首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is a major cause of end-stage renal disease in adults. Autosomal recessive (AR) PKD affects approximately 1:20,000 live-born children with high perinatal mortality. Both diseases have abnormalities in epithelial proliferation, secretion, and cell-matrix interactions, leading to progressive cystic expansion and associated interstitial fibrosis. Cell number in a kidney reflects the balance between proliferation and apoptosis. Apoptosis results from extrinsic (ligand-induced, expression of caspase-8) and intrinsic (mitochondrial damage, expression of caspase-9) triggers. Previous studies have suggested a role for apoptosis in PKD cyst formation and parenchymal destruction. Mechanisms underlying apoptosis in human ADPKD and ARPKD were examined by quantitative immunohistochemistry and Western immunoblot analyses of age-matched normal and PKD tissues. Caspase-8 expression was significantly greater in small cysts and normal-appearing tubules than in larger cysts in ADPKD kidneys. Caspase-8 also appeared early in the disease process of ADPKD. In ARPKD, expression of caspase-8 was most pronounced in later stages of the disease and was not confined to a specific cyst size. In conclusion, apoptosis in human ADPKD is an early event, occurring predominantly in normal-appearing tubules and small cysts, and is triggered by an extrinsic factor, but it occurs later in ARPKD.  相似文献   

2.
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous, with at least three chromosomal loci accounting for the disease. Mutations in the PKD2 gene on the long arm of chromosome 4 are expected to be responsible for approximately 15% of cases of ADPKD. METHODS: We report a systematic screening for mutations covering the 15 exons of the PKD2 gene in eight unrelated families with ADPKD type 2, using the heteroduplex technique. RESULTS: Seven novel mutations were identified and characterized that, together with the previously described changes, amount to a detection rate of 85% in the population studied. The newly described mutations are two nonsense mutations, a 1 bp deletion, a 1 bp insertion, a mutation that involves both a substitution and a deletion (2511AG-->C), a complex mutation in exon 6 consisting of a simultaneous 7 bp inversion and a 4 bp deletion, and the last one is a G-->C transversion that may be a missense mutation. Most of these mutations are expected to lead to the formation of shorter truncated proteins lacking the carboxyl terminus of PKD2. We have also characterized a frequent polymorphism, Arg-Pro, at codon 28 in this gene. The clinical features of these PKD2 patients are similar to the previously described, with the mean age of end-stage renal disease being 75.5 years (SE +/- 3.8 years). CONCLUSIONS: Our results confirm that many different mutations are likely to be responsible for the disease and that most pathogenic defects probably are point or small changes in the coding region of the gene.  相似文献   

3.
A complete mutation screen of the ADPKD genes by DHPLC   总被引:12,自引:0,他引:12  
BACKGROUND: Genetic analysis is a useful diagnostic tool in autosomal dominant polycystic kidney disease (ADPKD), especially when imaging results are equivocal. However, molecular diagnostics by direct mutation screening has proved difficult in this disorder due to genetic and allelic heterogeneity and complexity of the major locus, PKD1. METHODS: A protocol was developed to specifically amplify the exons of PKD1 and PKD2 from genomic DNA as 150 to 450 bp amplicons. These fragments were analyzed by the technique of denaturing high-performance liquid chromatography (DHPLC) using a Wave Fragment Analysis System (Transgenomics) to detect base-pair changes throughout both genes. DHPLC-detected changes were characterized by sequencing. RESULTS: Cost effective and sensitive mutation screening of the entire coding regions of PKD1 and PKD2 by DHPLC was optimized. All base-pair mutations to these genes that we previously characterized were detected as an altered DHPLC profile. To assess this method for routine diagnostic use, samples from a cohort of 45 genetically uncharacterized ADPKD patients were analyzed. Twenty-nine definite mutations were detected, 26 PKD1, 3 PKD2 and a further five possible missense mutations were characterized leading to a maximal detection rate of 76%. A high level of polymorphism of PKD1 also was detected, with 71 different changes defined. The reproducibility of the DHPLC profile enabled the recognition of many common polymorphisms without the necessity for re-sequencing. CONCLUSIONS: DHPLC has been demonstrated to be an efficient and effective means for gene-based molecular diagnosis of ADPKD. Differentiating missense mutations and polymorphisms remains a challenge, but family-based segregation analysis is helpful.  相似文献   

