca(2+) pathway. Thus, it is possible that gabapentin treatment, alone or in combination with other antiplatelet drugs, may induce or potentiate inhibition of platelet aggregation, which may affect haemostasis in-vivo.  相似文献   

4.
Ginsenoside Rg3, a single ginseng saponin, is known to be a major anti-platelet component of protopanaxadiol that is isolated from Korean red ginseng. In this study, we investigated whether dihydroginsenoside Rg3, a stable chemical derivative of ginsenoside Rg3, also demonstrated anti-platelet activity. Dihydroginsenoside Rg3 inhibited thrombin-induced platelet aggregation in a concentration-dependent manner with an IC50 (concentration producing 50% inhibition) of 18.8 +/- 0.4 microM. Ginsenoside Rg3 inhibited platelet aggregation which was induced by thrombin (0.1 U mL(-1)) with an IC50 of 40.2 +/- 0.9 microM. We next determined whether dihydroginsenoside Rg3 affected different types of ligand-induced platelet aggregation. We found that dihydroginsenoside Rg3 inhibited collagen-induced platelet aggregation with an IC50 of 20.0 +/- 0.9 microM. To elucidate the inhibitory mechanism of dihydroginsenoside Rg3 on aggregation, we analysed its downstream signalling pathway. It was interesting to note that dihydroginsenoside Rg3 elevated cyclic AMP production in resting platelets, but did not affect cyclic GMP production. In addition, we found that dihydroginsenoside Rg3 potently suppressed phosphorylation of extracellular signal-regulated kinase 2 (ERK2), which was stimulated by collagen (2.5 microg mL(-1)), but not of p38 mitogen-activated protein kinase. Taken together, our results indicate that dihydroginsenoside Rg3 potently inhibited platelet aggregation via the modulation of downstream signalling components such as cAMP and ERK2.  相似文献   

5.
We investigated the anti-platelet effect of a newly synthesized guanidine derivative KR-32560, a sodium/hydrogen exchanger-1 (NHE-1) inhibitor, together with the elucidation of the possible mode of action. KR-32560 concentration dependently inhibited the aggregation of washed rabbit platelets induced by collagen (10 microg mL(-1)) and arachidonic acid (AA; 100 microM), with IC50 values of 25 and 46 microM, respectively. Whereas, KR-32560 showed weaker potency against aggregation induced by thrombin (0.05 UmL(-1)) and U46619 (1 microM), and had no effect on thapsigargin (0.5 microM)- or A23187 (5 microM)-induced platelet aggregation up to 50 microM. KR-32560 inhibited the collagen-induced [3H]AA liberation in a concentration-dependent manner. In addition, KR-32560 significantly suppressed TXB2 formation in AA-exposed platelets, but had no effect on production of PGD2, indicating an inhibitory effect on TXA2 synthase. This finding was supported by a TXA2 synthase assay that KR-32560 inhibited the conversion of PGH2 into TXB2 with a similar magnitude to suppression of TXB2 formation. Furthermore, KR-32560 significantly inhibited the collagen-induced [Ca2+]i mobilization and serotonin secretion. Taken together, these observations suggest that the anti-platelet activity of KR-32560 may be mediated by the inhibition of cytoplasmic Ca2+ mobilization and AA liberation.  相似文献   

