首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respirable dustiness represents the tendency of a powder to generate respirable airborne dust during handling and therefore indicates the propensity for a powder to become an inhalation hazard. The dustiness of 14 powders, including 10 different nanopowders, was evaluated with the use of a novel low-mass dustiness tester designed to minimize the use of the test powder. The aerosol created from 15-mg powder samples falling down a tube were measured with an aerodynamic particle sizer (APS). Particle counts integrated throughout the pulse of aerosol created by the falling powder were used to calculate a respirable dustiness mass fraction (D, mg/kg). An amorphous silicon dioxide nanopowder produced a respirable D of 121.4 mg/kg, which was significantly higher than all other powders (p < 0.001). Many nanopowders produced D values that were not significantly different from large-particle powders, such as Arizona Road Dust and bentonite clay. In general, fibrous nanopowders and powders with primary particles >100 nm are not as dusty as those containing granular, nano-sized primary particles. The method used here, incorporating an APS, represents a deviation from a standard method but resulted in dustiness values comparable to other standard methods.  相似文献   

2.
The trend among pharmaceutical companies to develop selective drugs of high potency has pushed the industry to consider the potential of each hazardous ingredient to become airborne. Dustiness issues are not unique to the pharmaceutical industry, but are relevant to any industry where powdered materials are mixed, transferred and handled. Interest in dustiness is also driven by concerns for worker health, the potential for plant explosions and the prevention of product loss. Unlike other industries, the pharmaceutical industry is limited by the milligram quantity of powdered material available for testing during product development. These needs have led to the development of a bench-top dustiness tester that requires only 10 mg of powder and fully contains the generated aerosol. The powder is dispersed within a 5.7 liter glass chamber that contains a respirable mass sampler and a closed-face sampler to quantify the respirable and total dust that are generated with a given energy input. The tester distinguished differences in dustiness levels of five different powders. Finer powders were dustier, and the respirable dust percentage was always less than that for total dust. Four testers have been built and evaluated using pharmaceutical grade lactose. Dustiness measurements determined using all four testers were comparable. The pharmaceutical industry uses surrogates such as lactose to represent active compounds in tests that estimate the dust concentration likely to occur in a new manufacturing operation. Differences between the dustiness of the active compound and its surrogate challenge the relevance of the surrogate tests to represent true exposures in the workplace. The tester can determine the dustiness of both the active compound and its surrogate, and the resultant ratio can help to interpret dust concentrations from surrogate tests. Further, dustiness information may allow the pharmaceutical researcher to select powder formulations that present low airborne concentrations in the workplace.  相似文献   

3.
Air-purifying respirators must be certified following the National Institute for Occupational Safety and Health (NIOSH) filter test criteria (30 CFR 11). The criteria specify a range for the mean particle size and the measure of spread permissible for the test aerosol. The authors' experiments have shown that aerosol penetration as a function of particle size differs considerably among certified respirators of the same type. Filtering facepieces (disposable respirators) and cartridges of the dust-mist, dust-mist-fume, and high-efficiency particulate air type were tested. The respirators were sealed to mannequins in a test chamber. The aerosol concentrations inside and outside the respirator were measured by an aerodynamic particle sizer and a laser aerosol spectrometer over a particle size range of 0.1 to 15 microns. Five flow rates ranging from 5 to 100 L/min were used to study flow dependency. The aerosol penetration through the filters is presented as a function of particle size. Aerosol penetration and pressure drop are combined to express the performance of each filter in terms of "quality factor." Under the same test conditions, the quality factor of one respirator may be as much as 6.6 times more than that of another respirator of the same type. The filter quality factor has a greater aerosol size dependency as airflow and aerosol size increase. In general, cartridges have a larger surface area than filtering facepieces but not necessarily lower filter penetration or higher filter quality.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Factors affecting the Heubach and MRI dustiness tests   总被引:1,自引:0,他引:1  
The effect of test parameters upon material dustiness measured by the Heubach dust measurement appliance and the MRI dustiness tester was studied. The users of these tests can alter test parameters such as flow rate, sampling time, mass of material tested, bulk density, and vibrator setting. The effect of these parameters upon the aerosol produced in the dustiness tester was experimentally studied. All of the parameters affected in a complicated manner, the amount of dust and the size distribution of the dust generated during these tests. Therefore, dustiness test results should not be adjusted for variations in test parameters. The users of dustiness tests need to carefully control dustiness test parameters in order to have reproducible dustiness tests.  相似文献   

