首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Context:

Lower extremity injury often occurs during abrupt deceleration when attempting to change the body''s direction. Although sex-specific biomechanics have been implicated in the greater risk of acute knee injury in women than in men, it is unknown if sex differences in thigh strength affect sex-specific energy absorption and torsional joint stiffness patterns.

Objective:

To determine sex differences in energy absorption patterns and joint stiffnesses of the lower extremity during a drop jump and to determine if these sex differences were predicted by knee extensor and flexor strength.

Design:

Cross-sectional study.

Setting:

Laboratory environment.

Patients or Other Participants:

Recreationally active, college-aged students (41 women: age  =  22.1 ± 2.9 years, height  =  1.63 ± 0.07 m, mass  =  59.3 ± 8.0 kg; 40 men: age  =  22.4 ± 2.8 years, height  =  1.77 ± 0.1 m, mass  =  80.9 ± 14.1 kg).

Intervention(s):

Participants performed knee flexor and extensor maximal voluntary isometric contractions followed by double-leg drop-jump landings.

Main Outcome Measure(s):

Lower extremity joint energetics (J × N−1 × m−1) and torsional joint stiffnesses (Nm × N−1 × m−1 × degrees−1) were calculated for the hip, knee, and ankle during the initial landing phase. Body weight was measured in newtons and height was measured in meters. Sex comparisons were made and sex-specific regressions determined if thigh muscle strength (Nm/kg) predicted sagittal-plane landing energetics and stiffnesses.

Results:

Women absorbed 69% more knee energy and had 36% less hip torsional stiffness than men. In women, greater knee extensor strength predicted greater knee energy absorption (R2  =  0.11, P  =  .04), and greater knee flexor strength predicted greater hip torsional stiffness (R2  =  0.12, P  =  .03).

Conclusions:

Sex-specific biomechanics during the deceleration phase of a drop jump revealed that women used a strategy to attempt to decrease system stiffness. Additionally, only female strength values were predictive of landing energetics and stiffnesses. These findings collectively demonstrated that the task may have been more difficult for women, resulting in a different movement strategy among those with different levels of thigh strength to safely complete the task. Future researchers should look at other predictive factors of observed sex differences.  相似文献   

4.

BACKGROUND:

Patellofemoral Pain Syndrome is one of the most common knee disorders among physically active young women. Despite its high incidence, the multifactorial etiology of this disorder is not fully understood.

OBJECTIVES:

To investigate the influence of Patellofemoral Pain Syndrome on plantar pressure distribution during the foot rollover process (i.e., the initial heel contact, midstance and propulsion phases) of the gait.

MATERIALS AND METHODS:

Fifty-seven young adults, including 22 subjects with Patellofemoral Pain Syndrome (30 ± 7 years, 165 ± 9 cm, 63 ± 12 kg) and 35 control subjects (29 ± 7 years, 164 ± 8 cm, 60 ± 11 kg), volunteered for the study. The contact area and peak pressure were evaluated using the Pedar-X system (Novel, Germany) synchronized with ankle sagittal kinematics.

RESULTS:

Subjects with Patellofemoral Pain Syndrome showed a larger contact area over the medial (p = 0.004) and central (p = 0.002) rearfoot at the initial contact phase and a lower peak pressure over the medial forefoot (p = 0.033) during propulsion when compared with control subjects.

CONCLUSIONS:

Patellofemoral Pain Syndrome is related to a foot rollover pattern that is medially directed at the rearfoot during initial heel contact and laterally directed at the forefoot during propulsion. These detected alterations in the foot rollover process during gait may be used to develop clinical interventions using insoles, taping and therapeutic exercise to rehabilitate this dysfunction.  相似文献   

5.

Context:

With regard to intermittent training exercise, the effects of the mode of recovery on subsequent performance are equivocal.

Objective:

To compare the effects of 3 types of recovery intervention on peak torque (PT) and electromyographic (EMG) activity of the knee extensor muscles after fatiguing isokinetic intermittent concentric exercise.