6.
1. Our previous study demonstrated that YC-1, a derivative of benzylindazole, is a novel activator of soluble guanylate cyclase (sGC) in rabbit platelets. This work investigated whether the antiplatelet effect of YC-1 was mediated by a nitric oxide (NO)/sGC/cyclic GMP pathway in human platelets. 2. In human washed platelets, YC-1 inhibited platelet aggregation and ATP released induced by U46619 (2 microM), collagen (10 micro ml(-1)) and thrombin (0.1 u ml(-1)) in a concentration-dependent manner with IC50 values of (microM) 2.1 +/- 0.03, 11.7 +/- 2.1 and 59.3 +/- 7.1, respectively. 3. In a 30,000 g supernatant fraction from human platelet homogenate, YC-1 (5-100 microM) increased sGC activity in a concentration-dependent manner. At the same concentration-range, YC-1 elevated cyclic GMP levels markedly, but only slightly elevated cyclic AMP levels in the intact platelets. 4. MY-5445, a selective inhibitor of cyclic GMP phosphodiesterase, potentiated the increases in cyclic GMP caused by YC-1, and shifted the concentration-anti-aggregation curve of YC-1 to the left. In contrast, HL-725, a selective inhibitor of cyclic AMP phosphodiesterase, did not affect either the increases in cyclic nucleotides or the anti-aggregatory effect caused by YC-1. 5. Methylene blue, an inhibitor of sGC, blocked the increases of cyclic GMP caused by YC-1, and attenuated markedly the anti-aggregatory effect of YC-1. The adenylate cyclase inhibitor, 2'',5''-dideoxyadenosine (DDA) did not affect YC-1-induced inhibition of platelet aggregation. 6. Haemoglobin, which binds NO, prevented the activation of sGC and anti-aggregatory effect caused by sodium nitroprusside, but did not affect YC-1 response. 7. These results would suggest that YC-1 activates sGC of human platelets by a NO-dependent mechanism, and exerts its antiplatelet effects through the sGC/cyclic GMP pathway.  相似文献   

7.
1. The present study was designed to investigate the mechanism of the antiplatelet action of the anaesthetic propofol in vitro. 2. Human whole blood was incubated with different concentrations of propofol and its solvent Intralipid(R). We determined, platelet aggregometry in whole blood, platelet-enriched plasma (PRP), PRP plus red blood cells (RBC), and PRP plus leucocytes (LC); platelet production of thromboxane B2 (TxB2), ATP release by platelet dense granules, adenosine uptake by RBC, intraplatelet levels of cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), and LC production of nitric oxide (NO). 3. Propofol-induced inhibition of platelet aggregation was greater in whole blood (IC50 80 - 136 microM) than in PRP (IC50>600 microM), except when aggregation was induced by arachidonic acid, in which case the antiaggregatory effect of the anaesthetic was similar in both media (IC50 72 - 85 microM). Inhibition of platelet aggregation correlated significantly with inhibition of TxB2 synthesis (r2=0.83). Propofol also inhibited granular ATP release; this effect was greatest in whole blood. 4. The presence of RBC or LC increased the antiaggregatory effect of propofol, mainly when collagen was used as aggregating agent. Intralipid inhibited the uptake of adenosine by RBC, however this effect probably does not contribute significantly to its antiaggregatory effect. 5. The anaesthetic potentiated the NO-cyclic GMP pathway, mainly by increasing the synthesis of NO by LC. Intralipid had no effect on the NO-cyclic GMP pathway in the LC-platelet interaction. 6. Propofol inhibited platelet aggregation in human whole blood, possibly through the sum of the effects of Intralipid on the platelet-RBC interaction and the increased synthesis of NO by LC in the platelet-LC interaction.  相似文献   

8.
1. The thienopyridine clopidogrel is a specific inhibitor of ADP-induced platelet aggregation ex vivo. No direct effects of clopidogrel (< or = 100 microM) on platelet aggregation in vitro have been described so far. 2. Possible in vitro antiaggregatory effects (turbidimetry) of clopidogrel were studied in human platelet-rich plasma and in washed platelets. 3. Incubation of platelet-rich plasma with clopidogrel (< or = 100 microM) for up to 8 h did not result in any inhibition of ADP (6 microM)-induced platelet aggregation. 4. Incubation of washed platelets with clopidogrel resulted in a time- (maximum effects after 30 min) and concentration-dependent (IC50 1.9+/-0.3 microM) inhibition of ADP (6 microM)-induced platelet aggregation. Clopidogrel (30 microM) did not inhibit collagen (2.5 microg ml(-1))-, U46619 (1 microM)- or thrombin (0.1 u ml(-1))-induced platelet aggregation. The inhibition of ADP-induced aggregation by clopidogrel (30 microM) was insurmountable indicating a non-equilibrium antagonism of ADP actions. The R enantiomer SR 25989 C (30 microM) was significantly less active than clopidogrel (30 microM) in inhibiting platelet aggregation (32+/-5% vs 70+/-1% inhibition, P < 0.05, n = 5). 5. In washed platelets, clopidogrel (< or = 30 microM) did not significantly reverse the inhibition of prostaglandin E1 (1 microM)-induced platelet cyclic AMP formation by ADP (6 microM). 6. The antiaggregatory effects of clopidogrel were unchanged when the compound was removed from the platelet suspension. However, platelet inhibition by clopidogrel was completely abolished when albumin (350 mg ml(-1)) was present in the test buffer. 7. It is concluded that clopidogrel specifically inhibits ADP-induced aggregation of washed platelets in vitro without hepatic bioactivation. Inhibition of ADP-induced platelet aggregation by clopidogrel in vitro occurs in the absence of measurable effects on the reversal of PGE1-stimulated cyclic AMP by ADP.  相似文献   

