首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clinical data indicate that secondary caries and restoration fracture are the most common problems facing tooth restorations. Our ultimate goal was to develop mechanically-strong and caries-inhibiting dental composites. The specific goal of this pilot study was to understand the relationships between composite properties and the ratio of reinforcement filler/releasing filler. Nanoparticles of monocalcium phosphate monohydrate (MCPM) were synthesized and incorporated into a dental resin for the first time. Silicon carbide whiskers were fused with silica nanoparticles and mixed with the MCPM particles at MCPM/whisker mass ratios of 1:0, 2:1, 1:1, 1:2, and 0:1. The composites were immersed for 1-56 days to measure Ca and PO4 release. When the MCPM/whisker ratio was changed from 0:1 to 1:2, the composite flexural strength (mean +/- SD; n = 5) decreased from 174 +/- 26 MPa to 138 +/- 9 MPa (p < 0.05). A commercial nonreleasing composite had a strength of 112 +/- 14 MPa. When the MCPM/whisker ratio was changed from 1:2 to 1:1, the Ca concentration at 56 days increased from 0.77 +/- 0.04 mmol/L to 1.74 +/- 0.06 mmol/L (p < 0.05). The corresponding PO4 concentration increased from 3.88 +/- 0.21 mmol/L to 9.95 +/- 0.69 mmol/L (p < 0.05). Relationships were established between the amount of release and the MCPM volume fraction v(MCPM) in the resin: [Ca]= 42.9 v(MCPM) (2.7), and [PO4] = 48.7 v(MCPM) (1.4). In summary, the method of combining nanosized releasing fillers with reinforcing fillers yielded Ca- and PO4-releasing composites with mechanical properties matching or exceeding a commercial stress-bearing, nonreleasing composite. This method may be applicable to the use of other Ca-PO4 fillers in developing composites with high stress-bearing and caries-preventing capabilities, a combination not yet available in any dental materials.  相似文献   

2.
Half of all dental restorations fail within 10 years, with secondary caries and restoration fracture being the main reasons. Calcium phosphate (CaP) composites can release Ca and PO(4) ions and remineralize tooth lesions. However, there has been no report on their long-term mechanical durability. The objective of this study was to investigate the wear, thermal-cycling, and water-aging of composites containing amorphous calcium phosphate nanoparticles (NACP). NACP of 112-nm and glass particles were used to fabricate four composites: (1) 0% NACP+75% glass; (2) 10% NACP+65% glass; (3) 15% NACP+60% glass; and (4) 20% NACP+50% glass. Flexural strength and elastic modulus of NACP nanocomposites were not degraded by thermal-cycling. Wear depth increased with increasing NACP filler level. Wear depths of NACP nanocomposites after 4 × 10(5) cycles were within the range for commercial controls. Mechanical properties of all the tested materials decreased with water-aging time. After 2 years, the strengths of NACP nanocomposites were moderately higher than the control composite, and much higher than the resin-modified glass ionomers. The mechanism of strength loss for resin-modified glass ionomer was identified as microcracking and air-bubbles. NACP nanocomposites and control composite were generally free of microcracks and air-bubbles. In conclusion, combining NACP nanoparticles with reinforcement glass particles resulted in novel nanocomposites with long-term mechanical properties higher than those of commercial controls, and wear within the range of commercial controls. These strong long-term properties, plus the Ca-PO(4) ion release and acid-neutralization capability reported earlier, suggest that the new NACP nanocomposites may be promising for stress-bearing and caries-inhibiting restorations.  相似文献   

