首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digoxin is known to be secreted by renal tubular cells, but the mechanisms are still not fully understood. In this study, we examined renal tubular cell handling of digoxin and ouabain using LLC-PK1 cells, a model of proximal renal tubular cells. The cells were used in suspension for binding experiments and in monolayers on permeable filters for transport studies. The specific binding of digoxin to the cells, presumably to the ouabain binding site (i.e., membrane Na+,K(+)-ATPase), were characterized by Kd of 2.6 x 10(-7) M and Bmax (total number of specific binding sites) of 1.6 x 10(6)/cell. Kd and Bmax of ouabain binding were 1.3 x 10(-7) M and 1.9 x 10(6)/cell, respectively. In transport experiments, digoxin showed significantly higher flux than ouabain from the basolateral to the apical side across the cell monolayers. Importantly, this secretory transport was not inhibited by ouabain concentrations sufficient to block membrane Na+,K(+)-ATPase and to displace digoxin from the binding site on the enzyme (i.e., 10(-6) to 10(-4) M ouabain). However, the digoxin secretion was decreased by low temperature or excess digoxin in a concentration-dependent manner. These data suggest that digoxin undergoes unidirectional transport in favor of secretion, which does not involve its binding to the ouabain binding sites on membrane Na+,K(+)-ATPase.  相似文献   

2.
This study was conducted to evaluate the influence of proinsulin C-peptide on erythrocyte Na(+),K(+)-ATPase and endothelial nitric oxide synthase activities in patients with type I diabetes. In a randomized double-blind study design, ten patients with type I diabetes received intravenous infusions of either human C-peptide or physiological saline on two different occasions. C-peptide was infused at a rate of 3 pmol.min(-1).kg(-1) for 60 min, and thereafter at 10 pmol.min(-1).kg(-1) for 60 min. At baseline and after 60 and 120 min, laser Doppler flow (LDF) was measured following acetylcholine iontophoresis or mild thermal stimulation (44 degrees C), and venous blood samples were collected to determine plasma cGMP levels and erythrocyte membrane Na(+),K(+)-ATPase activity. The LDF response to acetylcholine increased during C-peptide infusion and decreased during saline infusion [18.6+/-19.2 and -13.2+/-9.4 arbitrary units respectively; mean+/-S.E.M.; P<0.05). No significant change in LDF was observed after thermal stimulation. The baseline plasma concentration of cGMP was 5.5+/-0.6 nmol.l(-1); this rose to 6.8+/-0.9 nmol.l(-1) during C-peptide infusion (P<0.05). Erythrocyte Na(+),K(+)-ATPase activity increased from 140+/-29 nmol of P(i).h(-1).mg(-1) in the basal state to 287+/-5 nmol of P(i). h(-1).mg(-1) during C-peptide infusion (P<0.01). There was a significant linear relationship between plasma C-peptide levels and erythrocyte Na(+),K(+)-ATPase activity during the C-peptide infusion (r=0.46, P<0.01). No significant changes in plasma cGMP levels or Na(+),K(+)-ATPase activity were observed during saline infusion. This study demonstrates an effect of human proinsulin C-peptide on microvascular function, which might be mediated by an increase in NO production and an activation of the erythrocyte Na(+),K(+)-ATPase. These mechanisms are compatible with the previous observed microvascular effects of C-peptide in patients with type I diabetes.  相似文献   

3.
本研究通过检测哇巴因与特异性信号通路抑制剂联用对多种白血病细胞株生长的影响,探讨哇巴因诱导白血病细胞增殖及凋亡的信号传导途径。采用MTT法检测哇巴因与特异性信号通路抑制剂对多种白血病细胞株存活率的影响,用RT-PCR与Western blot检测白血病细胞株钠钾ATP酶α1亚单位表达水平的变化。结果显示:在低浓度的哇巴因(10nmol/L)作用下,Jhhan和M07e细胞株存活率均呈上升趋势,细胞株中钠钾ATP酶α1亚单位表达升高,PP2、PD98059能不同程度地抑制哇巴因对白血病细胞株的促增殖作用。结论:钠钾ATP酶具有重要的信号传导功能,它能通过特异性结合哇巴因激活多种信号通路调节白血病细胞的生长。哇巴因对白血病细胞的促增殖效应与Src激酶、ERK1/2等信号通路活化有关。  相似文献   