5.
Laboratory bench tests, known as dustiness tests, have been used to evaluate and compare the potential of various powders to cause occupational dust exposure. Dustiness tests are used to develop products with reduced dust emissions. The correlation between dustiness test results and dust exposures was evaluated at two bag dumping and bag filling operations. At one bag dumping and one bag filling operation, there was evidence of a relationship between dustiness test results and dust exposures. In one case, regression analysis showed that dust exposures could be predicted to within nearly one order of magnitude. The variability in this prediction was caused by the inherent variability in the occupational dust exposures. In the other case, there was evidence of a correlation after the data had been adjusted for the effect of varying drop height. At the remaining two operations, no correlation between dust exposures and dustiness test results were observed. These results indicate that the relevance of dustiness tests to occupational dust exposure needs to be evaluated at each site. Because a better option does not exist, manufacturers should continue to use empirical dustiness tests to develop better products in the laboratory. The conclusions reached in the laboratory need to be validated by dust exposure measurements in the field, however.  相似文献   

6.
The objective of this study was to develop and characterize an exposure chamber in which human subjects could be exposed to low dust concentrations carrying an endotoxin coating. An exposure chamber, dust dispersion method, and endotoxin characterization technique were developed for inhalation exposures. A 6.27 m3 exposure chamber was designed and constructed from cinder block, glass windows, and Plexiglas. Using an acetone adhesion process, Enterobacter agglomerans were adsorbed onto respirable cellulose particles to create the endotoxin aerosol. The size distribution of the endotoxin-treated particles was verified using light microscopy and cascade impactors. A dry powder dust generator was refined to consistently disperse small quantities of the aerosol into the chamber to maintain dust concentrations at approximately 250 micrograms/m3. Dust levels during the chamber exposures were monitored using a portable continuous aerosol monitor (PCAM). During initial exposure runs, PCAM monitoring stations were positioned at different locations within a 0.5-meter matrix to document mixing patterns. Total dust and cascade impactor samples were collected throughout each exposure period to characterize the chamber operating system and insure the mean airborne dust concentration fulfilled target levels. A one-factor analysis of variance at the 95 percent confidence interval illustrated that there was not a statistically significant difference in the mean dust concentration throughout the exposure runs compared to the individual runs. Together the consistency of the total dust filters, endotoxin concentrations, and aerosol-monitoring instrument were adequate to allow use of the chamber for experimental studies involving human volunteers.  相似文献   

7.
目的 考察粒径、风速和倾倒速度对后处理厂粉末倾倒过程产生的气溶胶浓度分布的影响.方法 选择CeO2粉末作为PuO2替代材料,用FLUENT软件对不同操作条件下CeO2粉末倾倒过程进行数值计算,再利用粒径谱仪对不同倾倒速度下的气溶胶浓度分布进行测量,验证模拟结果准确性.结果 小粒径的颗粒更可能受周围气体的曳力影响而从主流...  相似文献   

8.
The "capteur individuel de poussiere" CIP 10 personal dust sampler--developed by the Centre d'Etudes et Recherches de Charbonnages de France (CERCHAR) research organization--is a small, quiet, lightweight unit which samples at a flow rate of 10 L/min. It is a three-stage sampler, using two stages to remove nonrespirable dust particles and one stage to collect the respirable fraction. Airflow through the sampler is induced by the third stage, which is a rotating collector cup that contains a fine grade sponge. Laboratory tests were conducted in a dust chamber using aerosols of Arizona road dust, coal dust and silica dust. Aerosol concentrations measured with the CIP 10 were compared to those measured with the coal mine dust personal sampler unit used in the United States. The results of this study showed that aerosol concentrations measured with the CIP 10 were linearly related to those obtained with the coal mine dust personal sampler. The relationship, however, was dependent on preselector configuration and aerosol characteristics. The collection medium allows some small particles (less than 3 microns) to pass through the sampler without being collected. As much as 13% (by weight) of the aerosol that penetrated through the preseparating stages was exhausted from the sampler.  相似文献   

