首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
JAK2, a third member of the JAK family of protein tyrosine kinases.   总被引:25,自引:0,他引:25  
We have isolated cDNA clones encoding a third, widely expressed, member of the JAK family of protein tyrosine kinases (PTKs). The anticipated amino acid sequence of JAK2 predicts the presence of two kinase-related domains, a feature characteristic of this family of PTKs. The structural similarity of JAK2 to the other members of this family extends towards their N-termini, beyond the two kinase-related domains, and reveals five further domains of substantial amino acid similarity. The C-terminal portion of one of these domains, the JH4 domain, bears an intriguing, albeit tenuous, similarity to the core element of the SH2 domain, whereas the remaining JAK homology domains do not appear to be a feature of other known proteins.  相似文献   

2.
Most BCR-ABL1-negative myeloproliferative neoplasms (MPN) carry an activating JAK2 mutation. Approximately 96% of patients with polycythemia vera (PV) harbors the V617F mutation in JAK2 exon 14, whereas the minority of JAK2 (V617F)-negative subjects shows several mutations in exon 12. Other mutation events as MPL, TET2, LNK, EZH2 have been described in chronic phase, while NF1, IDH1, IDH2, ASX1, CBL and Ikaros in blast phase of MPN. The specific pathogenic implication of these mutations is under investigation, but they may have a role in refinement of diagnostic criteria and in development of new prognostic models. Several trials with targeted therapy (JAK inhibitors) are ongoing mostly involving patients with PMF, post-PV MF and post-essential thrombocythemia (ET) MF. Treatment with ruxolitinib and TG101348 has shown clinically significant benefits, particularly in improvement of splenomegaly and constitutional symptoms in MF patients. On the other hand, JAK inhibitors have not thus far shown disease-modifying activity therefore any other deduction on these new drugs seems premature.  相似文献   

3.
《Cancer discovery》2012,2(9):OF10
JAK1 and TYK2 activate JAK2 in trans to promote JAK-STAT signaling despite chronic JAK2 inhibition.  相似文献   

4.
Objective: JAK2 V617F, MPL W515L and JAK2 exon 12 mutations are novel acquired mutations that induce constitutive cytokine-independent activation of the JAK-STAT pathway in myeloproliferative disorders (MPD). The discovery of these mutations provides novel mechanism for activation of signal transduction in hematopoietic malignancies. This research was to investigate their prevalence in Chinese patients with primary myelofibrosis (PMF). Methods: We introduced allele-specific PCR (AS-PCR) combined with sequence analysis to simultaneously screen JAK2 V617F, MPL W515L and JAK2 exon 12 mutations in 30 patients with PMF. Results: Fifteen PMF patients (50.0%) carried JAK2 V617F mutation, and only two JAK2 V617F-negative patients (6.7%) harbored MPL W515L mutation. None had JAK2 exon 12 mutations. Furthermore, these three mutations were not detected in 50 healthy controls.Conclusion: MPL W515L and JAK2 V617F mutations existed in PMF patients but JAK2 exon 12 mutations not. JAK2 V617F and MPL W515L and mutations might contribute to the primary molecular pathogenesis in patients with PMF.  相似文献   

5.
We report that TG101348, a selective small-molecule inhibitor of JAK2 with an in vitro IC50 of approximately 3 nM, shows therapeutic efficacy in a murine model of myeloproliferative disease induced by the JAK2V617F mutation. In treated animals, there was a statistically significant reduction in hematocrit and leukocyte count, a dose-dependent reduction/elimination of extramedullary hematopoiesis, and, at least in some instances, evidence for attenuation of myelofibrosis. There were no apparent toxicities and no effect on T cell number. In vivo responses were correlated with surrogate endpoints, including reduction/elimination of JAK2V617F disease burden assessed by quantitative genomic PCR, suppression of endogenous erythroid colony formation, and in vivo inhibition of JAK-STAT signal transduction as assessed by flow cytometric measurement of phosphorylated Stat5.  相似文献   

6.
Janus kinase 2 (JAK2) hyperactivation by JAK2V617F mutation leads to myeloproliferative neoplasms (MPNs) and targeting JAK2 could serve as a promising therapeutic strategy for MPNs. Here, we report that Flonoltinib Maleate (FM), a selective JAK2/FLT3 inhibitor, shows high selectivity for JAK2 over the JAK family. Surface plasmon resonance assays verified that FM had a stronger affinity for the pseudokinase domain JH2 than JH1 of JAK2 and had an inhibitory effect on JAK2 JH2V617F. The cocrystal structure confirmed that FM could stably bind to JAK2 JH2, and FM suppressed endogenous colony formation of primary erythroid progenitor cells from patients with MPNs. In several JAK2V617F-induced MPN murine models, FM could dose-dependently reduce hepatosplenomegaly and prolong survival. Similar results were observed in JAK2V617F bone marrow transplantation mice. FM exhibited strong inhibitory effects on fibrosis of the spleen and bone marrow. Long-term FM treatment showed good pharmacokinetic/pharmacodynamic characteristics with high drug exposure in tumor-bearing tissues and low toxicity. Currently, FM has been approved by the National Medical Products Administration of China (CXHL2000628), and this study will guide clinical trials for patients with MPNs.Subject terms: Myeloproliferative disease, Targeted therapies  相似文献   