4.
Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte.   总被引:10,自引:7,他引:3       下载免费PDF全文
The enzyme Na+,5+-ATPase was cytochemically localized in the rat hepatocyte by a modification of the Ernst potassium-dependent nitrophenyl phosphatase technique. Measurement of nitrophenol release from 50-micrometer liver slices confirmed the presence of ouabain-inhibitable nitrophenyl phosphatase activity that increased over the 30-min incubation period. Electron micrographs demonstrated that sinusoidal and lateral membrane reaction product deposition was K+-dependent, Mg++-dependent, inhibited by ouabain but not by alkaline phosphatase inhibitors, and was localized to the cytoplasmic side of the membrane. In contrast, canalicular reaction product was K+-independent, Mg++-dependent, inhibited by alkaline phosphatase inhibitors but not by ouabain, and was localized to the luminal side of the membrane. These findings indicate that Na+,K+-ATPase is localized to the sinusoidal and lateral portions of the rat hepatocyte plasma membrane and is not detectable on the bile canaliculus where alkaline phosphatase is confined. This basolateral localization of Na+,K+-ATPase is similar to that found in epithelia where secretion is also directed across the apical membrane.  相似文献   

5.
The outer medullary collecting duct (OMCD) plays an important role in acid-base homeostasis by two luminal proton ATPases, H(+)-ATPase and H(+)-K(+)-ATPase (HKA), both of which are in the intercalated cells (ICs) of OMCD. We showed previously that HKAalpha1 (gastric H(+)-K(+)-ATPase) activity is the essential H(+)-K(+)-ATPase activity under normal conditions, and that HKAalpha2 (colonic H(+)-K(+)-ATPase) is induced and mediates increased proton-secretion under K-depleted conditions. To better understand the role of H(+)-ATPase (potassium-independent) in acid secretion and the relationship between H(+)-ATPase and a specific HKA isoform, we examined H(+)-ATPase activity in the H(+)-K(+)-ATPasealpha1 knockout (KO) mice under normal and K-depleted conditions. Mice were fed a potassium-free diet and studied after 7 days. Segments of the OMCD were perfused in vitro, and intracellular pH (pH(i)) was measured by ratiometric fluorescence microscopy using the pH-sensitive indicator BCECF-AM. The isolated OMCD tubules obtained from mice fed a potassium-free diet were examined by fluorescent immunocytochemistry with an antibody to the 31-kDa subunit of H(+)-ATPase (E-11) and were compared with those obtained from a normal diet. In the absence of Na(+) and K(+), the H(+)-ATPase-mediate pH(i) recovery rates were 6.7 +/- 1.1 x 10(-4) units/s (n = 7 ICs) in wild-type (WT) mice and increased to 8.7 +/- 1.8 x 10(-4) (P < 0.05; n = 6) in HKAalpha1 KO mice. K-independent proton transport activity was significantly inhibited by the H(+)-ATPase inhibitor bafilomycin A(1) (BAF, 10 nM) with luminal applied in both WT and KO mice. Comparison of the results indicated upregulation of BAF-sensitive H(+)-ATPase activity in KO mice. To determine the intracellular localization of H(+)-ATPase in the intercalated cells of OMCD, we dissected the OMCD and performed fluorescent immunocytochemistry with the H(+)-ATPase antibody in the WT and KO mice. In the WT mice, on normal diet, H(+)-ATPase staining distributed diffusely throughout the intercalated cells and was slightly polarized to the apical plasma membrane in the KO mice, consistent with increase in the H(+)-ATPase-mediate pH(i) recovery in the KO mice. One week of a potassium-free diet resulted in a significant increase in the degree of H(+)-ATPase polarization at the apical plasma membrane in both WT and KO mice. Hypokalemia stimulates H(+)-ATPase in the intercalated cells of OMCD of both WT and KO mice. The enhanced activity of H(+)-ATPase plays an important role in compensatory proton secretion in the HKAalpha1 KO mice under normal conditions.  相似文献   

