首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effectiveness of wet grinding (wet dust reduction method) and ventilated grinding (local exhaust ventilation method, LEV) in reducing the levels of respirable crystalline silica dust (quartz) and respirable suspended particulate matter (RSP) were compared with that of uncontrolled (no dust reduction method) conventional grinding. A field laboratory was set up to simulate concrete surface grinding using hand-held angle grinders in an enclosed workplace. A total of 34 personal samples (16 pairs side-by-side and 2 singles) and 5 background air samples were collected during 18 concrete grinding sessions ranging from 15-93 min. General ventilation had no statistically significant effect on operator's exposure to dust. Overall, the arithmetic mean concentrations of respirable crystalline silica dust and RSP in personal air samples during: (i) five sessions of uncontrolled conventional grinding were respectively 61.7 and 611 mg/m(3) (ii) seven sessions of wet grinding were 0.896 and 11.9 mg/m(3) and (iii) six sessions of LEV grinding were 0.155 and 1.99 mg/m(3). Uncontrolled conventional grinding generated relatively high levels of respirable silica dust and proportionally high levels of RSP. Wet grinding was effective in reducing the geometric mean concentrations of respirable silica dust 98.2% and RSP 97.6%. LEV grinding was even more effective and reduced the geometric mean concentrations of respirable silica dust 99.7% and RSP 99.6%. Nevertheless, the average level of respirable silica dust (i) during wet grinding was 0.959 mg/m(3) (38 times the American Conference of Governmental Industrial Hygienists [ACGIH] threshold limit value [TLV] of 0.025 mg/m(3)) and (ii) during LEV grinding was 0.155 mg/m(3) (6 times the ACGIH TLV). Further studies are needed to examine the effectiveness of a greater variety of models, types, and sizes of grinders on different types of cement in different positions and also to test the simulated field lab experimentation in the field.  相似文献   

2.
Ojima J 《Industrial health》2007,45(6):817-819
In general, control of metal dust from hand-held disk grinders is difficult because such respirable dust tends to disperse in every direction around the grinding wheel and cannot be captured effectively by a conventional exhaust hood. The author described the application of a custom-made tool-mounted local exhaust ventilation (LEV) system attached to a hand-held disk grinder, and by laboratory experiments assessed its effectiveness at dust control. The effectiveness of the LEV for dust control was assessed by determining the respirable dust concentration around the grinding wheel during metal surface grinding with and without the use of the LEV. It was shown that the average respirable grinding dust concentration decreased from 7.73 mg/m(3) with the LEV off to 4.87 mg/m(3) with the LEV on, a mean dust generation reduction of about 37%.  相似文献   

3.
This study assessed the effectiveness of commercially available local exhaust ventilation (LEV) systems for controlling respirable dust and crystalline silica exposures during concrete cutting and grinding activities. Work activities were performed by union-sponsored apprentices and included tuck-point grinding, surface grinding, paver block and brick cutting (masonry saw), and concrete block cutting (hand-held saw). In a randomized block design, implemented under controlled field conditions, three ventilation rates (0, 30, and 75 cfm) were tested for each tool. Each ventilation treatment was replicated three times in random order for a total of nine 15-min work sessions per study subject. With the exception of the hand-held saw, the use of LEV resulted in a significant (p < 0.05) reduction in respirable dust exposure. Mean exposure levels for the 75 cfm treatments were less than that of the 30 cfm treatments; however, differences between these two treatments were only significant for paver block cutting (p < 0.01). Although exposure reduction was significant (70-90% at the low ventilation rate and 80-95% reduction at the high ventilation rate), personal respirable dust [corrected] exposures remained very high: 1.4-2.8 x PEL (permissible exposure limit) at the low ventilation rate and 0.9-1.7 x PEL at the high ventilation rate. Exposure levels found under actual field conditions would likely be lower due to the intermittent nature of most job tasks. Despite incomplete control LEV has merit, as it would reduce the risk of workers developing disease, allow workers to use a lower level of respiratory protection, protect workers during short duration work episodes reduce exposure to nearby workers, and reduce clean-up associated dust exposures.  相似文献   

4.
Studies reporting the findings of exposure to crystalline silica dust during concrete finishing in construction settings are scarce due to the dynamic nature of the activity and the existence of many confounding factors. This study was initiated to explore the issue. A total of 49 personal respirable dust samples were collected during concrete finishing while workers used hand-held grinders. Only 15 (31%) of the grinders were equipped with local exhaust ventilation (LEV) systems. The confounding factors (e.g. wind velocity, wind direction, relative humidity and ambient temperature) were determined. To make the sampling task-specific, air sampling was activated only during actual grinding. Task-specific sampling times during each work shift ranged from 10 to 200 min. The concentration of total respirable particulate ranged from 0.34 to 81 mg/m3, with a mean +/- SD of 18.6 +/- 20.4 mg/m3, and the concentration of crystalline silica in the samples ranged from 0.02 to 7.1 mg/m3, with a mean +/- SD of 1.16 +/- 1.36 mg/m3. LEV on the grinders reduced the silica dust level significantly (P < 0.01) compared to grinders without LEV. Increased wind velocity also reduced the silica dust concentration significantly (P < 0.03). Working upwind reduced the exposure to silica dust compared to working downwind, but the difference was not statistically significant. The time-weighted average concentration of silica dust in 69% of the samples exceeded the current recommended threshold limit value of 0.05 mg/m3, indicating a strong need to devise methods for controlling workers' exposure to crystalline silica dust during concrete finishing activities.  相似文献   

