首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lavie L  Lavie P 《Medical hypotheses》2006,66(6):1069-1073
Breathing disorders in sleep are prevalent phenomena profoundly affecting the cardiovascular system. Mortality studies of sleep apnea patients revealed maximum risk of dying in younger patients and a pronounced age-decline in relative mortality reaching non significant levels in patients older than 50 years. We hypothesize that the age decline mortality risk in sleep apnea can be explained by cardiovascular and cerebrovascular protection conferred by ischemic preconditioning resulting from the nocturnal cycles of hypoxia-reoxygenation. The association of ischemic preconditioning with increase levels of vascular endothelial growth factor, increased production of oxygen reactive species, heat shock proteins, adenosine, and TNF-alpha, all demonstrated in sleep apnea, provide preliminary support to our hypothesis.  相似文献   

2.
Drummond SP  Brown GG  Salamat JS  Gillin JC 《Sleep》2004,27(3):445-451
STUDY OBJECTIVES: To test the role of task difficulty in the cerebral compensatory response after total sleep deprivation (TSD). DESIGN: Subjects performed a modified version of Baddeley's logical reasoning task while undergoing functional magnetic resonance imaging twice: once after normal sleep and once following 35 hours of TSD. The task was modified to parametrically manipulate task difficulty. SETTING: Inpatient General Clinical Research Center and outpatient functional magnetic resonance imaging center. PATIENTS OR PARTICIPANTS: 16 young adults (7 women; mean age, 27.6 +/- 6.1 years; education, 15.4 +/- 1.8 years) were included in the final analyses. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: Behaviorally, subjects performed the same after TSD as while well rested. Neuroimaging data revealed a linear increase in cerebral response with a linear increase in task demands in several brain regions after normal sleep. Even stronger linear responses were found after TSD in several brain regions, including bilateral inferior parietal lobes, bilateral temporal cortex, and left inferior and dorsolateral prefrontal cortex. CONCLUSIONS: Task difficulty facilitates the cerebral compensatory response observed following TSD. Compensation manifests as both new regions that did not show significant responses to task demands in the well-rested condition, as well as stronger responses within regions typically underlying task performance. The possible significance of these 2 types of responses should be explored further, as should the importance of the parietal lobes for cognitive performance after TSD.  相似文献   

3.
Sleep deprivation is a stressful condition, as the subject experiences feelings of inadequate well-being and exhibits impairments in his/her functioning. However, in some circumstances sleep deprivation may be crucial for survival of the individual. Most likely, complex neural circuits and hormones play a role in allowing sleep deprivation to occur. For instance, thyroid hormone activity sharply increases when an individual is in a state of sleep deprivation. We believe that this increase is central to sleep deprivation physiology. During sleep deprivation, the hypothalamic–pituitary–thyroid axis initially increases as a consequence of increased release of thyroid stimulating hormone from the pituitary. Subsequently, as sleep deprivation continues, the sympathetic nervous system is recruited through its anatomical connection with the thyroid gland. While thyroid stimulating hormone levels markedly increase during sleep deprivation, it has been suggested that these increases are secondary to sleep deprivation. However, there is little evidence to support this assumption. We believe that the physiology of the thyroid axis during sleep deprivation and the actions of the effector hormone thyroid hormone suggest that thyroid hormone inhibits sleep and not the contrary. To our knowledge, few studies have addressed the possible neural functions that enable sleep deprivation. In this article, we discuss the hypothesis that an augmentation in the thyroid hormone axis is central to a subject’s ability to curtail sleep.  相似文献   

4.
5.
Emerging research has shown that sleepiness, defined as the tendency to fall asleep, is not only determined by sleep pressure and time of day, but also by physiological and cognitive arousal. In this study we evaluated (i) the impact of experimentally induced cognitive arousal on electroencephalogram (EEG) defined sleep latency, and subjective, somatic and cortical arousal, and (ii) whether experimentally induced cognitive arousal enhances performance on a driving simulator test. Twelve healthy sleepers each spent three nights and the following day in the sleep laboratory: an adaptation, a cognitive arousal and a neutral testing day. In the cognitive arousal condition, a visit of a television camera crew took place and subjects were asked to be interviewed. On each testing day, a 5-min heart rate recording, subjective sleepiness and arousal scales, Multiple Sleep Latency Test and a 25-min driving simulator task were scheduled three times at 2-h intervals. Experimentally induced cognitive arousal resulted in significant increases in objective sleep latency. Significantly elevated levels of subjective and somatic arousal--as indexed by a subjective arousal scale and heart rate--were also evidenced following cognitive arousal induction. A marginally significant trend for increased cortical arousal, measured by EEG beta activity, was also found. No effects were found on driving simulator performance. These findings support the concept of cognitive arousal as a significant component in determining sleep latency. In addition, it was illustrated that cognitively induced arousal can provoke increases in somatic and possibly even cortical arousal in normal sleepers. However, this was not accompanied by an enhanced ability to perform adequately on a driving simulator test.  相似文献   