6.
Current selection markers allow selection by antibiotics or fluorescent/magnetic sorting by green fluorescent protein or membrane antigens. Antibiotic selection proceeds on a time scale of weeks, and flourescence-activated cell sorting requires complex equipment and may generate false-positive results when selection is performed too early after transduction with membrane markers. We have characterized an endogenous eukaryotic selection marker, the ouabain resistance gene (Oua(r)), which has the potential for quick and efficient in vitro selection of target cells. The Oua(r) used by us is derived from the rat alpha(1) isoform of Na(+),K(+)-ATPase, where leucine at position 799 is substituted for cysteine by targeted mutagenesis. This mutation confers resistance to more than 1 mM ouabain in vitro. We show that cells transfected with plasmid or transduced with a retrovirus vector encoding Oua(r) can be selected efficiently with ouabain in 48 hr and that a pure population of cells can be obtained. The ouabain resistance gene may be useful as a selection marker in general molecular biology, preclinical, and clinical applications because of its short selection time and also because of the safety of ouabain for human use.  相似文献   

7.
We reported that feeding rats 8% protein for 3 wk induces net urea transport and morphologic changes in initial inner medullary collecting ducts (IMCDs) which are not present in rats fed 18% protein. In this study, we measured net urea transport in microperfused initial IMCDs from rats fed 8% protein for > or = 3 wk and tested the effect of inhibiting Na+/K(+)-ATPase activity and found that adding 1 mM ouabain to the bath reversibly inhibited net urea transport from 14 +/- 3 to 6 +/- 2 pmol/mm per min (P < 0.01), and that replacing potassium (with sodium) in the bath reversibly inhibited net urea transport from 18 +/- 3 to 5 +/- 0 pmol/mm per min (P < 0.01). Replacing perfusate sodium with N-methyl-D-glucamine reversibly inhibited net urea transport from 12 +/- 2 to 0 +/- 1 pmol/mm per min (P < 0.01), whereas replacing bath sodium had no significant effect on net urea transport. Adding 10 nM vasopressin to the bath exerted no significant effect on net urea transport. Finally, we measured Na+/K(+)-ATPase activity in initial and terminal IMCDs from rats fed 18% or 8% protein and found no significant difference in either subsegment. Thus, net urea transport in initial IMCDs from rats fed 8% protein for > or = 3 wk requires sodium in the lumen, is reduced by inhibiting Na+/K(+)-ATPase, and is unchanged by vasopressin or phloretin. These results suggest that net urea transport may occur via a novel, secondary active, sodium-urea cotransporter.  相似文献   

8.
Net HCO3- transport in the rabbit kidney cortical collecting duct (CCD) is mediated by simultaneous H+ secretion and HCO3- secretion, most likely occurring in a alpha- and beta-intercalated cells (ICs), respectively. The polarity of net HCO3- transport is shifted from secretion to absorption after metabolic acidosis or acid incubation of the CCD. We investigated this adaptation by measuring net HCO3- flux before and after incubating CCDs 1 h at pH 6.8 followed by 2 h at pH 7.4. Acid incubation always reversed HCO3- flux from net secretion to absorption, whereas incubation for 3 h at pH 7.4 did not. Inhibition of alpha-IC function (bath CL- removal or DIDS, luminal bafilomycin) stimulated net HCO3- secretion by approximately 2 pmol/min per mm before acid incubation, whereas after incubation these agents inhibited net HCO3- absorption by approximately 5 pmol/min per mm. Inhibition of beta-IC function (luminal Cl- removal) inhibited HCO3- secretion by approximately 9 pmol/min per mm before incubation, whereas after incubation HCO3- absorption by only 3 pmol/min per mm. After acid incubation, luminal SCH28080 inhibited HCO3- absorption by only 5-15% vs the circa 90% inhibitory effect of bafilomycin. In outer CCDs, which contain fewer alpha-ICs than midcortical segments, the reversal in polarity of HCO3- flux was blunted after acid incubation. We conclude that the CCD adapts to low pH in vitro by downregulation HCO3- secretion in beta-ICs via decreased apical CL-/base exchang activity and upregulating HCO3- absorption in alpha-ICs via increased apical H+ -ATPase and basolateral CL-/base exchange activities. Whether or not there is a reversal of IC polarity or recruitment of gamma-ICs in this adaptation remains to be established.  相似文献   