3.
The strength and fracture resistance of dental resin composites need to be improved to extend their use to large stress-bearing crown and multiple-unit applications. Recent studies showed that the addition of ceramic whiskers significantly reinforced resin composites. The aim of the present study was to use a silicon carbide whisker-silica particle mixture to reinforce resin composites, and to investigate the effect of whisker-silica mixture heat-treatment on composite properties. The whiskers were blended with silica particles and were thermally fused in an attempt to roughen the whiskers for improved retention in the matrix. The mixtures were heat-treated at temperatures of 500, 650, 800, 950, and 1100 degrees C for 10 min, 30 min, and 3 h. The mixtures were then silanized, incorporated into a dental resin, and the paste was placed into 2 x 2 x 25 mm molds and heat-cured at 140 degrees C for 30 min. A 3-point flexural test was used to measure flexural strength and work-of-fracture. Two commercial indirect composites were tested as controls. Two-way ANOVA showed that there was no significant effect from temperature or time. Therefore, all the whisker-silica mixture samples were combined into one group (n = 96), and compared to composites filled with silica only or whisker only, and the two indirect control composites. The whisker-silica mixture group had a flexural strength (mean +/- SD) of (186 +/- 24) MPa, significantly higher than (99 +/- 29) MPa for silica only, (131 +/- 22) MPa for whisker only, and (109 +/- 23) MPa and (114 +/- 18) MPa for the two indirect composites (Tukey's multiple comparison test; family confidence coefficient = 0.95). Similar results were obtained on work-of-fracture. Scanning electron microscopy revealed rough fracture surfaces for the whisker-silica composites, indicating crack deflection and bridging by whiskers as toughening mechanisms. Whisker-silica mixture minimized whisker entanglement and enhanced whisker-resin bonding, resulting in substantially stronger and tougher dental resin composites.  相似文献   

4.
We previously demonstrated that fluoride release from resins could be regulated by the polysiloxane coating of the fluoride additives. The present study investigated the effects of regulated fluoride release from resin on enamel demineralization in vitro. Bovine enamel cavities were restored with bis-GMA/TEGDMA resins containing 50 wt% NaF powders treated with or without gamma-methacryloxypropyltrimethoxysilane. Specimens were immersed in distilled water that was changed daily to measure the amount of fluoride released over 40 days, and thereafter subjected to pH-cycling. Microradiographic observations were performed to determine total mineral loss (AZ) and lesion depth (Ld) on the enamel. In addition, fluorine distribution was analyzed using EPMA. The resin containing untreated NaF exhibited high-rate and short-term fluoride release, whereas the resin containing treated NaF released low concentrations of fluoride over a longer period. The former showed high fluorine uptake in the adjacent enamel. In contrast, the latter showed high fluorine uptake not only in the adjacent enamel, but also in a wider area of enamel surface. The latter also showed lower AZ and Ld values in the surrounding enamel, indicating a high inhibitory effect on caries formation. Therefore, it is suggested that regulated fluoride release from the resin based on polysiloxane coating is effective in preventing caries formation.  相似文献   

5.
Xu X  Burgess JO 《Biomaterials》2003,24(14):2451-2461
The compressive strength, fluoride releases and recharge profiles of 15 commercial fluoride-releasing restorative materials have been studied. The materials include glass ionomers (Fuji IX, Ketac Molar, Ketac Silver, and Miracle Mix), resin-modified glass ionomers (Fuji II LC Improved, Photac-Fil, and Vitremer), compomers (Compoglass, Dyract AP, F2000, and Hytac) and composite resins (Ariston pHc, Solitaire, Surefil and Tetric Ceram). A negative linear correlation was found between the compressive strength and fluoride release (r(2)=0.7741), i.e., restorative materials with high fluoride release have lower mechanical properties. The fluoride-releasing ability can be partially regenerated or recharged by using a topical fluoride agent. In general, materials with higher initial fluoride release have higher recharge capability (r(2)=0.7088). Five equations have been used in curve fitting to describe the cumulative fluoride release from different materials. The equation [F](c)=[F](I)(1-e(-bt))+betat best describes the cumulative fluoride release for most glass ionomers, resin-modified glass ionomers, and some high fluoride-releasing compomers and composites, whereas [F](c)=[F](I)/(t(1/2)+t)+alphat best describes the cumulative fluoride release for most compomers and composite resins. The clinic applications of different fluoride-releasing materials have also been discussed.  相似文献   