9.
Shen MY  Liu CL  Hsiao G  Liu CY  Lin KH  Chou DS  Sheu JR 《Planta medica》2008,74(10):1240-1245
Aristolochic acid (AsA) is produced from Aristolochia fangchi, and has been used as a Chinese herbal medicine. AsA possesses various biological activities including antiplatelet, antifungal, and anti-inflammatory properties. The aim of this study was to examine the mechanisms of AsA in inhibiting platelet aggregation. AsA (75 - 150 microM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen (1 microg/mL) than other agonists. AsA (115 and 150 microM) inhibited collagen-induced platelet activation accompanied by [Ca+2)]i mobilization, thromboxane A2 (TxA2) formation and phosphoinositide breakdown. On the other hand, AsA also markedly increased levels of NO/cyclic GMP, and cyclic GMP-induced vasodilator-stimulated phosphoprotein phosphorylation. AsA inhibited p38 MAPK but not ERK1/2 phosphorylation in washed platelets. In conclusion, the most important findings of this study suggest that the inhibitory effects of AsA possibly involve the (1) inhibition of the p38 MAPK-cytosolic phospholipase A2-arachidonic acid-TxA2-[Ca+2)]i cascade, and (2) activation of NO/cyclic GMP, resulting in inhibition of phospholipase C. These results imply that Aristolochia fangchi treatment alone or in combination with other antiplatelet drugs, may result in alteration of hemostasis in vivo.  相似文献   

10.
Platelet activation is involved in serious pathological situations, including atherosclerosis and restenosis. It is important to find efficient antiplatelet medicines to prevent fatal thrombous formation during the course of these diseases. Marchantinquinone, a natural compound isolated from Reboulia hemisphaerica, inhibited platelet aggregation and ATP release stimulated by thrombin (0.1 units mL(-1)), platelet-activating factor (PAF; 2 ng mL(-1)), collagen (10 microg mL(-1)), arachidonic acid (100 microM), or U46619 (1 microM) in rabbit washed platelets. The IC50 values of marchantinquinone on the inhibition of platelet aggregation induced by these five agonists were 62.0 +/- 9.0, 86.0 +/- 7.8, 13.6 +/- 4.7, 20.9 +/- 3.1 and 13.4 +/- 5.3 microM, respectively. Marchantinquinone inhibited thromboxane B2 (TxB2) formation induced by thrombin, PAF or collagen. However, marchantinquinone did not inhibit TxB2 formation induced by arachidonic acid, indicating that marchantinquinone did not affect the activity of cyclooxygenase and thromboxane synthase. Marchantinquinone did inhibit the rising intracellular Ca2+ concentration stimulated by the five platelet-aggregation inducers. The formation of inositol monophosphate induced by thrombin was inhibited by marchantinquinone. Platelet cAMP and cGMP levels were unchanged by marchantinquinone. The results indicate that marchantinquinone exerts antiplatelet effects by inhibiting phosphoinositide turnover.  相似文献   