9.
We investigated the effect of the phytoestrogen cimicifugoside, one of the pharmacologically active ingredients of the medicinal plant Cimicifuga racemosa (black cohosh) that has been used to treat many kinds of neuronal and menopausal symptoms, such as arthritis, menopausal depression, and nerve pain. Cimicifugoside inhibited calcium increase induced by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), a nicotinic acetylcholine receptor (nAChR) agonist in bovine adrenal chromaffin cells with a half-maximal inhibitory concentration (IC(50)) of 18 +/- 2 microM. In contrast, cimicifugoside did not affect the calcium increases evoked by high K(+), veratridine, and bradykinin. The DMPP-induced sodium increase was also inhibited by cimicifugoside with an IC(50) of 2 +/- 0.3 microM, suggesting that the activity of nAChRs is inhibited by cimicifugoside. Cimicifugoside did not affect the KCl-induced secretion but markedly inhibited the DMPP-induced catecholamine secretion that was monitored by carbon-fiber amperometry in real time and high-performance liquid chromatography through electrochemical detection. The results suggest that cimicifugoside selectively inhibits nAChR-mediated response in bovine chromaffin cells.  相似文献   

10.
Monoclonal antibodies (mAbs) specific for the murine p55 and p75 tumor necrosis factor (TNF) receptors were produced after immunization of Armenian hamsters with the purified soluble extracellular domains of each receptor protein. Four p55- (55R) and five p75 (TR75)-reactive mAbs immunoprecipitated the appropriate receptor from the surface of L929 cells. None of the mAbs cross-reacted with the other TNF receptor form. The mAbs were functionally characterized by their ability to inhibit ligand binding and influence TNF-dependent L cell cytolytic activity or proliferation of the murine cytolytic T cell clone CT6. One p55-specific mAb, 55R-593, displayed agonist activity, while two other p55-specific mAbs (55R-170 and -176) were found to be TNF antagonists. The fourth mAb (55R-286) had no functional effects on cells. Several antibodies specific for the p75 TNF receptor partially inhibited recombinant murine TNF-alpha-dependent cytolytic activity (60%). Blocking mAbs specific for p75 but not anti-p55 inhibited TNF-mediated proliferation of CT6 T cells. When used in vivo, p55- but not p75- specific mAbs protected mice from lethal endotoxin shock and blocked development of a protective response against Listeria monocytogenes infection. In contrast, both p55 and p75 mAbs individually blocked development of skin necrosis in mice treated with murine TNF-alpha. These data thus demonstrate the utility of the two families of murine TNF receptor-specific mAbs and identify a novel function of the p75 TNF receptor in vivo.  相似文献   