9.
In cabin filtration systems, blower motors pressurize a vehicle cabin with clean filtered air and recirculate air through an air-conditioning evaporator coil and a heater core. The exposure reduction offered by these cabins is evaluated by optical particle counters that measure size-dependent aerosol concentration inside and outside the cabin. The ratio of the inside-to-outside concentration is termed penetration. Blower motors use stationary carbon brushes to transmit an electrical current through a rotating armature that abrades the carbon brushes. This creates airborne dust that may affect experimental evaluations of aerosol penetration. To evaluate the magnitude of these dust emissions, blower motors were placed in a test chamber and operated at 12 and 13.5 volts DC. A vacuum cleaner drew 76 m3/hour (45 cfm) of air through HEPA filters, the test chamber, and through a 5 cm diameter pipe. An optical particle counter drew air through an isokinetic sampling probe and measured the size-dependent particle concentrations from 0.3 to 15 microm. The concentration of blower motor aerosol was between 2 x 10(5) and 1.8 x 10(6) particles/m3. Aerosol penetration into three stationary vehicles, two pesticide application vehicles and one tractor were measured at two conditions: low concentration (outside in the winter) and high concentration (inside repair shops and burning incense sticks used as a supplemental aerosol source). For particles smaller than 1 microm, the in-cabin concentrations can be explained by the blower motor emissions. For particles larger than 1 microm, other aerosol sources, such as resuspended dirt, are present. Aerosol generated by the operation of the blower motor and by other sources can bias the exposure reduction measured by optical particle counters.  相似文献   

10.
OBJECTIVES—To characterise the distribution of particle size and mass of glove powder aerosol released from powdered and powder free non-sterile latex gloves under controlled conditions.
METHODS—Gravimetric sampling and aerodynamic particle size analysis were performed during simulated use of gloves on a prosthetic hand in a chamber designed to minimise background particle concentrations.
RESULTS—Aerosol was detectable for both powdered and powder free gloves under both aggressive and non-aggressive handling conditions. Most of the particles detected had aerodynamic diameter less than 10 µm.
CONCLUSION—Powder free gloves were not entirely free of powder aerosol. Particles from both powdered and powder free gloves are sufficiently fine to penetrate into the thoracic region of the respiratory tract.


  相似文献   

11.
A dustiness test has been developed that performs both a single-drop and a continuous rotation test using a 6-g sample. Tests were completed on pigment-grade and ultrafine TiO2, two grades of corundum (Aloxite), yttrium-stabilized zirconia (Y-zirconia) granules, fumed silica, goethite, talc and bentonite. The generated particles were quantified by counting and sizing at 1-s time resolution using the TSI Fast Mobility Particle Sizer and the TSI Aerodynamic Particle Sizer and by collecting the particles on a filter for weighing. The method generated reproducible amounts and size distributions of particles. The size distributions had two more or less separated size modes >0.9 microm and in addition all materials except TiO2 pigment-grade and Aloxite F1200 generated a size mode in the range from approximately 100 to approximately 220 nm. Pigment-grade TiO2 had the lowest dustiness and ultrafine TiO2 the highest dustiness as measured by particle number for both the single-drop and rotation test and as measured by mass for both tests combined. The difference was a factor of approximately 300. Three types of dust generation rate time profiles were observed; brief initial burst (talc, both grades of corundum), decaying rate during rotation period (fumed silica, TiO2 ultrafine and pigment grade, bentonite) and constant rate (Y-zirconia, goethite). These profile types were in agreement with the differences in the ratio of amount of particles generated during the single drop to the amount generated during the single-drop and rotation test combined. The ratio ranged a factor approximately 40. The new test method enables a characterization of dustiness with relevance to different user scenarios.  相似文献   