11.
1. The activation of the L-arginine: nitric oxide (NO) pathway during aggregation of human platelets by adenosine 5'-diphosphate (ADP), arachidonic acid, thrombin and the calcium ionophore A23187 and its inhibition by NG-monomethyl-L-arginine (L-NMMA), NG-nitro-L-arginine methyl ester (L-NAME) and N-iminoethyl-L-ornithine (L-NIO) were studied. The inhibition of the cytosolic platelet NO synthase by these compounds was also examined. 2. Platelet aggregation induced by ADP (1-10 microM) and arachidonic acid (0.1-10 microM), but not that induced by thrombin (1-30 mu ml-1) or A23187 (1-10 nM), was inhibited by L-, but not D-arginine (1-30 microM). However, in the presence of a subthreshold concentration of prostacyclin (0.1 nM) or of M & B 22948 (1 microM), a selective inhibitor of guanosine 3':5'-cyclic monophosphate (cyclic GMP) phosphodiesterase, L-arginine caused concentration-dependent inhibition of aggregation induced by all of these aggregating agents. 3. L-NMMA, L-NAME and L-NIO (all at 1-30 microM), but not their D-enantiomers, enhanced to the same extent platelet aggregation induced by ADP, arachidonic acid and thrombin without affecting that induced by A23187. 4. In the presence of 300 microM L-arginine, the NO synthase in platelet cytosol was inhibited by L-NMMA, L-NAME and L-NIO with IC50s of 74 +/- 9, 79 +/- 8 and 8.5 +/- 1.5 microM (n = 3), respectively. 5. These results indicate that the L-arginine: NO pathway in human platelets plays a role in the modulation of platelet aggregation.  相似文献   

12.
In previous studies we have reported that NQ301, a synthetic 1,4-naphthoquinone derivative, displays a potent antithrombotic activity, and that this might be due to antiplatelet effect, which was mediated by the inhibition of cytosolic Ca(2+) mobilization in activated platelets. In the present study, the effect of NQ301 on arachidonic acid cascade in activated platelets has been examined. NQ301 concentration-dependently inhibited washed rabbit platelet aggregation induced by collagen (10 microg/ml), arachidonic acid (100 microM) and U46619 (1 microM), a thromboxane A2 receptor agonist, with IC50 values of 0.60+/-0.02, 0.78+/-0.04 and 0.58+/-0.04 microM, respectively. NQ301 also produced a shift to the right of the concentration-effect curve of U46619, indicating a competitive type of antagonism on thromboxane A2/prostaglandin H2 receptor. NQ301 slightly inhibited collagen-induced arachidonic acid liberation. In addition, NQ301 potently suppressed thromboxane B2 formation by platelets that were exposed to arachidonic acid in a concentration-dependent manner, but had no effect on the production of prostaglandin D2, indicating an inhibitory effect on thromboxane A2 synthase. This was supported by thromboxane A2 synthase activity assay that NQ301 concentration-dependently inhibited thromboxane B2 formation converted from prostaglandin H2. Moreover, NQ301 concentration-dependently inhibited 12-hydroxy-5,8,10,14-eicosatetraenoic acid formation by platelets that were exposed to arachidonic acid. Taken together, these results suggest that NQ301 has a potential to inhibit thromboxane A2 synthase activity with thromboxane A2/prostaglandin H2 receptor blockade, and modulate arachidonic acid liberation as well as 12-hydroxy-5,8,10,14-eicosatetraenoic acid formation in platelets. This may also be a convincing mechanism for the antithrombotic action of NQ301.  相似文献   

13.
Because the metabolites of arachidonic acid participate in many physiopathological responses, including inflammation and platelet aggregation, cyclooxygenase inhibitors are important in the treatment of associated diseases. A biologically active compound, 5-ethyl-4-methoxy-2-phenylquinoline (KTC-5), selectively and concentration dependently inhibited aggregation of platelets from man and ATP release caused by arachidonic acid (200 microM) and collagen (10 microg mL(-1)) without affecting the aggregation caused by thrombin (0.1 U mL(-1)) and U46619 (2 microM). The IC50 value (drug concentration inhibiting maximum response by 50%) of KTC-5 for aggregation induced by arachidonic acid and collagen was 0.11+/-0.04 microM and 0.20+/-0.03 microM, respectively. This inhibitory effect of KTC-5 was reversible and time dependent. KTC-5 specifically inhibited intracellular calcium mobilization initiated by arachidonic acid or collagen without affecting that caused by thrombin or U46619 in human platelets. Furthermore, KTC-5 inhibited thromboxane B2 and prostaglandin D2 formation provoked by arachidonic acid. The IC50 value of KTC-5 for arachidonic-acid-induced thromboxane B2 formation was 0.07+/-0.02 microM. Based on these observations, the data indicated that KTC-5 potently inhibited human platelet aggregation and ATP release mainly via the inhibition of the cyclooxygenase-1 activity. Moreover, KTC-5 inhibited lipopolysaccharide-induced prostaglandin E2 formation in RAW264.7 cells in the presence of external arachidonic acid with an IC50 value of 0.17+/-0.06 microM. Immunoblot analysis showed that KTC-5 did not affect the cyclooxygenase-2 expression in the presence of lipopolysaccharide on RAW264.7 cells. This result indicated that KTC-5 affects the activity of cyclooxygenase-2. According to these data, we concluded that KTC-5 is a cyclooxygenase inhibitor for both subtypes.  相似文献   