Design:

Crossover study.

Setting:

Research laboratory.

Patients or Other Participants:

Eight elite judo players (age = 18.4 ± 1.4 years, height = 180 ± 3 cm, mass = 77.0 ± 4.2 kg).

Interventions :

Participants completed 3 randomized sessions within 7 days. Each session consisted of 5 sets of 10 concentric knee extensions at 80% PT at 120°/s, with 3 minutes of recovery between sets. Recovery interventions were passive, active, and electromyostimulation. The PT and maximal EMG activity were recorded simultaneously while participants performed isokinetic dynamometer trials before and 3 minutes after the resistance exercise.

Main Outcome Measure(s):

The PT and maximal EMG activity from the knee extensors were quantified at isokinetic velocities of 60°/s, 120°/s, and 180°/s, with 5 repetitions at each velocity.

Results:

The reduction in PT observed after electromyo-stimulation was less than that seen after passive (P < .001) or active recovery (P < .001). The reduction in PT was less after passive recovery than after active recovery (P < .001). The maximal EMG activity level observed after electromyostimulation was higher than that seen after active recovery (P < .05).

Conclusions:

Electromyostimulation was an effective recovery tool in decreasing neuromuscular fatigue after high-intensity, intermittent isokinetic concentric exercise for the knee extensor muscles. Also, active recovery induced the greatest amount of neuromuscular fatigue.  相似文献   

6.

Context:

Altered neuromuscular control strategies during fatigue probably contribute to the increased incidence of non-contact anterior cruciate ligament injuries in female athletes.

Objective:

To determine biomechanical differences between 2 fatigue protocols (slow linear oxidative fatigue protocol [SLO-FP] and functional agility short-term fatigue protocol [FAST-FP]) when performing a running-stop-jump task.

Design:

Controlled laboratory study.

Setting:

Laboratory.

Patients or Other Participants:

A convenience sample of 15 female soccer players (age = 19.2 ±0.8 years, height = 1.67±0.05m, mass = 61.7 + 8.1 kg) without injury participated.

Intervention(s):

Five successful trials of a running–stop-jump task were obtained prefatigue and postfatigue during the 2 protocols. For the SLO-FP, a peak oxygen consumption (V˙o2peak) test was conducted before the fatigue protocol. Five minutes after the conclusion of the V˙o2peak test, participants started the fatigue protocol by performing a 30-minute interval run. The FAST-FP consisted of 4 sets of a functional circuit. Repeated 2 (fatigue protocol) × 2 (time) analyses of variance were conducted to assess differences between the 2 protocols and time (prefatigue, postfatigue).

Main Outcome Measure(s):

Kinematic and kinetic measures of the hip and knee were obtained at different times while participants performed both protocols during prefatigue and postfatigue.

Results:

Internal adduction moment at initial contact (IC) was greater during FAST-FP (0.064 ±0.09 Nm/kgm) than SLO-FP (0.024±0.06 Nm/kgm) (F1,14 = 5.610, P=.03). At IC, participants had less hip flexion postfatigue (44.7°±8.1°) than prefatigue (50.1°±9.5°) (F1,14 = 16.229, P=.001). At peak vertical ground reaction force, participants had less hip flexion postfatigue (44.7°±8.4°) than prefatigue (50.4°±10.3°) (F1,14 = 17.026, P=.001). At peak vertical ground reaction force, participants had less knee flexion postfatigue (−35.9°±6.5°) than prefatigue (−38.8°±5.03°) (F1,14 = 11.537, P=.001).

Conclusions:

Our results demonstrated a more erect landing posture due to a decrease in hip and knee flexion angles in the postfatigue condition. The changes were similar between protocols; however, the FAST-FP was a clinically applicable 5-minute protocol, whereas the SLO-FP lasted approximately 45 minutes.  相似文献   

7.

Context:

Although strength training is commonly used to rehabilitate ankle injuries, studies investigating the effects of strength training on proprioception have shown conflicting results.