11.
Antibodies with high affinity and specificity for the cardiac glycoside ouabain were raised in rabbits. The antigen used was a conjugate of ouabain linked through its rhamnose moiety to terminal alpha-amino groups of poly D,L alanyl-human serum albumin. Ouabain-specific antibodies were present as early as 3 wk, and rose steadily in titer over the initial 20-33 wk of immunization. Levels as high as 6.5 mg specific immunoglobulin per ml antiserum were reached in one rabbit at the end of 45 wk. The average intrinsic association constants for ouabain were 1.3 x 10(9) M(-1) and 1.6 x 10(9) M(-1) in antisera studied in detail, and there was evidence of restricted heterogeneity of binding site affinities. A high degree of specificity was demonstrated. Significant cross-reactivity occurred only with other cardioactive steroid compounds such as acetyl strophanthidin, digoxin, and digitoxin, while endogenous steroids did not cross-react even when present in 1000-fold excess. A rapid and convenient radioimmunoassay procedure for plasma or urine ouabain concentrations was developed using these antibodies. Competition between ouabain-(3)H tracer and unlabeled ouabain for specific antibody binding sites allowed the measurement of ouabain concentrations as low as 0.1 ng/ml or less without need for extraction procedures. The high association constants observed in these studies permit antibody reversal of established myocardial effects of ouabain. Both blockade and reversal of ouabain inhibition of canine myocardial microsomal Na(+), K(+)-activated ATPase by antibody were documented, suggesting a possible mechanism for reversal of cellular effects.  相似文献   

12.
The effects of ischemia on the canine myocardial (Na+ + K+)-ATPase complex were examined in terms of alterations in cardiac glycoside binding and enzymatic activity. Ability of the myocardial cell to bind tritiated ouabain in vivo was assessed after 1, 2, and 6 h of coronary occlusion followed by 45 min of reperfusion, and correlated with measurements of in vitro (Na+ + K+)-ATPase activity and in vitro [3H]ouabain binding after similar periods of ischemia. Regional blood flow alterations during occlusion and reperfusion were simultaneously determined utilizing 15 mum radioactive microspheres to determine the degree to which altered binding of ouabain might be flow related. Anterior wall infarction was produced in 34 dogs by snaring of confluent branches of the left coronary system. Epicardial electrograms delineated ischemic and border zone areas. Coronary reperfusion after 2 and 6 h of occlusion was associated with impaired reflow of blood and markedly impaired uptake of [3H]ouabain in ischemic myocardium. In both groups, in vivo [3H]ouabain binding by ischemic tissue was reduced out of proportion to the reduction in flow. Despite near-complete restoration of flow in seven dogs occluded for 1 h and reperfused, [3H]ouabain remained significantly reduced to 58 +/- 9% of nonischemic uptake in subendocardial layers of the central zone of ischemia. Thus, when coronary flow was restored to areas of myocardium rendered acutely ischemia for 1 or more hours, ischemic zones demonstrated progressively diminished ability to bind ouabain. To determine whether ischemia-induced alteration in myocardial (Na+ + K+)-ATPase might underlie these changes, (Na+ + K+)-ATPase activity and [3H]ouabain binding were measured in microsomal fractions from ischemic myocardium after 1, 2, and 6 h of coronary occlusion. In animals occluded for 6 h, (Na+ + K+)-ATPase activity was significantly reduced by 40% in epicardial and by 35% in endocardial layers compared with nonischemic myocardium. Comparable reductions in in vitro [3H]ouabain binding were also demonstrated. Reperfusion for 45 min after occlusion for 6 h resulted in no significant restoration of enzyme activity when compared to the nonreperfused animals. In six animals occluded for 2 h, a time at which myocardial creatine phosphokinase activity remains unchanged, (Na+ + K+)-ATPase activity was reduced by 25% compared with nonischemic enzyme activity. In five dogs occluded for 1 h, (Na+ + K+)-ATPase activity in ischemic myocardium was unchanged from control levels. We conclude that reduced regional myocardial blood flow, local alterations in cellular milieu, and altered glycoside-binding properties of (Na+ + K+)-ATPase all participate in the reduction of cardiac glycoside binding observed after reperfusion of ischemic myocardium. In addition, after 2 or more hours of severe ischemia, myocardial (Na+ + K+)-ATPase catalytic activity is significantly reduced despite incubation in the presence of optimal substrate concentrations.  相似文献   