6.
M Lancel  H van Riezen  A Glatt 《Sleep》1992,15(2):102-118
Electroencephalograms (EEGs) of the cortex and of seven subcortical structures were recorded during two baseline days and during a recovery day following a 12-hour period of sleep deprivation (SD) in eight cats. The EEGs were analyzed by visual scoring and by spectral analysis. The following subcortical structures were studied: hippocampus, amygdala, hypothalamus, nucleus centralis lateralis of the thalamus, septum, nucleus caudatus and substantia nigra. The EEGs of all brain structures exhibited sleep state-dependent changes. In general, slow-wave activity (SWA, 0.5-4.0 Hz) during nonrapid eye movement (NREM) sleep exceeded that of REM sleep. The power spectra (0.5-24.5 Hz) in NREM, as well as the relationship between the power spectra of NREM and REM sleep, differed between the recording sites. Moreover, the rate of increase of SWA in the course of an NREM episode and the rate of decrease of SWA at the transition from NREM to REM sleep differed between the brain structures. During the first 12 hours following SD, the duration of NREM increased due to a prolongation of the NREM episodes. REM increased by a rise in the number of REM episodes. During the same period, the NREM EEG power density in the delta and theta frequencies was enhanced in all brain structures. Furthermore, in all structures the enhancement of SWA was most pronounced at the beginning of the recovery period and gradually declined thereafter. SD also induced a rise in the rate of increase of SWA in the NREM episodes in all recording sites. This indicates that the enhancement of EEG power density was not only due to prolongation of the NREM episodes. The EEG activity during REM was barely affected by the SD. It is concluded that, in all brain structures studied, the EEG during NREM is characterized by high levels of SWA. Furthermore, in each brain structure, SWA within NREM sleep is enhanced after a prolonged vigil. These data may indicate that SWA reflects a recovery process in cortical and subcortical structures.  相似文献   

7.

Study Objectives:

A considerable amount of experimental evidence suggests that sleep plays a critical role in learning/memory processes. In addition to paradoxical sleep, slow wave sleep is also reported to be involved in the consolidation process of memories. Additionally, sleep deprivation can induce other behavioral modifications, such as emotionality and alternations in locomotor activity in rodents. These sleep deprivation-induced alterations in the behavioral state of animals could produce state-dependent learning and contribute, at least in part, to the amnestic effects of sleep deprivation. The aim of the present study was to examine the participation of state-dependent learning during memory impairment induced by either paradoxical sleep deprivation (PSD) or total sleep deprivation (TSD) in mice submitted to the plus-maze discriminative avoidance or to the passive avoidance task.

Design:

Paradoxical sleep deprivation (by the multiple platform method) and total sleep deprivation (by the gentle handling method) were applied to animals before training and/or testing.

Conclusions:

Whereas pre-training or pre-test PSD impaired retrieval in both memory models, pre-training plus pre-test PSD counteracted this impairment. For TSD, pre-training, pre-test, and pre-training plus pre-test TSD impaired retrieval in both models. Our data demonstrate that PSD- (but not TSD-) memory deficits are critically related to state-dependent learning.

Citation:

Patti CL; Zanin KA; Sanday L; Kameda SR; Fernandes-Santos L; Fernandes HA; Andersen ML; Tufik S; Frussa-Filho R. Effects of sleep deprivation on memory in mice: role of state-dependent learning. SLEEP 2010;33(12):1669-1679.  相似文献   

8.
A possible role for nitric oxide at the sleep/wake interface   总被引:3,自引:0,他引:3  
Cudeiro J  Rivadulla C  Grieve KL 《Sleep》2000,23(6):829-835
Cholinergic neurotransmission is known to have important arousal/activating functions. The neurons responsible for those actions also release the atypical neuromodulator nitric oxide (NO), which has been shown in previous studies to be involved in the modulation of sleep/wake states. The present investigation, using an animal model (anesthetized cat) tests the hypothesis that NO cooperates with ACh in controlling rhythmic neuronal activity, which may play a role in sleep/wake transition. We have used extracellular singleunit recording of neurons in the dorsal thalamus and visual cortex with simultaneous iontophoretic application of drugs acting upon the NO system: the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine (L-NOArg), NO donors, and 8-bromo-cGMP (which mimics the action of NO). Local inhibition of NOS significantly reduced the activity of recorded cells in both thalamus and visual cortex. The opposite effect was achieved with NO donors application. In cortex, ejection of 8-bromo-cGMP or the NO donor diethylamine-nitric oxide (DEA-NO) increased cell firing. Furthermore, the rhythmic firing pattern present in these cortical neurons was disrupted. Taken together, these findings suggest that the NO system collaborates with cholinergic neurotransmission. This collaboration might be involved in the control of different patterns of electrogenic activity during various states of the sleep-wake cycle, via the ability of the NO system to modify rhythmic activity of neurons.  相似文献   