6.
Dental resin composites need to be strengthened in order to improve their performance in large stress-bearing applications such as crowns and multiple-unit restorations. Recently, silica-fused ceramic whiskers were used to reinforce dental composites, and the whisker-to-silica ratio was found to be a key microstructural parameter that determined the composite strength. The aim of this study was to further investigate the effects of whisker-to-silica ratio on the fracture toughness, elastic modulus, hardness and brittleness of the composite. Silica particles and silicon carbide whiskers were mixed at whisker:silica mass ratios of 0:1, 1:5. 1:2, 1:1, 2:1, 5:1, and 1:0. Each mixture was thermally fused, silanized and combined with a dental resin at a filler mass percentage of 60%. Fracture toughness was measured with a single-edge notched beam method. Elastic modulus and hardness were measured with a nano-indentation system. Whisker:silica ratio had significant effects on composite properties. The composite toughness (mean+/-SD; n = 9) at whisker:silica = 2:1 was (2.47+/-0.28) MPa m(1/2), significantly higher than (1.02+/-0.23) at whisker:silica = 0:1, (1.13+/-0.19) of a prosthetic composite control, and (0.95+/-0.11) of an inlay/onlay composite control (Tukey's at family confidence coefficient = 0.95). Elastic modulus increased monotonically and hardness plateaued with increasing the whisker:silica ratio. Increasing the whisker:silica ratio also decreased the composite brittleness, which became about 1/3 of that of the inlay:onlay control. Electron microscopy revealed relatively flat fracture surfaces for the controls, but much rougher ones for the whisker composites, with fracture steps and whisker pullout contributing to toughness. The whiskers appeared to be well-bonded with the matrix, probably due to the fused silica producing rough whisker surfaces. Reinforcement with silica-fused whiskers resulted in novel dental composites that possessed fracture toughness two times higher than, and brittleness less than half of current dental composites.  相似文献   

7.
Mineral content is one of the main predictors of the mechanical properties of bone tissue. The contribution of the bone mineral phase to the mechanical properties of bone has been investigated by reducing the mineral content of bone with different in vitro treatment techniques such as hydrochloric acid (HCl), ethylenedinitrilo tetraacetic acid (EDTA), and fluoride ion treatment. In this study, we propose a new treatment technique which combines fluoride and phosphate ions. Bovine femur specimens were used to determine the mechanical properties of cortical bone after different fluoride phosphate ion combination treatments. The treatment solutions, which contain different fluoride and phosphate ion concentrations, dissolved part of the bone mineral in a uniform manner throughout the bone samples. Dissolution by products, which precipitated in the bone tissue, contained calcium fluoride with phosphate ions (CaF(2)/P) and fluorapatite/fluorhydroxyapatite-type material (FAp/FHAp) and acted as filler. Depending on the fluoride and phosphate concentration in a treatment solution, the precipitated material's ratio of FAp/FHAp to total fluoride containing phase (FAp/FHAp + CaF(2)/P) in bone tissue also changed. High fluoride ion content in treatment solutions generated more CaF(2)/P type of precipitate, and low fluoride ion concentration generated more FAp/FHAp type precipitates as compared to high fluoride concentration treatments. These experiments show that phosphate ions are another important parameter of a treatment solution, in addition to ionic strength, pH, and the duration of treatment. In vitro, phosphate fluoride combinations partially dissolve bone mineral content in a wider range than fluoride treatment alone in a uniform manner. With this new technique one can control more precisely the partial dissolution of the bone mineral and mineral phase's contribution to mechanical properties of bone tissue.  相似文献   

8.
The amount of fluoride release from dental cements necessary for an anticariogenic effect is not established: moreover, the possible toxic effects due to high fluoride and aluminum release are not well known and the results are still controversial. The aim of our study was to evaluate fluoride (F) and aluminum (Al) release from dental cements using a 'standardized approach' according to the end-use of the materials, i.e. biocompatibility testing. Two polyacid-modified resin composites of recent application, commonly called compomers (Dyract and Dyract Cem), were compared with two conventional acid-based (Fuji I, Ketac-Cem) and two resin-modified (Vitremer, Vitrebond) glass-ionomer cements (GICs). All types of cement are used in dentistry and are commercially available. Extracts of the cements into minimum essential medium, after setting over a 1-h (group A) and 1-week (group B) period, were performed. The extraction conditions were rigorously standardized. Mean values +/- standard deviation of F- and Al-levels in such extracts were measured and were expressed as microg g(-1) (micrograms of ions per gram of cement). A great difference in the amount of ion release, both F and Al, was shown among the tested materials. The GICs, as well as Ketac-Cem, released more F and Al than the compomers. All of the materials released the greatest proportion of ions when the extraction was performed in the first hour after mixing (group A). Al- and F-values showed a highly significant positive correlation, independently from the curing time. We conclude that the biological assessment of dental cements can be performed only if a pre-evaluation of the leachables is obtained by applying a standardized protocol which allows a useful comparison between the different materials.  相似文献   