Objective:

To determine the effects of a 6-week strength-training protocol on force sense and strength development in participants with functional ankle instability.

Design:

Randomized controlled clinical trial.

Setting:

University athletic training research laboratory.

Patients or Other Participants:

A total of 40 participants with functional ankle instability were recruited. They were randomly placed into a training group (10 men, 10 women: age  =  20.9 ± 2.2 years, height  =  76.4 ± 16.1 cm, mass  =  173.0 ± 7.9 kg) or control group (10 men, 10 women: age  =  20.2 ± 2.1 years, height  =  78.8 ± 24.5 cm, mass  =  173.7 ± 8.2 kg).

Intervention(s):

Participants in the training group performed strength exercises with the injured ankle 3 times per week for 6 weeks. The protocol consisted of a combination of rubber exercise bands and the Multiaxial Ankle Exerciser, both clinically accepted strengthening methods for ankle rehabilitation. The progression of this protocol provided increasingly resistive exercise as participants changed either the number of sets or resistance of the Thera-Band or Multiaxial Ankle Exerciser.

Main Outcome Measure(s):

A load cell was used to measure strength and force sense. Inversion and eversion strength was recorded to the nearest 0.01 N. Force-sense reproduction was measured at 2 loads: 20% and 30% of maximal voluntary isometric contraction.

Results:

Increases in inversion (F1,38  =  11.59, P < 0.01, ηp2  =  0.23, power  =  0.91) and eversion (F1,38  =  57.68, P < .01, ηp2  =  0.60, power  =  0.99) strength were found in the training group at the posttest when compared with the control group. No significant improvements were noted in force-sense reproduction for either group.

Conclusions:

Strength training at the ankle increased strength but did not improve force sense.  相似文献   

8.

Context:

Recommendations on the positioning of the tibiofemoral joint during a valgus stress test to optimize isolation of the medial collateral ligament (MCL) from other medial joint structures vary in the literature. If a specific amount of flexion could be identified as optimally isolating the MCL, teaching and using the technique would be more consistent in clinical application.

Objective:

To determine the angle of tibiofemoral joint flexion between 0° and 20° that causes a difference in the slope of the force-strain line when measuring the resistance to a valgus force applied to the joint.

Design:

Cross-sectional study.

Setting:

University research laboratory.

Patients or Other Participants:

Twelve healthy volunteers (6 men, 6 women: age  =  26.4 ± 5.6 years, height  =  170.9 ± 8.4 cm, mass  =  75.01 ± 14.6 kg).

Intervention(s):

Using an arthrometer, we applied a valgus force, over a range of 60 N, to the tibiofemoral joint in 0°, 5°, 10°, 15°, and 20° of flexion.

Main Outcome Measure(s):

Force-strain measurements were obtained for 5 positions of tibiofemoral joint flexion.

Results:

As knee flexion angle increased, slope values decreased (F4,44  =  17.6, P < .001). The slope at full extension was not different from that at 5° of flexion, but it was different from the slopes at angles greater than 10° of flexion. Similarly, the slope at 5° of flexion was not different from that at 10° of flexion, but it was different from the slopes at 15° and 20° of flexion. Further, the slope at 10° of flexion was not different from that at 15° or 20° of flexion. Finally, the slope at 15° of flexion was not different from that at 20° of flexion.

Conclusions:

When performing the manual valgus stress test, the clinician should fully extend the tibiofemoral joint or flex it to 5° to assess all resisting medial tibiofemoral joint structures and again at 15° to 20° of joint flexion to further assess the MCL.  相似文献   

9.

OBJECTIVE:

To evaluate and compare rearfoot alignment and medial longitudinal arch index during static postures in runners, with and without symptoms and histories of plantar fasciitis (PF).

INTRODUCTION:

PF is the third most common injury in runners but, so far, its etiology remains unclear. In the literature, rearfoot misalignment and conformations of the longitudinal plantar arch have been described as risk factors for the development of PF. However, in most of the investigated literature, the results are still controversial, mainly regarding athletic individuals and the effects of pain associated with these injuries.

