首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Microalbuminuria and early endothelial activation in essential hypertension   总被引:3,自引:0,他引:3  
We hypothesized that in essential hypertensive patients (EHs), plasma levels of pro-atherogenic adhesion molecules would be increased and related with urine albumin excretion (UAE). Thus, this study was aimed at evaluating biochemical markers of endothelial activation and their relationship with UAE in a group of patients with uncomplicated EH. In basal condition soluble forms of adhesion molecules intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1, as well as 24-h UAE were assayed. One hundred patients with essential hypertension and no diabetes or ultrasonographic evidence of atherosclerosis were included in the study. Seventy normotensive healthy subjects served as controls. EHs were first studied overall, than were divided into two subgroups: those with UAE > or =20 mcg/min MAUs and those with UAE <20 mcg/min (non-MAUs). ICAM-1 (P<0.001) and VCAM-1 (P<0.0001) plasma concentrations were higher in EHs than in controls. Microalbuminuric EHs had greater levels of adhesion molecules than non-MAUs (ICAM-1 P=0.04; VCAM-1 P=0.02, respectively). In EHs UAE was correlated with ICAM-1 (r=0.29, P=0.003), and VCAM-1 (r=0.30, P=0.002). These associations were confirmed in multiple regression models (P=0.02 for both ICAM-1 and VCAM-1) including, along with adhesion molecules, age, body mass index and blood pressures. Our findings show that in essential hypertension there is a very early activation of endothelial adhesion molecules favouring atherosclerosis.  相似文献   

4.
5.
Vascular endothelial growth factor (VEGF) binds both VEGF receptor-1 (VEGFR-1) and VEGF receptor-2 (VEGFR-2). Activation of VEGFR-2 is thought to play a major role in the regulation of endothelial function by VEGF. Recently, specific ligands for VEGFR-1 have been reported to have beneficial effects when used to treat ischemic diseases. However, the role of VEGFR-1 in angiogenesis is not fully understood. In this study, we showed that VEGFR-1 performs "fine tuning" of VEGF signaling to induce neovascularization. We examined the effects of retroviral vectors expressing a small interference RNA that targeted either the VEGFR-1 gene or the VEGFR-2 gene. Deletion of either VEGFR-1 or VEGFR-2 reduced the ability of endothelial cells to form capillaries. Deletion of VEGFR-1 markedly reduced endothelial cell proliferation and induced premature senescence of endothelial cells. In contrast, deletion of VEGFR-2 significantly impaired endothelial cell survival. When VEGFR-1 expression was blocked, VEGF constitutively activated Akt signals and thus induced endothelial cell senescence via a p53-dependent pathway. VEGFR-1(+/-) mice exhibited an increase of endothelial Akt activity and showed an impaired neovascularization in response to ischemia, and this impairment was ameliorated in VEGFR-1(+/-) Akt1(+/-) mice. These results suggest that VEGFR-1 plays a critical role in the maintenance of endothelial integrity by modulating the VEGF/Akt signaling pathway.  相似文献   

6.
7.
Background and purposeThis study aims to investigate whether and how pharmacological activation of AMP-activated protein kinase (AMPK) improves endothelial function by suppressing mitochondrial ROS-associated endoplasmic reticulum stress (ER stress) in the endothelium.Experimental approachPalmitate stimulation induced mitochondrial fission and ER stress-associated endothelial dysfunction. The effects of AMPK activators salicylate and AICA riboside (AICAR) on mitochondrial ROS production, Drp1 phosphorylation, mitochondrial fission, ER stress, thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome activation, inflammation, cell apoptosis and endothelium-dependent vasodilation were observed.Key results“Silencing” of TXNIP by RNA interference inhibited NLRP3 inflammasome activation in response to ER stress, indicating that TXNIP was a key link between ER stress and NLRP3 inflammasome activation. AMPK activators salicylate and AICAR prevented ROS-induced mitochondrial fission by enhancing dynamin-related protein 1 (Drp1) phosphorylation (Ser 637) and thereby attenuated IRE-1α and PERK phosphorylation, but their actions were blocked by knockdown of AMPK. Salicylate and AICAR reduced TXNIP induction and inhibited NLRP3 inflammasome activation by reducing NLRP3 and caspase-1 expression, leading to a reduction in IL-1β secretion. As a result, salicylate and AICAR inhibited inflammation and reduced cell apoptosis. Meanwhile, salicylate and AICAR enhanced eNOS phosphorylation and restored the loss of endothelium-dependent vasodilation in the rat aorta. Immunohistochemistry staining showed that AMPK activation inhibited ER stress and NLRP3 inflammasome activation in the vascular endothelium.Conclusion and implicationsPharmacological activation of AMPK regulated mitochondrial morphology and ameliorated endothelial dysfunction by suppression of mitochondrial ROS-associated ER stress and subsequent TXNIP/NLRP3 inflammasome activation. These findings suggested that regulation of Drp1 phosphorylation by AMPK activation contributed to suppression of ER stress and thus presented a potential therapeutic strategy for AMPK activation in the regulation of endothelium homeostasis.  相似文献   