9.
The amount of fluoride release from dental cements necessary for an anticariogenic effect is not established; moreover, the possible toxic effects due to high fluoride and aluminum release are not well known and the results are still controversial. The aim of our study was to evaluate fluoride (F) and aluminum (Al) release from dental cements using a 'standardized approach' according to the end-use of the materials, i.e. biocompatibility testing. Two polyacid-modified resin composites of recent application, commonly called compomers (Dyract® and Dyract Cem®), were compared with two conventional acid-based (Fuji I?, Ketac-Cem®) and two resin-modified (Vitremer?, Vitrebond?) glass-ionomer cements (GICs). All types of cement are used in dentistry and are commercially available. Extracts of the cements into minimum essential medium, after setting over a 1-h (group A) and 1-week (group B) period, were performed. The extraction conditions were rigorously standardized. Mean values +/- standard deviation of F- and Al-levels in such extracts were measured and were expressed as μg g-1 (micrograms of ions per gram of cement). A great difference in the amount of ion release, both F and Al, was shown among the tested materials. The GICs, as well as Ketac-Cem®, released more F and Al than the compomers. All of the materials released the greatest proportion of ions when the extraction was performed in the first hour after mixing (group A). Al- and F-values showed a highly significant positive correlation, independently from the curing time. We conclude that the biological assessment of dental cements can be performed only if a preevaluation of the leachables is obtained by applying a standardized protocol which allows a useful comparison between the different materials.  相似文献   

10.
分别采用三种不同方法对硼酸铝晶须(AlBw)进行表面改性。方法一:将AlBw与商品纳米二氧化硅(SiO2)在一定工艺下直接高温熔附;方法二:将正硅酸乙酯(TEOS)用溶胶-凝胶法水解形成Si-O网络结构的膜,同时包裹于AlBw表面,进一步与商品纳米SiO2高温熔附;方法三:用溶胶-凝胶法在一定工艺条件下使TEOS水解得到纳米SiO2,同时沉积于AlBw表面,然后高温熔附。透射电镜(TEM)和扫描电镜(SEM)观察不同方法改性AlBw后其表面形态的变化。按一定质量比加入树脂基质中,测试树脂弯曲性能,SEM观察断口形貌。结果表明:晶须改性后可以提高复合树脂的弯曲性能,不同改性方法作用不同;商品SiO2纳米颗粒直接熔附于AlBw进行表面改性,复合树脂的弯曲强度达(95.28±4.53)MPa,但AlBw、纳米SiO2间团聚明显;采用TEOS溶胶-凝胶法对AlBw进行表面处理后与商品SiO2纳米颗粒混合,团聚有改善,但分布不均匀;采用TEOS溶胶-凝胶法直接生成纳米SiO2改性AlBw,是一种理想的改性方法,经此法改性的AlBw-SiO2复合体可以显著提高复合树脂的弯曲性能,复合树脂的弯曲强度达(130.29±8.38)MPa,SiO2粒径分布均匀,AlBw表面有分布较均匀的、分散的SiO2纳米颗粒熔附,团聚程度降低。  相似文献   