14.
BM-531 (N-tert-butyl-N'-[(2-cyclohexylamino-5-nitrobenzene)sulfonyl]urea), a torasemide derivative, is a novel noncarboxylic thromboxane receptor antagonist and thromboxane synthase inhibitor. Indeed, its affinity for human washed platelet TXA2 receptors labeled with [3H]SQ-29548 (IC50 = 0.0078 microM) is higher than sulotroban (IC50 = 0.93 microM) and SQ-29548 (IC50 = 0.021 microM). Moreover, BM-531 is characterized by a potent antiaggregatory property. Indeed, on one hand, in human citrated platelet-rich plasma BM-531 prevents platelet aggregation induced by arachidonic acid (600 microM) (ED100 = 0.125 microM), U-46619, a stable TXA2 agonist (1 microM) (ED50 = 0.482 microM) or collagen (1 microgram/mL) (percentage of inhibition: 42.9% at 10 microM) and inhibits the second wave of ADP (2 microM)-induced aggregation. On the other hand, when BM-531 is incubated in whole blood from healthy donors, the closure time measured by the recently developed platelet function analyser (PFA-100) is significantly prolonged. In addition, at the concentrations of 10 and 1 microM, BM-531 totally prevents the production of TXB2 by human platelets activated by arachidonic acid. Finally, at 10 microM, BM-531 significantly prevents rat fundus contractions induced by U-46619 but not by prostacyclin. These results suggest that BM-531, which is devoid of the diuretic property of torasemide, can be regarded as a promising antiplatelet agent.  相似文献   

15.
A potent thromboxane A2/PGH2 (TP)-receptor antagonist, S18886, was evaluated for its antithrombotic property in a dog model of acute periodic platelet-mediated thrombosis in stenosed coronary arteries with endothelial damage. After thrombosis had been obtained in 11 dogs, S18886 (300 microg/kg bolus) was administered IV. Heart rate, systemic blood pressure, and coronary blood flow were continuously recorded. Ex vivo whole blood platelet aggregation (PA), blood pH, hematocrit, platelet count, PO2, PCO2, and bleeding times were measured before and 30 minutes after administration of S18886. S18886 completely inhibited thrombosis in all dogs in approximately 5-10 minutes. No change in heart rate, blood pressure, pH, PO2, PCO2, platelet count, or bleeding time and a slight but significant elevation in hematocrit occurred. Infusion of epinephrine IV after complete inhibition of thrombosis by S18886 partially restored thrombosis in 3 of the 11 dogs. PA induced by collagen (4 microg/mL), collagen (0.25 microg/mL) plus epinephrine (1 microg/mL), collagen (1 microg/mL) plus epinephrine (1 microg/mL), ADP (40 microM) plus epinephrine (1 microg/mL), and phorbol 12-myristate 13-acetate (0.5 nM) were attenuated by 90 +/- 8% (P < 0.005), 98 +/- 2% (P < 0.05), 78 +/- 6% (P < 0.005), 70 +/- 10% (P < 0.005), and 28 +/- 8% (P < 0.05), respectively. In conclusion, S18886 is a potent platelet inhibitor that attenuates in vivo platelet-dependent thrombosis in the experimental dog model and reduces ex vivo platelet aggregation.  相似文献   