8.
Atherosclerosis may be considered an inflammatory disease characterised by the development of atherosclerotic plaques and ischaemic cardiovascular events. Increased prevalence of cardiovascular morbidity and mortality due to (premature) atherosclerosis has been observed in patients with autoimmune diseases like rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and Wegener's granolumatosis. This increased prevalence cannot be explained by the presence of the traditional cardiovascular risk factors such as hypertension, hyperlipidaemia, diabetes mellitus and smoking. Therefore, other risk factors must be present in patients with systemic autoimmune disease. Although the mechanisms have not been fully unravelled, endothelial cell (EC) activation through autoantibodies seems to be one of the factors involved. EC activation results in EC dysfunction. It is supposed that chronic EC dysfunction, as present in patients with systemic autoimmune disorders, contributes to the development of premature atherosclerosis and results in an increased prevalence of cardiovascular disease.  相似文献   

9.
Peroxiredoxin 6 (Prdx6; also called antioxidant protein 2, or Aop2) is a candidate gene for Ath1, a locus responsible for the respective susceptibility and resistance of mouse strains C57BL/6J (B6) and C3H/HeJ (C3H) to diet-induced atherosclerosis. To evaluate if Prdx6 underlies Ath1, we compared the diet-induced atherosclerotic lesions in Prdx6 targeted mutant (Prdx6-/-) mice of different genetic backgrounds: B6, 129, and B6;129. PRDX6 protein and mRNA were expressed in normal and atherosclerotic aortas. B6;129 Prdx6-/- macrophages oxidized LDL significantly more than did controls. Plasma lipid hydroperoxide levels were higher in atherogenic diet-fed Prdx6-/- mice with B6;129 and B6 backgrounds than in controls. Prdx6-/- and controls in a 129 genetic background were equally lesion-resistant, and Prdx6-/- and controls in a B6 background were equally lesion-susceptible. In contrast, Prdx6-/- mice in a B6;129 background had significantly larger aortic root lesions than did littermate wild type controls. Therefore, although PRDX6 protein did not affect atherosclerosis susceptibility in either the resistant 129 background or the susceptible B6 background, it may inhibit atherosclerosis in backgrounds with mixed pro- and anti-atherogenic genes. Thus, genetic background plays an important role in modulating atherogenesis in targeted mutant mice. However, we think it is unlikely that Prdx6 underlies Ath1.  相似文献   

10.
BACKGROUND: Urotensin II (UTN), a cyclic undecapeptide widely distributed in various organs and tissues, is found in high concentration in atheromatous lesions. Because UTN accumulates in patients with chronic renal failure, the association between plasma UTN and biomarkers of atherosclerosis and endothelial activation needs to be better understood. METHODS: We tested by a robust statistical approach (Holm method) the association between plasma UTN and biomarkers of atherosclerosis and endothelial activation in a population of 191 patients undergoing chronic hemodialysis. RESULTS: Plasma UTN was significantly higher in patients with end-stage renal disease (median: 6.5 ng/mL) than in healthy subjects (median: 3.1 ng/mL) (P < .001), and in both patients and control subjects it was independent of age and sex. Interestingly, UTN was inversely related to fibrinogen (r = -0.50, P < .004), intracellular adhesion molecule-1 (r = -0.24, P < .004) and with NO synthesis inhibitor asymmetric dimethyl-arginine (r = -0.40, P < .004). These links were paralleled by direct correlations with albumin (r = 0.21, P < .006) and with transforming growth factor-beta1 (TGFbeta1) (r = 0.36, P < .004). Of note, on multiple regression analysis, these associations remained highly significant also after data adjustment for potential confounders. CONCLUSIONS: The inverse links between UTN with biomarkers of atherosclerosis and endothelial activation suggest that downregulation of UTN may be a counter-regulatory response aimed at mitigating cardiovascular damage or that UTN itself is a protective factor.  相似文献   

11.
12.
Monocyte recruitment and adhesion to vascular endothelium are key early events in atherosclerosis. We examined the role of sphingosine-1-phosphate (S1P) on modulating monocyte/endothelial interactions in the NOD/LtJ (NOD) mouse model of type 1 diabetes. Aortas from nondiabetic and diabetic NOD mice were incubated in the absence or presence of 100 nmol/L S1P. Fluorescently labeled monocytes were incubated with the aortas. Aortas from NOD diabetic mice bound 7-fold more monocytes than nondiabetic littermates (10+/-1 monocytes bound/field for nondiabetic mice vs 74+/-12 monocytes bound/field for diabetic mice, P<0.0001). Incubation of diabetic aortas with 100 nmol/L S1P reduced monocyte adhesion to endothelium by 90%. We found expression of S1P1, S1P2, and S1P3 receptors on NOD aortic endothelial cells. The S1P1 receptor-specific agonist SEW2871 inhibited monocyte adhesion to diabetic aortas. Studies in diabetic S1P3-deficient mice revealed that the S1P3 receptor did not play a pivotal role in this process. S1P reduced endothelial VCAM-1 induction in type 1 diabetic NOD mice, most likely through inhibition of nuclear factor kappaB translocation to the nucleus. Thus, S1P activation of the S1P1 receptor functions in an antiinflammatory manner in type 1 diabetic vascular endothelium to prevent monocyte/endothelial interactions. S1P may play an important role in the prevention of vascular complications of type 1 diabetes.  相似文献   