4.
5.
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a common disease in China. The major gene responsible for ADPKD, PKD1, has been fully characterized and shown to encode an integral membrane protein, polycystin 1, which is thought to be involved in cell-cell and cell-matrix interaction. Until now, 82 mutations of PKD1 gene have been reported in European, American, and Asian populations. However, there has been no report on mutations of the PKD1 gene in a Chinese population. METHODS: Eighty Chinese patients in 60 families with ADPKD were screened for mutations in the 3' region of the PKD1 gene using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA-sequencing techniques. RESULTS: Three mutations were found. The first mutation is a 12593delA frameshift mutation in exon 45, and the polycystin change is 4129WfsX4197, 107 amino acids shorter than the normal polycystin (4302aa). The second mutation is a 12470InsA frameshift mutation in exon 45, producing 4088DfsX4156, and the predicted protein is 148 amino acids shorter than the normal. The third one is a 11151C-->T transition in exon 37 converting Pro3648 to Leu. In addition, nine DNA variants, including IVS44delG, were identified. CONCLUSIONS: Three mutations in Chinese ADPKD patients are described and all of them are de novo mutations. Data obtained from mutation analysis also suggests that the mutation rate of the 3' single-copy region of PKD1 in Chinese ADPKD patients is very low, and there are no mutation hot spots in the PKD1 gene. Mutations found in Chinese ADPKD patients, including nucleotide substitution and minor frameshift, are similar to the findings reported by other researchers. Many mutations of the PKD1 gene probably exist in the duplicated region, promoter region, and the introns of PKD1.  相似文献   

6.
Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations.  相似文献   

7.
Mutational analysis within the 3' region of the PKD1 gene   总被引:5,自引:0,他引:5  
  相似文献   

8.
Autosomal dominant polycystic kidney disease (ADPKD) is a common Mendelian disorder that affects approximately 1 in 1000 live births. Mutations of two genes, PKD1 and PKD2, account for the disease in approximately 80 to 85% and 10 to 15% of the cases, respectively. Significant interfamilial and intrafamilial renal disease variability in ADPKD has been well documented. Locus heterogeneity is a major determinant for interfamilial disease variability (i.e., patients from PKD1-linked families have a significantly earlier onset of ESRD compared with patients from PKD2-linked families). More recently, two studies have suggested that allelic heterogeneity might influence renal disease severity. The current study examined the genotype-renal function correlation in 461 affected individuals from 71 ADPKD families with known PKD2 mutations. Fifty different mutations were identified in these families, spanning between exon 1 and 14 of PKD2. Most (94%) of these mutations were predicted to be inactivating. The renal outcomes of these patients, including the age of onset of end-stage renal disease (ESRD) and chronic renal failure (CRF; defined as creatinine clearance < or = 50 ml/min, calculated using the Cockroft and Gault formula), were analyzed. Of all the affected individuals clinically assessed, 117 (25.4%) had ESRD, 47 (10.2%) died without ESRD, 65 (14.0%) had CRF, and 232 (50.3%) had neither CRF nor ESRD at the last follow-up. Female patients, compared with male patients, had a later mean age of onset of ESRD (76.0 [95% CI, 73.8 to 78.1] versus 68.1 [95% CI, 66.0 to 70.2] yr) and CRF (72.5 [95% CI, 70.1 to 74.9] versus 63.7 [95% CI, 61.4 to 66.0] yr). Linear regression and renal survival analyses revealed that the location of PKD2 mutations did not influence the age of onset of ESRD. However, patients with splice site mutations appeared to have milder renal disease compared with patients with other mutation types (P < 0.04 by log rank test; adjusted for the gender effect). Considerable renal disease variability was also found among affected individuals with the same PKD2 mutations. This variability can confound the determination of allelic effects and supports the notion that additional genetic and/or environmental factors may modulate the renal disease severity in ADPKD.  相似文献   

9.

Background

Genetic diagnosis of autosomal recessive polycystic kidney disease (ARPKD) is challenging due to the length and allelic heterogeneity of the PKHD1 gene. Mutations appear to be clustered at specific exons, depending on the geographic origin of the patient. We aimed to identify the PKHD1 exons most likely mutated in Spanish ARPKD patients.