11.
The strength and toughness of dental core buildup composites in large stress-bearing restorations need to be improved to reduce the incidence of fracture due to stresses from chewing and clenching. The aims of the present study were to develop novel core buildup composites reinforced with ceramic whiskers, to examine the effect of filler level, and to investigate the reinforcement mechanisms. Silica particles were fused onto the whiskers to facilitate silanization and to roughen the whisker surface for improved retention in the matrix. Filler level was varied from 0 to 70%. Flexural strength, compressive strength, and fracture toughness of the composites were measured. A nano-indentation system was used to measure elastic modulus and hardness. Scanning electron microscopy (SEM) was used to examine the fracture surfaces of specimens. Whisker filler level had significant effects on composite properties. The flexural strength in MPa (mean +/- SD; n = 6) increased from (95+/-15) for the unfilled resin to (193+/- 8) for the composite with 50% filler level, then slightly decreased to (176+/-12) at 70% filler level. The compressive strength increased from (149+/-33) for the unfilled resin to (282+/-48) at 10% filler level, and remained equivalent from 10 to 70% filler level. Both the modulus and hardness increased monotonically with filler level. In conclusion, silica particle-fused ceramic single-crystalline whiskers significantly reinforced dental core buildup composites. The reinforcement mechanisms appeared to be crack deflection and bridging by the whiskers. Whisker filler level had significant effects on the flexural strength, compressive strength, elastic modulus, and hardness of composites.  相似文献   

12.
The in-vitro fluoride treatment technique has been introduced to investigate the composite behavior of bone tissue. Bone tissue with different mechanical properties can be obtained by varying the concentration, pH and immersion time in fluoride ion solutions. The chemical and physical changes in intact pieces of bone treated in-vitro with different concentrations of fluoride ions are studied. The amount of bone mineral that does not contribute to the mechanical behavior of bone tissue is estimated from the dissolution occurring in the fluoride treated bones. Cortical bones from 18-month-old steers were treated in-vitro with 0.145, 0.5 and 2.0 M sodium fluoride (NaF) solutions for three days. The dissolved bone mineral precipitates as calcium fluoride-like (CaF2/P with some phosphate [P] ions) and fluorapatite(FAp)/fluorhydroxyapatite(FHAp)-like materials within the bone tissue. The dissolution estimated from the presence of the precipitated fluoride phases is 5.6, 11.7, and 13.1% of the initial bone mineral content for the 0.145 M, 0.5 M, and 2.0 M NaF treatments respectively. Estimates of dissolution based on the measurements of phosphate and carbonate ions are lower and higher respectively when compared to the fluoride ion measurements. The wet and dry densities decreased slightly due to dissolution and re-precipitation while the ash content (ratio of the ash weight to dry weight) increased a small amount with increasing concentration of fluoride ion treatments. The increased ash content was due to the excess loss of water in the fluoride treated bones as compare to controls (untreated bone samples) during the drying process. The increased removal of water during the drying process may explain the increased ash contents in some in-vivo treatments.  相似文献   

13.
The study aimed to define the in vitro secondary caries inhibiting potential of restorative materials currently used in dental practice. Class V restorations were prepared in extracted human third molars and immersed in a demineralizing solution (lactic acid, pH 4.5) at 37 degrees C for 2 days to simulate secondary caries formation. The bonding and the restorative systems tested in the study were: Scotchbond 1+Z 250 (Group A), Scotchbond 1+F 2000 (Group B), ABF+APX (Group C), ABF+F2000 (Group D). Perimarginal dentine, immediately close to the margin of the restoration, and exposed dentine, at approximately 0.5 mm from the margins of the restoration, after exposure to the acid solution, were investigated; protected dentine, at approximately 4 mm from the margin in a varnish-covered area, was analysed as control. Polarized light microscopy and contact transverse microradiography (TMR) were employed. The output parameters were lesion shape and size (depth in microm) of the exposed dentine, dentine mineral volume%, and integrated mineral loss (Delta Z, in %volmicrom) of the lesions. Compomers (Groups B and D) showed a thinner demineralization of the outer lesions, a less demineralization along the perimarginal dentine (inner lesion) and more caries inhibition zones or CIZs (Delta Z positive values) compared to composites (Groups A and C). In conclusion, Groups B and D materials seemed to partially counteract the marginal demineralization induced by an acid solution and favourably influence the formation of CIZs along the restorations. On the contrary, composites did not show a protective effect, probably due to an insufficient marginal seal and the lack of fluoride release.  相似文献   