12.
In this study, we show the different dustiness characteristics of four molecular pharmaceutical powder candidates and evaluate the performance of HEPA filters damaged with three different pinhole sizes and exposed to dust using real industrial powders in a miniaturized EN15051 rotating drum dustiness tester. We then demonstrate the potential use of such data using first-order exposure modeling to assess the potential worker exposure and transmission of active powder ingredients into ventilation systems. The four powders had highly variable inhalable dustiness indices (1,036 – 14,501 mg/kg). Dust particle size-distributions were characterized by three peaks; the first occurred around 60–80 nm, the second around 250 nm, and the third at 2–3 μm. The second and third peaks are often observed in dustiness test studies, but peaks in the 60–80 nm range have not been previously reported. Exposure modeling in a 5 times 20 kg powder pouring scenario, suggests that excessive dust concentrations may be reached during use of powders with the highest dustiness levels. By number, filter-damage by three pinhole sizes resulted in damage-dependent penetration of 70–80 nm-size particles, but by volume and mass the penetration is still dominated by particles larger than 100 nm. Whereas the exposure potential was evident, the potential dust concentrations in air ducts following the pouring scenario above were at pg/m3 levels. Hence, filter penetration at these damage levels was assumed to be only critical, if the active ingredients were associated with high hazard or unique product purity is required.

[Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: An example of a typical particle number time-series of a complete dustiness test. It provides information on the HEPA-filter used including a scanning electron microscopy image of it. It also provides APS-measurements of particles penetrating the damaged HEPA-filter.]  相似文献   


13.
Exposure to organic dust originating from biofuels can cause adverse health effects. In the present study we have assessed the dustiness in terms of microbial components and particles of various biofuels by using a rotating drum as a dust generator. Microbial components from straw, wood chips, wood pellets and wood briquettes were quantified by several methods. Excellent correlations (r >/= 0.85, P < 0.0001) were found: between lipopolysaccharide (LPS) (as determined by 3-hydroxy fatty acid analysis) and endotoxin (as determined by a Limulus test), cultivable bacteria, total number of bacteria and muramic acid; between endotoxin and cultivable bacteria, total number of bacteria and muramic acid; between total number of bacteria and muramic acid; between cultivable fungi and total number of fungi. Straw was dustier than the other biofuels in terms of actinomycetes, bacteria, muramic acid, endotoxin, LPS, particle mass and number of particles. One of the wood chips studied and the straws had comparatively high dustiness in terms of fungi, while both wood pellets and wood briquettes had comparatively low dustiness in terms of all microbial components. An initially high particle generation rate of straw and wood chips decreased over time whereas the particle generation rate of wood briquettes and wood pellets increased during a 5 min rotation period. Particles of non-microbial origin may be the determining factor for the health risk in handling briquettes and pellets. Straw dust contained significantly more microorganisms per particle than did wood chip dust, probably because bacteria were most abundant in straw dust. The concentrations of endotoxin and fungi were high in wood and straw dust; dust from one of the straws contained 3610 EU/mg and dust from one of the chips contained 7.3 x 10(6) fungal spores/mg. An exposure to 3 mg of straw or wood chips dust/m(3) (the Swedish and Danish OEL of unspecific inhalable dust) could cause exposures to endotoxin and fungi higher than levels were health symptoms are seen to develop. The very different levels of dustiness in terms of particles and microbial components of different biofuels shows that dustiness is an important health-relevant factor to consider when choosing among biofuels and when designing worksites for handling of biofuels.  相似文献   

14.
Four factors that affect dust generation were investigated--type of test material, particle size distribution of the test material, moisture content of the test material, and apparatus used to generate dust. Dust generated from silicon carbide and aluminum oxide was measured by using MRI and Heubach dustiness testers modified to allow the measurement of dust particle size distribution with an Andersen impactor. The two materials investigated generated similar dusts. The size distribution of the test material slightly influenced the amount but strongly influenced the size distribution of the dust generated. Increased moisture content decreased the amount of dust generated; moisture content had little influence on dust size distribution. The two testers generated different amounts of dust; however, the dust particle size distributions generated were similar. These results help explain factors that affect dust generation and the relative importance of alternative methods for dust control.  相似文献   

15.
Experimental examination of factors that affect dust generation.   总被引:1,自引:0,他引:1  
A method is presented to examine factors that affect the amount and size distribution of dust generated by falling granular material in still air. This work was conducted by using an apparatus with separate dust generating and dust measuring sections. The dust generated by a falling material was carried into an elutriation column equipped with a slotted Sierra high-volume impactor at the top. This apparatus can measure dust generation rates for particles between 0.4 and 25 microns in aerodynamic diameter as well as the amount of air entrained by the falling material. Four granular materials were tested, and a simple model was developed to describe the dust generation rate of these materials as a function of particle size, drop height, material flow, and moisture content. Moisture content strongly influenced the interparticle binding forces and the amount of dust generated. Drop height and material flow influenced the material separation forces and also significantly influenced the amount of dust generated.  相似文献   