7.
JAK2是 JAK 家族的成员之一,JAK2与 STAT 家族的多个成员共同构成多条信号转导通路,如JAK2/STAT3、JAK2/STAT5等。JAK2/STATs 信号通路通过配体和细胞表面的受体结合而诱导受体二聚化,并相互磷酸化,从而激活 JAK。激活了的 JAK2/STAT 信号通路参与了肿瘤的发生、发展、血管新生、侵袭和转移等多个环节。研究表明肿瘤细胞中活化的 JAK2/STATs 信号通路主要是通过上调多种血管生成相关因子如血管内皮生长因子(VEGF)、环氧化酶-2(COX -2)等表达来促进肿瘤血管生成,IFN -α、SHP -1、SOCS通过 JAK2/STATs 通路下调肿瘤细胞促血管生成因子表达,抑制肿瘤血管生成。本文就 JAK2信号通路与肿瘤血管新生作一综述。  相似文献   

8.
9.
10.
After accounting for misdiagnosis and treatment effect, allele-specific (AS)-PCR detects the JAK2V617F mutation in >95% of polycythemia vera (PV) patients. Using database inquiry, we identified 6 of a total 220 cases with PV that were JAK2V617F-negative (prevalence=3%). Of these, five cases ( approximately 80%) were found to harbor one of the two JAK2 exon 12 mutations (F537-K539delinsL or N542-E543del) in bone marrow (BM) and/or peripheral blood cells. Similar screening of six additional cases - three each with idiopathic erythrocytosis (IE) or otherwise unexplained erythrocytosis (UE) - did not reveal either JAK2V617F or JAK2 exon 12 mutations. We found JAK2 exon 12 mutations in PV cases to be readily detected by both DNA sequencing and AS-PCR, regardless of whether BM or peripheral blood cells were used as the source for DNA. Although erythroid hyperplasia was the predominant histologic feature on BM examination, megakaryocyte abnormalities and reticulin fibrosis were noted in most PV patients harboring exon 12 mutations. However, similar BM morphologic changes can also be seen in some JAK2V617F-positive PV cases; therefore, distinct genotype-phenotype association cannot be established.  相似文献   

11.
12.
JAK家族是JAK-STAT信号传导通路中的非受体型酪氨酸蛋白激酶,JAK2-STAT3作为JAK-STAT通路中的一个重要信号轴,它在肿瘤中的持续性激活可以通过影响细胞的生长、凋亡、周期等起到促进肿瘤发生发展的作用.JAK2突变,尤其是JAK2V617F突变的发现引发了JAK2抑制剂的研究热潮,为肿瘤的治疗提供了新的方向.JAK2抑制剂能削弱肿瘤细胞的恶性生物学行为,在有JAK2V617F突变的血液系统肿瘤以及JAK2-STAT3信号异常的实体肿瘤中都具有一定的治疗价值.  相似文献   

13.
14.
This phase I study evaluated selective JAK2 inhibitor XL019 in 30 patients with myelofibrosis. The initial dose cohorts were 100, 200, and 300 mg orally on days 1–21 of a 28-day cycle. Central and/or peripheral neurotoxicity developed in all patients. Subsequently, patients were treated on lower doses; neurotoxicity was again observed, leading to study termination. Peripheral neuropathy resolved in 50%, and central neurotoxicity in all patients within months after therapy cessation. Myelosuppression was minimal. The terminal half-life of XL019 was approximately 21 h, with steady state reached by Day 8. International Working Group defined responses were seen in three (10%) patients.  相似文献   

15.
16.
BackgroundGenetic mutations have been proven to be one of the major criteria in the diagnosis and distinction of different myeloproliferative neoplasm (MPN) subtypes. Therefore, the aim of this study was to determine the molecular profile of Egyptian patients with MPN subtypes and correlate with clinicopathological status.MethodsA series of 200 patients with MPNs (92 polycythemia vera, 68 essential thrombocythemia, and 40 primary myelofibrosis) were included in this study. DNA from each sample was amplified using polymerase chain reaction to detect Janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL) mutations. Sanger sequencing was used to determine the mutation types.ResultsOf the 200 samples, 44% had JAK2V617F and 10% were carrying CALR mutation with type 2 being the most frequent type in this study (55%). No MPL or JAK2 exon 12 mutations were detected. All clinical and hematological data had no differences with other populations except that our CALR-positive patients showed a decrease in the platelet count compared with JAK2V617F-positive patients.ConclusionOur study on Egyptian patients shows a specific molecular profile of JAK2 mutation, and CALR mutation type 2 was higher than type 1.  相似文献   