13.
The acitvities of sodium-potassium-activated adenosine triphosphatase (Na+,K+-activated ATPase) and ouabain-inhibited, sodium-potassium-activated adensoine triphosphatase (Na+,K+-ATPase) in subcellular fractions of guinea-pig and rat vasa deferentia were compared to determine whether the ineffectiveness of ouabain and reduced extracellular potassium in the rat vas deferens observed in the preceding paper occurs because of a relatively low level of Na+,K+-ATPase and/or an insensitivity to ouabain. The results indicate that the specific and total activities of Na+,K+-activated ATPase and Na+,K+-ATPase (i.e., the transport enzyme) in the individual subcellular fractions and in the tissue were higher in the vas deferens of the rat than in the guinea pig. The percentage of inhibition of Na+,K+-activated activity by ouabain (8 x 10(-5) M) varied in the subcellular fractions; it was higher in the guinea-pig (range 31--87%) than in the rat (nonsignificant effect to 40%). A greater percentage of total Na+K+- activated ATPase activity was inhibited in the vas deferens of the guinea pig (56%) than the rat (30%). Differences in the effects of lowered extracellular potassium concentration or ouabain on resting membrane potential (preceding paper) are apparently unrelated to the amount of transport enzyme in the vasa deferentia or the two species, or to its relative sensitivity to ouabain.  相似文献   

14.
The effect of membrane excitability on (Na+ + K+)-adenosine triphosphatase (ATPase) was studied in rat brain slices. The treatment of the brain cortical slices with veratrine for more than 10 min caused a significant decrease of the (Na+ + K+)-ATPase activity. The similar inhibition of the enzyme by veratrine was observed in the hippocampus and hypothalamus, and the veratrine treatment did not affect the sensitivity of the cortical enzyme for ouabain inhibition. These findings suggest that two isozymes of (Na+ + K+)-ATPase are equally inhibited by the treatment. Veratrine inhibited the partial reactions such as Na+-dependent phosphorylation and K+-stimulated phosphatase as well as the specific binding of [3H]ouabain. Agents which increase intracellular Na+ concentration also inhibited the enzyme activity. The effects of veratrine were blocked by Na+-free medium or tetrodotoxin. Low Na+ medium decreased the enzyme activity, and the effect was blocked by amiloride or Ca++-free medium, indicating the involvement of Na+/Ca++ exchange in the inhibition. The decreased activity induced by low Na+ or high K+ medium was restored to the normal level by the subsequent incubation in normal medium. The inhibitory effect of veratrine was dependent on external Ca++, and was blocked by addition of W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide]. A23187 also decreased (Na+ + K+)-ATPase activity in the slices. High Mg++ medium blocked the effect of veratrine but not that of monensin which was not dependent on external Ca++.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
[3H]Ouabain binding to erythrocytes was determined in normal children and in children suffering from kwashiorkor or marasmus. Scatchard plot analysis of [3H]ouabain binding displayed straight lines with linear slopes in all subjects indicating the presence of a single species of ouabain binding sites on erythrocytes. The number of ouabain binding sites per cell was 385 +/- 26 (mean +/- SEM, n = 3) in normal, 891 +/- 102 (n = 8) (p less than 0.001) in kwashiorkor and 316 +/- 45 (n = 3) in marasmic children. The equilibrium dissociation constant (Kd) for ouabain binding in kwashiorkor (16 nmol/1) was similar to that in control (12 nmol/1). The specific activity of Na+, K+ -ATPase of erythrocyte membrane has been shown to be higher in kwashiorkor children as compared to normal children [3]. This increase in enzyme activity may be considered as a consequence of increase in the enzyme content as indicated by the increased number of ouabain binding sites on red cells. Elevation in the level and activity of erythrocyte Na+, K+ -ATPase in kwashiorkor might represent a compensatory mechanism in response to a primary membrane abnormality, to effect prevention of Na+ accumulation and K+ depletion inside the cell.  相似文献   