14.
The purpose of this study was to develop a new method of releasing fluorine in a controlled manner for applications in the field of orthodontic Ti-based wire, namely the coating of fluorides on Ti. Thin films of two fluoride compounds, CaF(2) and MgF(2), were coated on Ti via the electron-beam evaporation method. The fluorine was released rapidly from the as-deposited MgF(2) coating within a short period(,) and then the release rate slowed down. When the MgF(2) coating was heat treated, this initial burst effect was decreased, but a significant amount of cracks were generated. On the other hand, in the case of the as-deposited CaF(2) coating, fluorine was released linearly for the entire period, without an initial burst. In the heat-treated CaF(2) coatings the trend was similarly observed. The linear fluorine release from the CaF(2) coatings, even in the as-deposited state, was attributed to the high degree of crystallinity of the coatings. A preliminary cell test showed favorable cell viability on both the fluoride coatings. Given their sustained and controlled fluorine release, these fluoride coatings, particularly CaF(2), are suggested to be potentially useful in the field of orthodontic Ti-based wire.  相似文献   

15.
Approximately a million bone grafts are performed each year in the United States, and this number is expected to increase rapidly as the population ages. Calcium phosphate cement (CPC) can intimately adapt to the bone cavity and harden to form resorbable hydroxyapatite with excellent osteoconductivity and bone-replacement capability. The objective of this study was to develop a strong CPC using synergistic reinforcement via suture fibers and chitosan, and to determine the fiber strength-CPC composite strength relationship. Biopolymer chitosan and cut suture filaments were randomly mixed into CPC. Both suture filaments and composite were immersed in a physiological solution. After 1-day immersion, cement flexural strengths (mean +/- SD; n = 6) were: (2.7 +/- 0.8) MPa for CPC control; (11.2 +/- 1.0) MPa for CPC-chitosan; (17.7 +/- 4.4) MPa for CPC-fiber composite; and (40.5 +/- 5.8) MPa for CPC-chitosan-fiber composite. They are significantly different from each other (Tukey's at 0.95). The strength increase from chitosan and fiber together in CPC was much more than that from either fiber or chitosan alone. The composite strength became (9.8 +/- 0.6) MPa at 35-day immersion and (4.2 +/- 0.7) MPa at 119 days, comparable to reported strengths for sintered porous hydroxyapatite implants and cancellous bone. After suture fiber dissolution, long macropore channels were formed in CPC suitable for cell migration and tissue ingrowth. A semiempirical relationship between suture fiber strength S(F) and composite strength S(C) were obtained: S(C) = 14.1 + 0.047 S(F), with R = 0.92. In summary, this study achieved substantial synergistic effects by combining random suture filaments and chitosan in CPC. This may help extend the use of the moldable, in situ hardening hydroxyapatite to moderate stress-bearing orthopedic applications. The long macropore channels in CPC should be advantageous for cell infiltration and bone ingrowth than conventional random pores and spherical pores.  相似文献   

16.
The effect of an early water contact on the fluoride release is studied for the resin-modified glass ionomer cements (RM-GIC) GC Lining LC, PhotacBond, Vitremer and Vitrebond and for the polyacid-modified composite resins (PAM-C) Variglass and Dyract. Six months fluoride release profiles were determined in regularly renewed water (37 degrees C), for the products directly after light curing and after 24 h maturation in a humid atmosphere (85% RH). ANOVA shows that both the short-term and the long-term fluoride release of a RM-GIC are influenced by this maturation. This indicates that direct water contact for this material should be avoided. For the RM-GIC a correlation is found between the initial fluoride release process and the long-term process. For the PAM-C materials, no differences in the fluoride release are found as a function of maturation, indicating that early water contact has no effect. The amounts of fluoride released by PAM-C are low compared to RM-GIC, which can affect their caries preventive potential. The results are explained on the basis of the setting reaction of both types of materials.  相似文献   