Methods

Mutation analysis was performed in 50 ARPKD probands and nine ARPKD-suspicious patients by sequencing PKHD1 exons arranged by their reported mutation frequency. Haplotypes containing the most frequent mutations were analyzed. Other PKD genes (HNF1B, PKD1, PKD2) were sequenced in PKHD1-negative cases.

Results

Thirty-six different mutations (concentrated in 24 PKHD1 exons) were detected, giving a mutation detection rate of 86 %. The screening of five exons (58, 32, 34, 36, 37) yielded a 54 % chance of detecting one mutation; the screening of nine additional exons (3, 9, 39, 61, 5, 22, 26, 41, 57) increased the chance to 76 %. The c.9689delA mutation was present in 17 (34 %) patients, all of whom shared the same haplotype. Two HNF1B mutations and one PKD1 variant were detected in negative cases.

Conclusions

Establishing a PKHD1 exon mutation profile in a specific population and starting the analysis with the most likely mutated exons might significantly enhance the efficacy of genetic testing in ARPKD. Analysis of other PKD genes might be considered, especially in suspicious cases.  相似文献   

10.
An intriguing feature of autosomal dominant polycystic kidney disease (ADPKD) is the focal and sporadic formation of renal and extrarenal cysts. Recent documentation of somatic PKD1 mutations in cystic epithelia of patients with germ-line PKD1 mutations suggests a "two-hit" model for cystogenesis in type 1 ADPKD. This study tests whether the same mechanism for cystogenesis might also occur in type 2 ADPKD. Genomic DNA was obtained from 54 kidney and liver cysts from three patients with known germ-line PKD2 mutations, using procedures that minimize contamination of cells from noncystic tissue. Using intragenic and microsatellite markers, these cyst samples were screened for loss of heterozygosity. The same samples were also screened for somatic mutations in five of the 15 exons in PKD2 by single-stranded conformational polymorphism analysis. Loss of heterozygosity was found in five cysts, and unique intragenic mutations were found in seven other cysts. In 11 of these 12 cysts, it was also determined that the somatic mutation occurred nonrandomly in the copy of PKD2 inherited from the unaffected parent. These findings support the "two-hit" model as a unified mechanism for cystogenesis in ADPKD. In this model, the requirement of a somatic mutation as the rate-limiting step for individual cyst formation has potential therapeutic implications.  相似文献   

11.
BACKGROUND: Mutation analysis in the context of clinical phenotypes helps clarify the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD). Over 78 PKD2 gene mutations have been reported in the literature, but few have been described from an Asian population. This study attempted to characterize PKD2 mutations and their clinical implications among Taiwanese. METHODS: Twenty unrelated ADPKD patients with uncharacterized genotypes were screened for mutations in the PKD2 gene via single-strand conformation polymorphism (SSCP) of PCR products from genomic DNA, using previously reported PCR conditions and primers. RESULTS: This study identified two novel mutations (C681A and 2136-2137delG) and one mutation (C2407T) previously reported in a Cypriot family. Overall, we found PKD2 mutations in 15% (three out of 20) of the ADPKD patients screened. The mutations included two nonsense mutations (Y227X and R803X) and one frameshift mutation (712-715X) that could all lead to premature termination of translation. The locations of mutations in this study spanned the entire PKD2 gene on exons 2, 11, and 13 without clustering and did not influence the renal disease severity. CONCLUSIONS: The study identified two novel mutations and one recurrent mutation of the PKD2 gene in 20 Taiwanese patients. The characteristics of the mutations in this study resemble those reported among Western populations.  相似文献   

12.
Autosomal dominant polycystic kidney disease (ADPKD) is typically a late-onset disease caused by mutations in PKD1 or PKD2, but about 2% of patients with ADPKD show an early and severe phenotype that can be clinically indistinguishable from autosomal recessive polycystic kidney disease (ARPKD). The high recurrence risk in pedigrees with early and severe PKD strongly suggests a common familial modifying background, but the mechanisms underlying the extensive phenotypic variability observed among affected family members remain unknown. Here, we describe severely affected patients with PKD who carry, in addition to their expected familial germ-line defect, additional mutations in PKD genes, including HNF-1β, which likely aggravate the phenotype. Our findings are consistent with a common pathogenesis and dosage theory for PKD and may propose a general concept for the modification of disease expression in other so-called monogenic disorders.  相似文献   