METHODS:

Forty-five runners with plantar fasciitis (30 symptomatic and 15 with previous histories of injuries) and 60 controls were evaluated. Pain was assessed by a visual analogue scale. The assessment of rearfoot alignment and the calculations of the arch index were performed by digital photographic images.

RESULTS:

There were observed similarities between the three groups regarding the misalignments of the rearfoot valgus. The medial longitudinal arches were more elevated in the group with symptoms and histories of PF, compared to the control runners.

CONCLUSIONS:

Runners with symptoms or histories of PF did not differ in rearfoot valgus misalignments, but showed increases in the longitudinal plantar arch during bipedal static stance, regardless of the presence of pain symptoms.  相似文献   

10.

Context:

Limited passive hamstring flexibility might affect kinematics, performance, and injury risk during running. Pre-activity static straight-leg raise stretching often is used to gain passive hamstring flexibility.

Objective:

To investigate the acute effects of a single session of passive hamstring stretching on pelvic, hip, and knee kinematics during the swing phase of running.

Design:

Randomized controlled clinical trial.

Setting:

Biomechanics research laboratory.

Patients or Other Participants:

Thirty-four male (age = 21.2 ± 1.4 years) and female (age = 21.3±2.0 years) recreational athletes.

Intervention(s):

Participants performed treadmill running pretests and posttests at 70% of their age-predicted maximum heart rate. Pelvis, hip, and knee joint angles during the swing phase of 5 consecutive gait cycles were collected using a motion analysis system. Right and left hamstrings of the intervention group participants were passively stretched 3 times for 30 seconds in random order immediately after the pretest. Control group participants performed no stretching or movement between running sessions.

Main Outcome Measure(s):

Six 2-way analyses of variance to determine joint angle differences between groups at maximum hip flexion and maximum knee extension with an α level of .008.

Results:

Flexibility increased between pretest and post-test in all participants (F1,30 = 80.61, P<.001). Anterior pelvic tilt (F1,30 = 0.73, P=.40), hip flexion (F1,30 = 2.44, P=.13), and knee extension (F1,30 = 0.06, P=.80) at maximum hip flexion were similar between groups throughout testing. Anterior pelvic tilt (F1,30 = 0.69, P=.41), hip flexion (F1,30 = 0.23, P=.64), and knee extension (F1,30 = 3.38, P=.62) at maximum knee extension were similar between groups throughout testing. Men demonstrated greater anterior pelvic tilt than women at maximum knee extension (F1,30 = 13.62, P=.001).

Conclusions:

A single session of 3 straight-leg raise hamstring stretches did not change pelvis, hip, or knee running kinematics.  相似文献   

11.
12.

Context:

The effects of fatigue on impact loading during running are unclear, with some authors reporting increased impact forces and others reporting decreased forces.

Objective:

To examine the effects of isokinetic fatigue on muscle cocontraction ratios about the knee and ankle during running.

Design:

Cross-sectional study.

Setting:

Neuromechanics laboratory.

Patients or Other Participants:

Female middle-distance runners (age  =  21.3 ± 1.93 years) with at least 5 years of training experience.

Intervention(s):

Participants ran on the treadmill at 3.61 m/s before and immediately after the fatigue protocol, which consisted of consecutive, concentric knee extension-flexion at 120°/s until they could no longer produce 30% of the maximum knee-extension moment achieved in the familiarization session for 3 consecutive repetitions.

Main Outcome Measure(s):

Electromyographic (EMG) amplitude of the vastus medialis (VM), biceps femoris (BF), gastrocnemius (GAS), and tibialis anterior (TA) was recorded using surface electrodes. Agonist∶antagonist EMG ratios for the knee (VM∶BF) and ankle (GAS∶TA) were calculated for the preactivation (PR), initial loading response (LR1), and late loading response (LR2) phases of running. Hip-, knee-, and ankle-joint angular displacements at initial foot contact were obtained from 3-dimensional kinematic tracings.