9.
Sleep deprivation in the rat: IV. Paradoxical sleep deprivation   总被引:6,自引:0,他引:6  
Twelve rats were subjected to paradoxical sleep deprivation (PSD) by the disk apparatus. All PSD rats died or were sacrificed when death seemed imminent within 16-54 days. No anatomical cause of death was identified. All PSD rats showed a debilitated appearance, lesions on their tails and paws, and weight loss in spite of increased food intake. Their yoked control (PSC) rats remained healthy. Since dehydration was ruled out and several measures indicated normal or accelerated use of nutrients, the food-weight changes in PSD rats were attributed to increased energy expenditure (EE). The measurement of EE, based upon caloric value of food, weight, and wastes, indicated that all PSD rats increased EE, with mean levels reaching more than twice baseline values. All of these changes had been observed in rats deprived totally of sleep; the major difference was that they developed more slowly in PSD rats.  相似文献   

10.
Sleep deprivation in the rat: III. Total sleep deprivation   总被引:5,自引:0,他引:5  
Ten rats were subjected to total sleep deprivation (TSD) by the disk apparatus. All TSD rats died or were sacrificed when death seemed imminent within 11-32 days. No anatomical cause of death was identified. All TSD rats showed a debilitated appearance, lesions on their tails and paws, and weight loss in spite of increased food intake. Their yoked control (TSC) rats remained healthy. Since dehydration was ruled out and several measures indicated accelerated use rather than failure to absorb nutrients, the food-weight changes in TSD rats were attributed to increased energy expenditure (EE). The measurement of EE, based upon caloric value of food, weight, and wastes, indicated that all TSD rats increased EE, with mean levels reaching more than twice baseline values.  相似文献   

11.
Hubbeling D 《Psychological medicine》2011,41(7):1564; author reply 1564-1564; author reply 1565
  相似文献   

12.
13.
In rats, recovery from short intense stress usually involves a sleep rebound characterized by an increase in slow-wave sleep and paradoxical sleep duration. However, a large body of evidence indicates that stressful situations lasting for several days or weeks can have deleterious effects on sleep quantity and quality, probably leading to an impairment of the sleep rebound. In this study, using immobilization as a stress model in the rat, we sought to determine the stress duration beyond which the sleep rebound disappears, as well as the mechanisms responsible for this suppression. In a first series of experiments, rats were immobilized for 30 min, 1h, 2h or 4 h. Slow-wave sleep rebounds evidenced after the different immobilization periods were, respectively, +32%, +25%, +9% and -0.2% and paradoxical sleep rebounds +57%, +88%, +103% and +21% compared with control recordings of the same animals. The sleep rebound thus disappeared when the duration of immobilization reached 4 h. In a second series of experiments, adrenalectomized rats were subjected to a 1 h immobilization, and showed an increased slow-wave sleep rebound ( + 44% compared to intact ones), whereas the paradoxical sleep rebound was slightly decreased and delayed. When glucocorticoid action was replaced by an intramuscular injection of dexamethasone, a glucocorticoid receptor agonist, the sleep rebound was suppressed (-3% in slow-wave sleep and -37% in paradoxical sleep). Lastly, in a third series of experiments, plasma corticosterone concentration was evaluated at different times in rats immobilized for 1 h or 4 h. Corticosterone concentration was higher in stressed animals than in control ones (+92%) and returned to baseline 4 h earlier in animals immobilized for 1 h compared with those stressed for 4 h. Therefore, corticosterone is probably involved in the suppression of the sleep rebound after long immobilization periods since (i) dexamethasone suppressed the stress-induced sleep rebound, and (ii) corticosterone was elevated for a longer period in the 4 h immobilization group. It is concluded that the reparative sleep rebound is suppressed after long and intense stress periods and that a prolonged glucocorticoid secretion could be one of the factors responsible for this effect. This deleterious effect on sleep could impair normal recovery and quick adaptation to a new situation, and could participate in the development of stress-related pathologies in humans.  相似文献   