17.
Previously, nano-sized calcium fluoride (CaF?) particles were prepared using a spray drying method by simultaneously feeding Ca(OH)? and NH?F solutions to a two-liquid nozzle. The aim of the present study was to prepare better-dispersed nano-CaF? particles by co-forming a soluble salt, sodium chloride (NaCl). NaCl of various concentrations were added to the NH(4) F solution, leading to formation of (CaF? +NaCl) composites with CaF? /NaCl molar ratios of 4/1, 4/4, and 4/16. Pure nano-CaF? was also prepared as the control. Powder X-ray diffraction analysis showed that the products contained crystalline CaF? and NaCl. Scanning electron microscopy examinations showed that both the CaF? /NaCl composite and pure CaF? particles were about (50-800) nm in size and consisted of primary CaF? particles of < 50 nm in size. BET surface area measurements showed similar primary particle sizes for all samples. Dynamic light scattering measurements showed that the washed (CaF?+NaCl) particles were much smaller than the pure CaF? as the dissolution of NaCl "freed" most of the primary CaF? particles, leading to a greater degree of particle dispersion. The well-dispersed nano-CaF? may be expected to be a more effective anticaries agent than NaF by providing longer lasting elevations of fluoride concentrations in oral fluids.  相似文献   

18.
Studies have shown that ions in a glass ionomer matrix are 1-10% of the amounts present in the original glass. To measure more precisely the release from a cement matrix, known amounts of ions were added to LG30 glass which was fluoride and sodium-free. Cement without additions acted as the control. 1.4-1.6% of each of sodium, calcium and aluminum fluorides were added to three portions of control blend. The sodium and fluoride release into deionised water from five discs of each cements blend was measured for 8 months. This represented complete release for sodium but not for fluoride. Traces of fluoride and sodium in the glass produced low but measurable amounts indicating about a third of the fluoride and substantially all sodium present in LG30 was released. The addition of calcium fluoride had no significant effect on sodium or fluoride release and aluminium fluoride minimal effects. Adding sodium fluoride significantly enhanced release of both ions although fluoride release was less than from a glass containing 5% fluoride. Only small proportions of the additions, 2-5% of the fluoride and 13% of sodium, were released. Sodium and fluoride appeared to be released independently. For LG30 cements additives were poor at supplying extra ions.  相似文献   

19.
In order to quantitatively examine fluoride uptake by bone and the effect on its chemical and physical properties, rat bone was incubated in acidic buffer solutions (pH 5) with fluoride concentrations of 0-1000 ppm F. After 1 wk incubation, there was a substantial increase in the crystallinity of the bone mineral with increasing fluoride concentration in the solution. The calcium concentration in the solutions used for incubation decreased dramatically, with increased levels of fluoride in the solution, approaching a plateau. The phosphate concentration initially decreased, with increasing levels of fluoride in proportion to the decrease of calcium concentration, and then increased when the fluoride concentration of the solution was above 200-300 ppm. These phenomena, when considered with X-ray diffraction data, reflected the formation of CaF2. The increase of the phosphate concentration in the solution suggests that the presence of excessive fluoride in the acidic buffer solution may promote the dissolution of soluble bone apatites, in spite of the dissolution-preventive activity of fluoride.  相似文献   

20.
It was the aim of the present experiments to evaluate the fluoride leaching of four compomers and one resin-modified glass-ionomer cement (gic) into aqueous media over a 1-year period. Various extraction/equilibrium solutions were applied to simulate important intraoral parameters. Specimens of Dyract, Compoglass F, F2000, one experimental compomer, and the resin-modified gic Fuji II LC were stored for 366 days in distilled water (I), acidic medium (pH 4.2) (II), neutral medium (pH 7.0) (III), or solution III supplemented with 1.6 u/mL porcine liver esterase (IV). Equilibrium media were changed and fluoride concentration was measured every 48 h (first 30 d), thereafter each week (twice), then every 14 d (three times), and finally every 28 d up to a total period of 1 year. Data were statistically analyzed for significant differences by means of Scheffe' tests (p < 0.05). The gic and the compomers leached significantly more fluoride into the acidic solution in the initial phase compared to the other media (p < 0.05). Cumulative fluoride release from all materials (except experimental compomer) was elevated because of esterase activity (p <0.05). Measurable but low quantities of fluoride were segregated into all media during the 1-year period. But no significantly different long-term fluoride release into the various media from the investigated materials was found. The data indicate that plaque-associated organic acids or salivary hydrolases may increase initial fluoride release from resin-modified gics or compomers in the oral cavity. Because long-term fluoride release from all materials decreased to low concentrations within a 30-day period, their caries preventive effect remains questionable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号