Results:

Fatigue did not alter the VM∶BF EMG ratio during the PR phase (P > .05), but it increased the ratio during the LR1 phase (P < .05). The GAS∶TA EMG ratio increased during the LR1 phase after fatigue (P < .05) but remained unchanged during the PR and LR2 phrases (P > .05).

Conclusions:

The increased agonist EMG activation, coupled with reduced antagonist EMG activation after impact, indicates that the acute decrease in muscle strength capacity of the knee extensors and flexors results in altered muscle-activation patterns about the knee and ankle before and after foot impact.  相似文献   

13.

Context:

Knee braces and neoprene sleeves are commonly worn by people with anterior cruciate ligament reconstructions (ACLRs) during athletic activity. How knee braces and sleeves affect muscle activation in people with ACLRs is unclear.

Purpose:

To determine the effects of knee braces and neoprene knee sleeves on the quadriceps central activation ratio (CAR) before and after aerobic exercise in people with ACLRs.

Design:

Crossover study.

Patients or Other Participants:

Fourteen people with a history of ACLR (9 women, 5 men: age = 23.61 ± 4.44 years, height = 174.09 ± 9.82 cm, mass = 75.35 ± 17.48 kg, months since ACLR = 40.62 ± 20.41).

Intervention(s):

During each of 3 sessions, participants performed a standardized aerobic exercise protocol on a treadmill. The independent variables were condition (brace, sleeve, or control) and time (baseline, pre-exercise with brace, postexercise with brace, postexercise without brace).

Main Outcome Measure(s):

Normalized torque measured during a maximal voluntary isometric contraction (TMVIC) and CAR were measured by a blinded assessor using the superimposed burst technique. The CAR was expressed as a percentage of full muscle activation. The quadriceps CAR and TMVIC were measured 4 times during each session: baseline, pre-exercise with brace, postexercise with brace, and postexercise without brace.

Results:

Immediately after the application of the knee brace, TMVIC decreased (P = .01), but no differences between bracing conditions were observed. We noted reduced TMVIC and CAR (P < .001) after exercise, both with and without the brace. No differences were seen between bracing conditions after aerobic exercise.

Conclusions:

The decrease in TMVIC immediately after brace application was not accompanied by differences between bracing conditions. Wearing a knee brace or neoprene sleeve did not seem to affect the deterioration of quadriceps function after aerobic exercise.  相似文献   

14.

Context:

The relationship between lower extremity alignment and lower extremity injury risk remains poorly understood, perhaps because most authors have examined only individual or a select group of alignment variables. Examining the relationships among alignment variables may allow us to more accurately describe lower extremity posture and clarify the relationship between lower extremity alignment and injury risk in future studies.

Objective:

To measure lower extremity alignment variables and examine whether relationships could be identified among these variables.

Design:

Observational study.

Setting:

Laboratory.

Patients or Other Participants:

Two hundred eighteen (102 males: age  =  23.1 ± 3.2 years, height  =  177.3 ± 8.4 cm, mass  =  80.8 ± 13.0 kg; 116 females: age  =  21.8 ± 2.7 years, height  =  163.5 ± 7.4 cm, mass  =  63.4 ± 12.4 kg) healthy, college-aged participants.

Main Outcome Measure(s):

We measured pelvic angle, femoral anteversion, quadriceps angle, tibiofemoral angle, genu recurvatum, and tibial torsion to the nearest degree and navicular drop to the nearest millimeter on the right and left lower extremities. Separate principal components factor analyses were performed for each sex and side (left, right).

Results:

A distinct lower extremity factor was identified, with relationships observed among increased pelvic angle, increased quadriceps angle, and increased tibiofemoral angle. A second distinct lower extremity factor was identified, with relationships observed among increased supine genu recurvatum, decreased tibial torsion, and increased navicular drop. Femoral anteversion loaded as an independent third factor. These distinct lower extremity alignment factors were consistent across side and sex.