13.
Atherosclerosis is a chronic inflammatory disease of arteries. It is triggered by proinflammatory mediators which induce adhesion molecules (eg, vascular cell adhesion molecule [VCAM]-1) in endothelial cells (ECs) by activating p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinases by phosphorylation. Blood flow influences atherosclerosis by exerting shear stress (mechanical drag) on the inner surface of arteries, a force that alters endothelial physiology. Regions of the arterial tree exposed to high shear are protected from endothelial activation, inflammation, and atherosclerosis, whereas regions exposed to low or oscillatory shear are susceptible. We examined whether MAP kinase phosphatase (MKP)-1, a negative regulator of p38 and JNK, mediates the antiinflammatory effects of shear stress. We observed that expression of MKP-1 in cultured ECs was elevated by shear stress, whereas the expression of VCAM-1 was reduced. MKP-1 induction was shown to be necessary for the antiinflammatory effects of shear stress because gene silencing of MKP-1 restored VCAM-1 expression in sheared ECs. Immunostaining revealed that MKP-1 is preferentially expressed by ECs in a high-shear, protected region of the mouse aorta and is necessary for suppression of EC activation at this site, because p38 activation and VCAM-1 expression was enhanced by genetic deletion of MKP-1. We conclude that MKP-1 induction is required for the antiinflammatory effects of shear stress. Thus, our findings reveal a novel molecular mechanism contributing to the spatial distribution of vascular inflammation and atherosclerosis.  相似文献   

14.
血管内皮不仅是血液与内皮下组织的屏障,还具有内分泌功能.当血管内皮功能障碍时,会引起一系列的病理生理反应,导致动脉粥样硬化.在内皮功能障碍向动脉粥样硬化演变的过程中,血管紧张素Ⅱ和氧化型低密度脂蛋白起重要作用.内皮细胞损伤时,机体自身的修复机制发挥作用,相关药物可改善内皮功能,稳定动脉粥样硬化,改善预后.内皮细胞功能的...  相似文献   

15.
16.
17.
18.
The signaling and functions of the Endothelial Differentiation Gene (EDG) family of G protein-coupled receptors have been extensively elucidated. All the members of EDG family were shown to be receptors for lysosphingolipids or lysophospholipids. EDG-1, the prototype of EDG family receptors, is a high affinity receptor for serum-borne bioactive lipid, Sphingosine-1-phosphate (S1P). S1P, secreted by thrombotic platelets, has been shown to regulate a variety of cellular responses, including survival, cytoskeletal remodeling, chemotaxis etc, via the activation of cell surface EDG receptors. Recently, a novel function of S1P in modulating angiogenic response has been demonstrated. This review will focus on S1P/ EDG-1 signaling in endothelial activation, in particular in the S1P-mediated adherens junctions assembly and chemotaxis in endothelial cells.  相似文献   

19.

Background

Oxidative stress-induced vascular endothelial cell injury is a major factor in the pathogenesis of atherosclerosis. Several evidences indicate that ellagic acid (EA), a phenolic compound, contributes to cardiovascular health. This study was to investigate the effects of EA on endothelial dysfunction and atherosclerosis via antioxidant-related mechanisms.

Methods

In animal studies, wild-type (WT) C57BL/6 mice and apolipoprotein E-deficient mice (ApoE−/−) mice were fed: a high-fat (21%) diet (HFD) or a HFD plus with EA (HFD + EA), for 14 weeks. Vascular reactivity was studied in mice aortas. The effect of EA in human umbilical vein endothelial cells (HAECs) exposed to hypochlorous acid (HOCl) was also investigated.

Results

Compared with animals on HFD alone, EA attenuated atherosclerosis in WT mice. In aortic rings from two mice models, EA significantly improved endothelium-dependent relaxation and attenuated HOCl-induced endothelial dysfunction. Besides, EA significantly improved nitric oxide synthase activity, antioxidant capacity and markers of endothelial dysfunction in plasma. Western blot analysis showed that EA increased NF-E2-related factor 2 (Nrf2) and heme oxygenase-1(HO-1) expression in the aortas (P < 0.05). In a separate experiment, EA did not protect against HOCl-induced endothelial dysfunction in arteries obtained from Nrf2 gene knockout mice compared with WT mice. In HAECs, EA prevented HOCl-induced cellular damage and induced HO-1 protein expression, and these effects markedly abolished by the siRNA of Nrf2.

Conclusions

Our results provide further support for the protective effects of dietary EA particularly oxidant-induced endothelial dysfunction and atherosclerosis partly via Nrf2 activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号