16.
A simulated workplace study was conducted to investigate the relation between inhalation exposure and dustiness determined with a rotating drum dustiness tester. Three powders were used in the study, i.e. magnesium stearate, representing a very dusty powder, and aluminium oxide and calcium carbonate, representing low and very low dusty powders, respectively. Two scenarios of handling small volume of powders were included; sweeping/cleaning and scooping/weighing/adding. Size-selective dust exposure was assessed using MultiDust (dual-fraction) IOM and RespiCon sampling heads. For the present operation scenarios, dustiness showed itself to be the major determinant of exposure and explained approximately 70% of the exposure variances. The ratios of respirable and inhalable fractions as determined by dustiness tests were comparable with the ratios observed for exposure. The results emphasize the relevance of dustiness as a parameter to characterize substances according to potential for exposure.  相似文献   

17.
A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6–294 µm) and true densities (2650–4680 kg/m3).

The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution.

Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary.

This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however, to use the developed model only if particle size, true density, moisture content, and shape lie within the studied ranges.  相似文献   


18.
Aerosols and protective clothing   总被引:1,自引:0,他引:1  
A complex test method for evaluating protective apparel in aerosol hazard conditions has been developed and examined under laboratory conditions. The effectiveness of the barrier or "collection efficiency" of aerosol protective apparel (APA) depends upon its structural properties such as porosity, thickness, and permeability as well as on its hydrodynamic properties, i.e., pressure drop. Aerosol generating systems and methods of measuring penetration and evaluating data are described. A method of testing protective apparel materials using a standard asbestos aerosol then is described and discussed in detail.  相似文献   

19.
The ability of representative half-mask and single-use respirators with facial seal leaks to provide protection against aerosols was evaluated by experimental measurement. Respirators were mounted on a manikin in a test chamber and operated at seven steady flow rates over the range of 2 to 150 L/min. Samples of polydisperse and monodisperse aerosols were taken from inside and outside the respirator and analyzed by a calibrated optical particle counter over the particle-size range 0.1 to 11.3 microns. Measurements were made separately for filter performance as a function of particle size and flow rate, and simulated leak performance (penetration) as a function of particle size, pressure drop, and leak size. Flow rate vs. pressure drop measurements were made for all filters and leaks tested. For a given leak condition the percentage of the total flow traversing the leak varied several fold over the usual range of airflow rates through a respirator. Aerosol penetration was found to depend strongly on particle size and flow rate for filters, and to depend strongly on particle size and less strongly on pressure drop for leaks. One can conclude from these measurements that the aerosol-size distribution inside a respirator will nearly always be significantly different from that outside the respirator.  相似文献   

20.
Worker exposure to airborne particulates was stimulated in a laboratory under controlled conditions. Small volumes, 3.8 L (1 gal.), of finely divided powders were transferred at 1-min intervals to 23-L (6-gal.) containers over 30-min time intervals. A high-volume filter array in the exit vent of the specially designed exposure laboratory was used both to control the ventilation rate and to determine the emission factor of the pouring operation. The room ventilation rate, method of transfer, and drop height were varied, and the resulting particulate concentrations were monitored by personal and area samplers. The four powders studied were talc, sodium chloride, Portland cement, and Direct Yellow 4 dye. Based on this study, a model was developed to predict potential worker exposure from the pouring of small volumes of powders. The model is based on the following major conclusions. First, the space- and time-averaged concentration of suspended particulate matter at breathing height agrees well with the mean concentration of suspended particulate matter in the room air effluent. Second, material-specific suspended particulate emission factors vary approximately in direct proportion to the drop height. Third, emission factors for scooping/dumping operations agree well with factors for pouring operations for a given drop height. Fourth, emission factors compare well with dustiness indexes that were determined using a bench-scale dustiness test chamber described in a companion paper. Parameters of the exposure model include dustiness index, drop height of the pouring operation, total quantity of material poured, averaging time, and the fraction of respirable material. For the validation of the model, additional data would be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号