14.
Renegar KB  Crouse D  Floyd RA  Krueger J 《Sleep》2000,23(7):859-863
Sleep deprivation is reported to have both beneficial and harmful effects upon host defenses. In the work reported herein, we address the effects of sleep deprivation on the mucosal anti-influenza defenses of both immune and nonimmune BALB/c mice. Sleep deprivation does not depress existing mucosal antiviral defenses in the respiratory tracts of BALB/c mice; in fact, it may actually be beneficial. Nasal mucosal immunity is not adversely affected in immune mice by sleep deprivation. In nonimmune mice, sleep deprivation slows or prevents the progress of nasal influenza viral infection down the trachea into the lungs. By 72 hours post-infection, 12 of 12 control mice shed virus into bronchioalveolar lavages (BAL) while only 2 of 12 sleep deprived mice shed virus (p<0.001). BAL levels of IL-1beta and interferon alpha were increased in sleep deprived animals, suggesting that sleep deprivation may exert its beneficial effects on the respiratory tract by upregulating the production of antiviral cytokines.  相似文献   

15.
Our understanding of the mechanisms by which sleep deteriorates with age almost exclusively stems from comparisons of young and elderly subjects. The present study investigated the different effects of a 25-h sleep deprivation on the recovery sleep initiated in the morning (when circadian sleep propensity decreases) of young (20-39 y) and middle-aged subjects (40-60 y). Middle-aged subjects showed a steeper increase in the duration of wakefulness during daytime recovery sleep than the young subjects. Slow-wave sleep (SWS) and EEG slow-wave activity (SWA: spectral power between 0.5-4.5 Hz) were potentiated in both groups following sleep deprivation. However, the rebound of SWS and SWA was significantly less pronounced in the middle-aged than in the young. This reduction in homeostatic recuperative drive in middle-aged subjects might account for the decrease in their ability to maintain sleep when they have to recuperate at an abnormal circadian phase. These results helps to understand the increase in complaints related to shift work and jet lag in the middle years of life.  相似文献   

16.
We propose that pregnancy protects against breast cancer, in part, because it results in excretion of lipophilic carcinogens by the mother through the fetal fat and vernix caseosa. We review several lines of epidemiologic and toxicologic evidence in support of this idea, including concordances between known or suspected risk factors for cancer of the female breast and known or suspected risk factors for increased body burdens of lipophilic carcinogens.  相似文献   

17.
18.
Repetitive transcranial magnetic stimulation (rTMS) delivered at various intensities and frequencies excites cortical motor areas. Trains of stimuli (at 5 Hz frequency, and suprathreshold intensity) progressively increase the size of muscle evoked potentials (MEPs) and the duration of the cortical silent period (CSP) in normal subjects. The aim of this study was to evaluate the effect of the antiepileptic drugs carbamazepine, gabapentin, and topiramate on cortical excitability variables tested with rTMS. We tested the changes in motor threshold, MEP size and CSP duration evoked by focal rTMS in 23 patients with neuropathic pain before and after a 1-week course of treatment with carbamazepine, gabapentin, topiramate and placebo. None of the three antiepileptic drugs changed the resting or active magnetic and electrical motor threshold. Antiepileptic treatment, but not placebo, abolished the normal rTMS-induced facilitation of MEPs, but left the progressive lengthening of the CSP during the rTMS train unchanged. Our results suggest that carbamazepine, gabapentin and topiramate modulate intracortical excitability by acting selectively on excitatory interneurons.  相似文献   

19.
Sleep deprivation in the rat: VIII. High EEG amplitude sleep deprivation   总被引:1,自引:0,他引:1  
The disk apparatus was used to deprive six rats of the portion of non-rapid eye movement (NREM) sleep with high electroencephalogram (EEG) amplitude (HS2). All HS2 deprived (HS2D) rats died or were sacrificed when death seemed imminent within 23 to 66 days. No anatomical cause of death was identified. All deprived rats showed a debilitated appearance, lesions on their tails and paws, and weight loss in spite of increased food intake. Energy expenditure (calculated from the caloric value of food, weight change, and wastes) increased to more than twice baseline values. With one exception, yoked control rats remained generally healthy. It was not clear whether the changes in HS2D rats resulted from the loss of HS2 or the general disruption of NREM sleep that accompanied this loss. Also, it was not possible to produce major HS2 loss without incurring some loss of paradoxical sleep (PS). Control studies indicated that the partial PS loss in HS2D rats could not, in and of itself, account for all the pathological effects. However, an interaction of HS2D and partial PS loss in producing pathological effects cannot be ruled out.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号