16.
1. We have investigated the role of nitric oxide (NO) in cholinergic contraction in rat trachea. 2. Methylene blue (10 nM to 30 microM) potentiated cholinergic contraction induced by electrical field stimulation (EFS) at 5 Hz in a concentration-dependent fashion. At a concentration of 30 microM, methylene blue decreased responses to log EFS frequency, producing 50% of maximum contraction from a control value of 0.74 +/- 0.09 Hz to 0.30 +/- 0.05 Hz without a significant effect on concentration-response curves to acetylcholine (ACh). 3. NG-monomethyl-L-arginine (L-NMMA; 100 microM) also potentiated cholinergic contraction induced by EFS at 5 Hz (131.5 +/- 4.6% of control) without having any effect against ACh (3 microM)-induced contractions. Likewise, L-NMMA (100 microM) significantly increased EFS (5 Hz)-evoked release of ACh from tracheal segments into the bath solution (51.4 +/- 4.0 pmol ml-1 in the presence of L-NMMA and 35.0 +/- 1.8 pmol ml-1 in the absence of L-NMMA, respectively). 4. Administration of NO (present in acidified solution of NaNO2) (1 nM to 10 microM) and sodium nitroprusside (100 nM to 10 microM) concentration-dependently reduced EFS (5 Hz)-induced cholinergic contractions without having a significant effect on ACh (3 microM)-induced contractions. These results were unaffected by prior exposure of the tissues to L-NMMA (100 microM). 5. Dibutyryl cyclic GMP (3 mM) also reduced cholinergic contractions induced by EFS at 5 Hz (70.1 +/- 3.6% of control) without any significant effect on ACh (3 microM)-induced contractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. An increase in plasma concentrations of endogenous L-arginine analogues, which are inhibitors of nitric oxide (NO) synthesis, may be involved in platelet activation and the increased risk of thrombosis in essential hypertension. Nitric oxide is synthesised in platelets from the amino acid L-arginine by inducible and constitutive isoforms of NO synthase (NOS), which leads to increased levels of cGMP. 2. In the present study, we investigated basal intraplatelet cGMP levels, platelet aggregation and pro-inflammatory biomarkers in hypertensive patients. The effects of endogenous (N(G)-monomethyl-L-arginine (L-NMMA) and asymmetric dimethylarginine (ADMA); both at 1 mmol/L) and exogenous (aminoguanidine and N(G)-nitro-L-arginine; both at 1 mmol/L) L-arginine analogues and the neutral amino acid L-leucine (1 mmol/L) in inhibiting NOS activity in platelets were also investigated. 3. Twelve healthy controls and 18 hypertensive patients participated in the study. Platelet aggregation induced by collagen was increased in hypertensive patients (95 +/- 5%) compared with controls (72 +/- 5%). Basal NOS activity and intraplatelet cGMP levels were reduced in hypertensive platelets. Moreover, ADMA, L-NMMA and L-leucine were effective inhibitors of NO synthesis in both hypertensive and control platelets. Essential hypertension led to an inflammatory response, with increased plasma concentrations of fibrinogen, C-reactive protein and cytokines. 4. These findings provide evidence that, in essential arterial hypertension, the enhanced plasma levels of endogenous L-arginine analogues ADMA and L-NMMA, potent inhibitors of L-arginine transport and NO synthesis in platelets, may play a role in increased platelet aggregation via a cGMP-dependent mechanism.  相似文献   

18.
1. S-Nitrosothiols are nitric oxide (NO) donor drugs that have been shown to inhibit platelet aggregation in platelet rich plasma (PRP) in vitro and to inhibit platelet activation in vivo. The aim of this study was to compare the platelet effects of a novel S-nitrosated glyco-amino acid, RIG200, with an established S-nitrosothiol, S-nitrosoglutathione (GSNO) in PRP, and to investigate the effects of cell-free haemoglobin and red blood cells on S-nitrosothiol-mediated inhibition of platelet aggregation. 2. The effects of GSNO and RIG200 in collagen (2.5 microg ml(-1))-induced platelet aggregation in PRP and whole blood were investigated in vitro. Both compounds were found to be powerful inhibitors of aggregation in PRP, and RIG200 was significantly more potent (IC(50)=2.0 microM for GSNO and 0.8 microM for RIG200; P=0.04). 3. Neither compound inhibited aggregation in whole blood, even at concentrations of 100 microM. Red blood cell concentrations as low as 1% of the haematocrit, and cell-free haemoglobin (> or = 2.5 microM), significantly reduced their inhibitory effects on platelets. 4. Experiments involving measurement of cyclic GMP levels, electrochemical detection of NO and electron paramagnetic resonance of haemoglobin in red blood cells, indicated that scavenging of NO generated from S-nitrosothiols by haemoglobin was responsible for the lack of effect of S-nitrosothiols on platelets in whole blood. 5. These studies suggest that scavenging of NO by haemoglobin in blood might limit the therapeutic application of S-nitrosothiols as anti-platelet agents.  相似文献   