13.
Mutations of PKD1 and PKD2 account for most cases of autosomal dominant polycystic kidney disease (ADPKD). Compared with PKD2, patients with PKD1 typically have more severe renal disease. Here, we report a follow-up study of a unique multigeneration family with bilineal ADPKD (NFL10) in which a PKD1 disease haplotype and a PKD2 (L736X) mutation co-segregated with 18 and 14 affected individuals, respectively. In our updated genotype-phenotype analysis of the family, we found that PKD1-affected individuals had uniformly mild renal disease similar to the PKD2-affected individuals. By sequencing all the exons and splice junctions of PKD1, we identified two missense mutations (Y528C and R1942H) from a PKD1-affected individual. Although both variants were predicted to be damaging to the mutant protein, only Y528C co-segregated with all of the PKD1-affected individuals in NFL10. Studies in MDCK cells stably expressing wild-type and mutant forms of PKD found that cell lines expressing the Y528C variant formed cysts in culture and displayed increased rates of growth and apoptosis. Thus, Y528C functions as a hypomorphic PKD1 allele. These findings have important implications for pathogenic mechanisms and molecular diagnostics of ADPKD.  相似文献   

14.
《Renal failure》2013,35(10):366-371
Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a serious genetic disorder that can lead to chronic renal disease. Protein dysfunction caused by mutations in the genes polycystic kidney disease 1 (PKD1) and polycystic kidney disease 2 (PKD2) is an important factor in the pathogenesis of ADPKD. In the present study, 30 Chinese patients with confirmed diagnosis of ADPKD, based on ultrasound or computerized tomography (CT) findings were selected, and the exon copy numbers of PKD1 and PKD2 were determined using multiplex ligation-dependent probe amplification (MLPA). MLPA identified exon deletion in 1 case, suspected exon deletion in 4 cases, and suspected duplications in 3 cases. One case of suspected exon deletion was confirmed using quantitative real-time polymerase chain reaction (q-PCR) and sequencing (PKD2 exon 8). A missense mutation was observed in 1 case of exon deletion using q-PCR and sequencing (PKD1 exon 40, c.11333 C>A). The cases of suspected duplications were verified by q-PCR, and the copy number of exon 6 of PKD1 in 1 case of suspected duplication was 3.8 times greater than that in normal controls. Our findings provide new insights into ADPKD screening and mark a possibly meaningful step toward improved diagnosis and treatment of patients with ADPKD.  相似文献   

15.
BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) shows a great phenotypic variability between patients, ranging from perinatal demise to mildly affected adults. Autosomal dominant polycystic liver disease (PCLD) does not manifest in childhood. CASE-DIAGNOSIS/TREATMENT: A boy was reported with the co-occurrence of ARPKD and PCLD. He presented at the age of 16 days with pyelonephritis and urosepsis. Subsequent investigations showed enlarged kidneys and hyperechogenic renal medulla and liver parenchyma. Genetic analysis revealed compound heterozygous mutations in the PKHD1 gene (p.Arg496X and p.Ser1862Leu). After his mother was diagnosed with PCLD, the finding of a liver cyst on ultrasound prompted analysis of the PRKCSH gene, revealing a missense mutation (p.Arg139His). At the most recent follow-up at 13 years of age, the patient's course and clinical examination was uneventful with normal renal and liver function without evidence of portal hypertension. CONCLUSIONS: The patient with ARPKD and PCLD has so far demonstrated a benign clinical outcome, consistent with the great phenotypic variability of ARPKD and, apart from the liver cyst, asymptomatic manifestation of PCLD in childhood. However, close long-term follow-up is mandatory.  相似文献   

16.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by a variable renal disease progression, which is observed both between (inter-familial variability) and within (intra-familial variability) affected families. Inter-familial variability is primarily due to genetic heterogeneity (PKD1 vs. PKD2), although an influence of the nature/type of mutation may also interfere (at least for PKD1). The major factor influencing intra-familial variability is probably the occurrence of a somatic mutation in the intact allele within epithelial tubular cells ("second hit"). Studies of variability in siblings and twins, as well as in animal models, suggest that modifier genes also influence renal disease progression in ADPKD, in addition to environmental or toxic factors. These modifier loci could affect cystogenesis and/or cyst progression, but also more general factors such as blood pressure regulation or endothelial function. Substantiating the role of modifier genes will require large familial studies but will probably offer new perspectives to slow renal disease progression in ADPKD.  相似文献   