Conclusions:

Factor analysis identified 3 distinct lower extremity alignment factors that describe the potential interactions among lower extremity alignment variables. Future authors should examine how these collective alignment variables, both independently and in combination, influence dynamic knee function and risk for lower extremity injuries.  相似文献   

15.

OBJECTIVE:

This study sought to determine the serum aminotransferase levels of patients with predialysis chronic kidney disease and establish their relationships with serum creatinine levels and glomerular filtration rate.

METHODS:

Patients with chronic kidney disease were evaluated between September 2011 and May 2012. Aminotransferase and creatinine serum levels were measured using an automated kinetic method, and glomerular filtration rates were estimated using the Cockroft-Gault and Modification of Diet in Renal Disease formulas to classify patients into chronic kidney disease stages.

RESULTS:

Exactly 142 patients were evaluated (mean age: 64±16 years). The mean creatinine serum level and glomerular filtration rate were 3.3±1.2 mg/dL and 29.1±13 mL/min/1.73 m2, respectively. Patients were distributed according to their chronic kidney disease stages as follows: 3 (2.1%) patients were Stage 2; 54 (38%) were Stage 3; 70 (49.3%) were Stage 4; and 15 (10.5%) were Stage 5. The mean aspartate aminotransferase and alanine aminotransferase serum levels showed a reduction in proportion to the increase in creatinine levels (p=0.001 and p=0.05, respectively) and the decrease in glomerular filtration rate (p=0.007 and p=0.028, respectively). Alanine aminotransferase and aspartate aminotransferase serum levels tended to be higher among patients classified as stage 2 or 3 compared with those classified as stage 4 or 5 (p=0.08 and p=0.06, respectively).

CONCLUSIONS:

The aspartate aminotransferase and alanine aminotransferase serum levels of patients with predialysis chronic kidney disease decreased in proportion to the progression of the disease; they were negatively correlated with creatinine levels and directly correlated with glomerular filtration rate.  相似文献   

16.

Context:

Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking.

Objective:

To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS.

Design:

Randomized controlled trial.

Setting:

University laboratory.

Patients or Other Participants:

A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n  =  15) or control (n  =  17) group.

Intervention(s):

Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group.

Main Outcome Measure(s):

Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise.

Results:

The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05).

Conclusions:

Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes.  相似文献   

17.

Context:

Resistance exercise training commonly is performed against a constant external load (isotonic) or at a constant velocity (isokinetic). Researchers comparing the effectiveness of isotonic and isokinetic resistance-training protocols need to equalize the mechanical stimulus (work and velocity) applied.

Objective:

To examine whether the standardization protocol could be adjusted and applied to an eccentric training program.

Design:

Controlled laboratory study.

Setting:

Controlled research laboratory.

Patients or Other Participants:

Twenty-one sport science male students (age = 20.6 ± 1.5 years, height = 178.0 ± 4.0 cm, mass = 74.5 ± 9.1 kg).

Intervention(s):

Participants performed 9 weeks of isotonic (n = 11) or isokinetic (n = 10) eccentric training of knee extensors that was designed so they would perform the same amount of angular work at the same mean angular velocity.

Main Outcome Measure(s):

Angular work and angular velocity.

Results:

The isotonic and isokinetic groups performed the same total amount of work (−185.2 ± 6.5 kJ and −184.4 ± 8.6 kJ, respectively) at the same angular velocity (21 ± 1°/s and 22°/s, respectively) with the same number of repetitions (8.0 and 8.0, respectively). Bland-Altman analysis showed that work (bias = 2.4%) and angular velocity (bias = 0.2%) were equalized over 9 weeks between the modes of training.

Conclusions:

The procedure developed allows angular work and velocity to be standardized over 9 weeks of isotonic and isokinetic eccentric training of the knee extensors. This method could be useful in future studies in which researchers compare neuromuscular adaptations induced by each type of training mode with respect to rehabilitating patients after musculoskeletal injury.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号