17.
JAK2V617F and MPLW515L/K represent recently identified mutations in myeloproliferative disorders (MPD) that cause dysregulated JAK-STAT signaling, which is implicated in MPD pathogenesis. We developed TG101209, an orally bioavailable small molecule that potently inhibits JAK2 (IC(50)=6 nM), FLT3 (IC(50)=25 nM) and RET (IC(50)=17 nM) kinases, with significantly less activity against other tyrosine kinases including JAK3 (IC(50)=169 nM). TG101209 inhibited growth of Ba/F3 cells expressing JAK2V617F or MPLW515L mutations with an IC(50) of approximately 200 nM. In a human JAK2V617F-expressing acute myeloid leukemia cell line, TG101209-induced cell cycle arrest and apoptosis, and inhibited phosphorylation of JAK2V617F, STAT5 and STAT3. Therapeutic efficacy of TG101209 was demonstrated in a nude mouse model. Furthermore, TG101209 suppressed growth of hematopoietic colonies from primary progenitor cells harboring JAK2V617F or MPL515 mutations.  相似文献   

18.
Background: Janus Tyrosine Kinase-2 (JAK2 V617F), a novel point mutation affecting the MPD’S is a somatic gain-of-function mutation. It alters a highly conserved amino acid valine in the negative regulatory JH2 domain to phenylalanine predicted to dysregulate kinase activity. Aim: To evaluate the prevalence and clinical significance of JAK2 V617F mutation in various MPD’s as well as in hematological malignancies. Subjects and Methods: JAK2 mutation was assessed in 90 patients with myeloproliferative disorders and 47 leukemic patients. In addition, peripheral blood samples from 90 healthy donors were also collected as control. We used a highly sensitive Allele-Specific polymerase chain reaction (AS-PCR) for the detection and confirmed the mutation further by direct sequencing. Results: Our results showed significant differences between various disorders with respect to either the proportion of positivity or that of mutant alleles. JAK2-V617F was detected in 67/90 MPD patients and 02/17 for AML,01/11 for ALL-L1,02/12 for ALL-L2 and 02/07 for CML and 90 healthy controls. Conclusion: From the above findings it is evident that the JAK2 V617F mutation is widespread not only in MPD's but also in hematological malignancies, which might as well lead to the new classification of MPD'S. Our data also suggest that different genetic events may lead to JAK-STAT pathway activation in different malignancies.  相似文献   

19.
20.
Signals emanating from the bone marrow microenvironment, such as stromal cells, are thought to support the survival and proliferation of the malignant cells in patients with myeloproliferative neoplasms (MPN). To examine this hypothesis, we established a coculture platform [cells cocultured directly (cell-on-cell) or indirectly (separated by micropore membrane)] designed to interrogate the interplay between Janus activated kinase 2-V617F (JAK2(V617F))-positive cells and the stromal cells. Treatment with atiprimod, a potent JAK2 inhibitor, caused marked growth inhibition and apoptosis of human (SET-2) and mouse (FDCP-EpoR) JAK2(V617F)-positive cells as well as primary blood or bone marrow mononuclear cells from patients with polycythemia vera; however, these effects were attenuated when any of these cell types were cocultured (cell-on-cell) with human marrow stromal cell lines (e.g., HS5, NK.tert, TM-R1). Coculture with stromal cells hampered the ability of atiprimod to inhibit phosphorylation of JAK2 and the downstream STAT3 and STAT5 pathways. This protective effect was maintained in noncontact coculture assays (JAK2(V617F)-positive cells separated by 0.4-μm-thick micropore membranes from stromal cells), indicating a paracrine effect. Cytokine profiling of supernatants from noncontact coculture assays detected distinctly high levels of interleukin 6 (IL-6), fibroblast growth factor (FGF), and chemokine C-X-C-motif ligand 10 (CXCL-10)/IFN-γ-inducible 10-kD protein (IP-10). Anti-IL-6, -FGF, or -CXCL-10/IP-10 neutralizing antibodies ablated the protective effect of stromal cells and restored atiprimod-induced apoptosis of JAK2(V617F)-positive cells. Therefore, our results indicate that humoral factors secreted by stromal cells protect MPN clones from JAK2 inhibitor therapy, thus underscoring the importance of targeting the marrow niche in MPN for therapeutic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号