17.
Prenatal forms of autosomal dominant polycystic kidney disease (ADPKD) are rare but can be recurrent in some families, suggesting a common genetic modifying background. Few patients have been reported carrying, in addition to the familial mutation, variation(s) in polycystic kidney disease 1 (PKD1) or HNF1 homeobox B (HNF1B), inherited from the unaffected parent, or biallelic polycystic kidney and hepatic disease 1 (PKHD1) mutations. To assess the frequency of additional variations in PKD1, PKD2, HNF1B, and PKHD1 associated with the familial PKD mutation in early ADPKD, these four genes were screened in 42 patients with early ADPKD in 41 families. Two patients were associated with de novo PKD1 mutations. Forty patients occurred in 39 families with known ADPKD and were associated with PKD1 mutation in 36 families and with PKD2 mutation in two families (no mutation identified in one family). Additional PKD variation(s) (inherited from the unaffected parent when tested) were identified in 15 of 42 patients (37.2%), whereas these variations were observed in 25 of 174 (14.4%, P=0.001) patients with adult ADPKD. No HNF1B variations or PKHD1 biallelic mutations were identified. These results suggest that, at least in some patients, the severity of the cystic disease is inversely correlated with the level of polycystin 1 function.  相似文献   

18.
19.
New insights into the molecular pathophysiology of polycystic kidney disease   总被引:20,自引:0,他引:20  
Polycystic kidney diseases are characterized by the progressive expansion of multiple cystic lesions, which compromise the function of normal parenchyma. Throughout the course of these diseases, renal tubular function and structure are altered, changing the tubular microenvironment and ultimately causing the formation and progressive expansion of cystic lesions. Renal tubules are predisposed to cystogenesis when a germ line mutation is inherited in either the human PKD1 or PKD2 genes in autosomal dominant polycystic kidney disease (ADPKD) or when a homozygous mutation in Tg737 is inherited in the orpk mouse model of autosomal recessive polycystic kidney disease (ARPKD). Recent information strongly suggests that the protein products of these disease genes may form a macromolecular signaling structure, the polycystin complex, which regulates fundamental aspects of renal epithelial development and cell biology. Here, we re-examine the cellular pathophysiology of renal cyst formation and enlargement in the context of our current understanding of the molecular genetics of ADPKD and ARPKD.  相似文献   

20.
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is genetically heterogeneous and caused by mutations in at least three different loci. Based on linkage analysis, mutations in the PKD2 gene are responsible for approximately 15% of the cases. PKD2-linked ADPKD is supposed to be a milder form of the disease, its mean age of end-stage renal failure (ESRF) approximately 20 years later than PKD1. METHODS: We screened all coding sequences of the PKD2 gene in 115 Czech patients. From dialysis centres in the Czech Republic and from the Department of Nephrology of the General Hospital in Prague, we selected 52 patients (29 males, 23 females), who reached ESRF after the age of 63, and 10 patients (three males, seven females) who were not on renal replacement therapy at that age. The age of 63 was used as the cut-off because it is between the recently published ages of onset of ESRF for PKD1 and PKD2. From PKD families we also selected 53 patients (26 males, 27 females) who could be linked to either the PKD1 or PKD2 genes by linkage analysis. An affected member from each family was analysed by heteroduplex analysis (HA) for all 15 coding regions. Samples exhibiting shifted bands on gels were sequenced. RESULTS: We detected 22 mutations (six new mutations)-14 mutations in 62 patients (23%) with mild clinical manifestations, eight in 53 families (15%) with possible linkage to both PKD genes. As the detection rate of HA is approximately 70-80%, we estimate the prevalence of PKD2 cases in the Czech ADPKD population to be 18-20%. We identified nonsense mutations in eight patients (36.5%), frameshifting mutations in 12 patients (54.5%) and missense mutations in two patients (9%). CONCLUSION: In this study in the Czech population we identified 22 mutations (six of which were new mutations). The prevalence of PKD2 cases was 18-20% and the mean age of ESRF was 68.3 years. An at-least weak hot spot in exon 1 of the PKD2 gene was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号