16.
There is increasing evidence that cardiac glycosides act through mechanisms distinct from inhibition of the sodium pump but which may contribute to their cardiac actions. To more fully define differences between agents indicative of multiple sites of action, we studied changes in contractility and action potential (AP) configuration in cat ventricular myocytes produced by six cardiac glycosides (ouabain, ouabagenin, dihydroouabain, actodigin, digoxin, and resibufogenin). AP shortening was observed only with ouabain and actodigin. There was extensive inotropic variability between agents, with some giving full inotropic effects before automaticity occurred whereas others produced minimal inotropy before toxicity. AP shortening was not a result of alterations in calcium current or the inward rectifier potassium current, but correlated with an increase in steady-state outward current (Iss), which was sensitive to KB-R7943, a Na+-Ca2+ exchange (NCX) inhibitor. Interestingly, Iss was observed following exposure to ouabain and dihydroouabain, suggesting that an additional mechanism is operative with dihydroouabain that prevents AP shortening. Further investigation into differences in inotropy between ouabagenin, dihydroouabain and ouabain revealed almost identical responses under AP voltage clamp. Thus all agents appear to act on the sodium pump and thereby secondarily increase the outward reverse mode NCX current, but the extent of AP duration shortening and positive inotropy elicited by each agent is limited by development of their toxic actions. The quantitative differences between cardiac glycosides suggest that mechanisms independent of sodium pump inhibition may result from an altered threshold for calcium overload possibly involving direct or indirect effects on calcium release from the sarcoplasmic reticulum.  相似文献   

17.
1. Calcium concentration and Ca(2+)-ATPase activity under basal conditions and after maximal stimulation with calmodulin were measured in erythrocytes from 32 patients with end-stage renal failure on haemodialysis and from 27 healthy subjects. 2. In patients with renal failure the Ca2+ concentration in erythrocytes was elevated compared with healthy subjects (4.27 +/- 1.02 versus 2.86 +/- 0.57 mumol/l, P less than 0.05). 3. Basal Ca(2+)-ATPase activity was lower in the patients with renal failure than in healthy subjects (4.62 +/- 1.34 versus 5.43 +/- 1.23 pmol of phosphate min-1 10(-6) erythrocytes). After maximal stimulation, Ca(2+)-ATPase activity reached 6.93 +/- 2.81 pmol of phosphate min-1 10(-6) erythrocytes in the patients with renal failure, whereas in healthy subjects stimulation yielded a Ca(2+)-ATPase activity of 32.54 +/- 8.48 pmol of phosphate min-1 10(-6) erythrocytes. 4. Incubation of erythrocytes from healthy subjects with plasma from uraemic patients caused inhibition of Ca(2+)-ATPase. Likewise, the ultrafiltrate from plasma obtained by haemofiltration treatment inhibited Ca(2+)-ATPase. 5. Gel chromatography of the ultrafiltrate and laser desorption/ionization mass spectroscopy revealed that a fraction containing substances with a molecular mass of about 300 Da inhibited Ca(2+)-ATPase. 6. It is concluded that, in uraemia, a Ca(2+)-ATPase inhibitor accumulates in the plasma, and this could contribute to the toxicity of uraemia by inhibiting cellular Ca2+ transport in erythrocytes and possibly other tissues.  相似文献   