19.
1. The aim of this study was to identify the presence of matrix metalloproteinase-9 (MMP-9) in human platelets and systematically examine its inhibitory mechanisms of platelet activation. 2. In this study, we report on an efficient method for the quantitative analysis of pro-MMP-9 in human platelets using capillary zone electrophoresis (CZE). To elucidate subcellular localization of MMP-9 in human platelets, we investigated intraplatelet MMP-9 by immunogold labeling and visualized it using electron microscopy. In an in vivo thrombotic study, platelet thrombus formation was induced by irradiation of mesenteric venules with filtered light in mice pretreated with fluorescein sodium. 3. MMP-9-gold labeling was observed on the plasma membrane, alpha-granules, open canalicular system, and within the cytoplasma both in resting and activated platelets. Furthermore, activated MMP-9 concentration-dependently (15-90 ng ml(-1)) inhibited platelet aggregation stimulated by agonists. Activated MMP-9 (21 and 90 ng ml(-1)) inhibited phosphoinositide breakdown, intracellular Ca(2+) mobilization, and thromboxane A(2) formation in human platelets stimulated by collagen (1 microg ml(-1)). In addition, activated MMP-9 (21 and 90 ng ml(-1)) significantly increased the formation of nitric oxide/cyclic GMP. 4. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12, 13-dibutyrate (PDBu) (60 nm). This phosphorylation was markedly inhibited by activated MMP-9 (21 and 90 ng ml(-1)). Activated MMP-9 (1 microg g(-1)) significantly prolonged the latency period of inducing platelet plug formation in mesenteric venules. 5. These results indicate that the antiplatelet activity of activated MMP-9 may be involved in the following pathways. (1) Activated MMP-9 may inhibit the activation of phospholipase C, followed by inhibition of phosphoinositide breakdown, protein kinase C activation, and thromboxane A(2) formation, thereby leading to inhibition of intracellular Ca(2+) mobilization. (2) Activated MMP-9 also activated the formation of nitric oxide/cyclic GMP, resulting in inhibition of platelet aggregation. These results strongly indicate that MMP-9 is a potent inhibitor of aggregation. It may play an important role as a negative feedback regulator during platelet activation.  相似文献   

20.
1. The pharmacological effects of cinnamophilin, a new lignan, isolated from Cinnamomum philippinense, was determined in vitro in human platelet, rat isolated aorta and guinea-pig isolated trachea and in vivo in mice and guinea-pigs. 2. Cinnamophilin inhibited dose-dependently human platelet-rich plasma (PRP) aggregation induced by arachidonic acid (AA), collagen and U-46619 with IC50 of 5.0 +/- 0.4, 5.6 +/- 0.6 and 3.0 +/- 0.4 microM, respectively. The second wave of ADP- or adrenaline-induced platelet aggregation was inhibited by cinnamophilin, while the first wave was only slightly inhibited by cinnamophilin above 30 microM. 3. Cinnamophilin was found to be a thromboxane A2 (TXA2) receptor blocking agent in human platelet, rat aorta and guinea-pig trachea as revealed by its competitive antagonism of U-46619-induced aggregation of human-PRP, contraction of rat aortic rings and guinea-pig tracheal rings with pA2 values of 7.3 +/- 0.2, 6.3 +/- 0.1 and 5.2 +/- 0.2, respectively. 4. [3H]-inositol monophosphate formation and the rise of intracellular Ca2+ caused by U-46619 in human platelet was suppressed by cinnamophilin (10 microM). 5. Cinnamophilin induced a dose-dependent inhibition of thromboxane B2 (TXB2) formation, while the prostaglandin E2 (PGE2) formation was increased. Cinnamophilin did not affect unstimulated platelet adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels. When the platelets were challenged with AA, a dose-dependent rise in cyclic AMP was observed. Dazoxiben (a pure TX synthase inhibitor) and SQ 29548 (a pure TXA2 receptor antagonist) did not affect cyclic AMP levels in AA-treated platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号