18.
HEK 293 cells stably expressing the human serotonin transporter (hSERT) were grown on coverslips, preincubated with [(3)H]5-hydroxytryptamine (5-HT), and superfused. Substrates of the hSERT [e.g., p-chloroamphetamine (PCA)], increased the basal efflux of [(3)H]5-HT in a concentration-dependent manner. 5-HT reuptake blockers (e.g., imipramine, paroxetine) also raised [(3)H]5-HT efflux, reaching approximately one-third of the maximal effect of the hSERT substrates. In uptake experiments, both groups of substances inhibited [(3)H]5-HT uptake. Using the low-affinity substrate [(3)H]N-methyl-4-phenylpyridinium (MPP(+)) to label the cells in superfusion experiments, reuptake inhibitors failed to enhance efflux. Similar results were obtained using human placental choriocarcinoma (JAR) cells that constitutively express the hSERT at a low level. By contrast, PCA raised [(3)H]MPP(+) efflux in both types of cells, and its effect was inhibited by paroxetine. The addition of the Na(+),K(+)-ATPase inhibitor ouabain (100 microM) to the superfusion buffer enhanced basal efflux of [(3)H]5-HT-loaded hSERT cells by approximately 2-fold; the effect of PCA (10 microM) was strongly augmented by ouabain, whereas the effect of imipramine was not. The Na(+)/H(+) ionophore monensin (10 microM) also augmented the effect of PCA on efflux of [(3)H]5-HT as well as on efflux of [(3)H]MPP(+). In [(3)H]5-HT-labeled cells, the combination of imipramine and monensin raised [(3)H]5-HT efflux to a greater extent than either of the two substances alone. In [(3)H]MPP(+)-labeled cells, imipramine had no effect on its own and fully reversed the effect of monensin. The results suggest that the [(3)H]5-HT efflux caused by uptake inhibitors is entirely due to interrupted high-affinity reuptake, which is ongoing even under superfusion conditions.  相似文献   

19.
Efficient selection of gene-modified cells is required for a number of potential gene therapy applications, as well as molecular biology studies. Ideally, a clinical selection regimen would combine high selection speed, efficiency and efficacy, in addition to clinical grade selection techniques and low immunogenicity. To our knowledge, a selection marker satisfying all these features is so far not available. Ouabain is a clinically used cardiac glycoside and selective Na(+)/K(+)-ATPase inhibitor. On the basis of the high sensitivity of human Na(+)/K(+)-ATPase proteins to ouabain, and rapid killing of cells upon exposure, we have screened the ubiquitously expressed Na(+)/K(+)-ATPase alpha1 subunit for mutations that could greatly increase its resistance to ouabain. Two amino-acid substitutions, Q118R and N129D were sufficient to confer a two log greater resistance to ouabain in HeLa, Jurkat, U2OS cells and in primary cells. Furthermore, following transduction of primary lymphocytes with the alpha1(Q118R/N129D) gene, >99% pure populations of gene-modified cells were achieved with a recovery rate of >80% after 48 h of exposure to ouabain. These results identify the human alpha1(Q118R/N129D) (OuaSelect) as a promising selection marker gene for safe, rapid and cost-effective selection in clinical gene therapy and molecular biology research.  相似文献   

20.
The purpose of this work was to test the previously suggested hypothesis that the inhibitory effect of ouabain on lactate production in human red cells is due to an interaction between phosphoglycerate kinase and (Na+ + k+)-activated adenosine triphosphatase (Na+,K+ATPase). An antibody to red cell phosphoglycerate kingase caused complete inhibition of the purified enzyme, whereas a portion of the phophoglycerate kinase activity of the red cell membranes was resistant to the antibody. When increasing amounts of the purified enzyme were added to the membranes, the antibody-resistant portion of the activity increased. The effects of the antibody and ouabain on lactate production from fructose-6,6-diphosphate in red cell hemolysates were studied. Ouabain, at a maximally effective concentration, produced about 30% inhibition of lactate formation. This value was doubled in the presence of the antibody. Red cell membranes, and rat brain Na+,K+-ATPase, did not catalyze the hydrolysis of 1,3-diphosphoglycerate. Ouabain did not affect the reactions of the Rapport-Luebering pathway of the red cells. These findings provide further support for the view that in red cells a membrane pool of phosphoglycerate kinase is oriented in the vicinity of Na+,K+-ATPase in a way that the product of each enzyme may be used as the immediate substrate of the other and that ouabain inhibits glycolysis by removing the regulatory effect of Na+,K+-ATPase on that portion of glycolysis which is channeled through this pool of phosphoglycerate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号