5.
This study assessed the effectiveness of a commercially available local exhaust ventilation (LEV) system for controlling respirable dust and crystalline silica exposures during concrete grinding activities. Surface grinding was conducted at six commercial building construction sites in Seattle, WA, by cement masons. Time-integrated filter samples and direct reading respirable dust concentrations were collected using a cyclone in line with a direct reading respirable dust monitor. Personal exposure levels were determined with and without LEV, one sample directly after the other. A total of 28 paired samples were collected in which three different dust collection shroud configurations were tested. Data obtained with a direct reading respirable dust monitor were adjusted to remove non-work task-associated dust exposures and was subsequently used to calculate the exposure reduction achieved. The application of LEV resulted in a reduction in the overall geometric mean respirable dust exposure from 4.5 to 0.14 mg/m(3), a mean exposure reduction of 92%. Despite the effective control of dust generated during surface grinding, 22 and 26% of the samples collected while LEV was being used were greater than the 8 h time-weighted average permissible exposure limit (Occupational Safety and Health Administration) and threshold limit value (American Congress of Governmental Industrial Hygienists) for respirable crystalline silica, respectively.  相似文献   

6.
This study characterized exposure for dust-producing construction tasks. Eight common construction tasks were evaluated for quartz and respirable dust exposure by collecting 113 personal task period samples for cleanup; demolition with handheld tools; concrete cutting; concrete mixing; tuck-point grinding; surface grinding; sacking and patching concrete; and concrete floor sanding using both time-integrating filter samples and direct-reading respirable dust monitors. The geometric mean quartz concentration was 0.10 mg/m(3) (geometric standard deviation [GSD]=4.88) for all run time samples, with 71% exceeding the threshold limit value. Activities with the highest exposures were surface grinding, tuck-point grinding, and concrete demolition (GM[GSD] of 0.63[4.12], 0.22[1.94], and 0.10[2.60], respectively). Factors recorded each minute were task, tool, work area, respiratory protection and controls used, estimated cross draft, and whether anyone nearby was making dust. Factors important to exposure included tool used, work area configuration, controls employed, cross draft, and in some cases nearby dust. More protective respirators were employed as quartz concentration increased, although respiratory protection was found to be inadequate for 42% of exposures. Controls were employed for only 12% of samples. Exposures were reduced with three controls: box fan for surface grinding and floor sanding, and vacuum/shroud for surface grinding, with reductions of 57, 50, and 71%, respectively. Exposures were higher for sweeping compound, box fan for cleanup, ducted fan dilution, and wetted substrate. Construction masons and laborers are frequently overexposed to silica. The usual protection method, respirators, was not always adequate, and engineering control use was infrequent and often ineffective.  相似文献   

7.
Concrete grinding exposes workers to unacceptable levels of crystalline silica dust, known to cause diseases such as silicosis and possibly lung cancer. This study examined the influence of major factors of exposure and effectiveness of existing dust control methods by simulating field concrete grinding in an enclosed workplace laboratory. Air was monitored during 201 concrete grinding sessions while using a variety of grinders, accessories, and existing dust control methods, including general ventilation (GV), local exhaust ventilation (LEV), and wet grinding. Task-specific geometric mean (GM) of respirable crystalline silica dust concentrations (mg/m3 for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled-grinding, while GV was off/on, were 0.17/0.09, 0.57/0.13, 1.11/0.44, and 23.1/6.80, respectively. Silica dust concentrations (mg/m3 using 100-125 mm (4-5 inch) and 180 mm (7 inch) grinding cups were 0.53/0.22 and 2.43/0.56, respectively. GM concentrations of silica dust were significantly lower for (1) GV on (66.0%) vs. off, and (2) LEV:HEPA- (99.0%), LEV:Shop-vac- (98.1%) or wet- (94.4%) vs. uncontrolled-grinding. Task-specific GM of respirable suspended particulate matter (RSP) concentrations (mg/m3 for LEV:HEPA-, LEV:Shop-vac-, wet-, and uncontrolled grinding, while GV was off/on, were 1.58/0.63, 7.20/1.15, 9.52/4.13, and 152/47.8, respectively. GM concentrations of RSP using 100-125 mm and 180 mm grinding cups were 4.78/1.62 and 22.2/5.06, respectively. GM concentrations of RSP were significantly lower for (1) GV on (70.2%) vs. off, and (2) LEV:HEPA- (98.9%), LEV:Shop-vac- (96.9%) or wet- (92.6%) vs. uncontrolled grinding. Silica dust and RSP were not significantly affected by (1) orientation of grinding surfaces (vertical vs. inclined); (2) water flow rates for wet grinding; (3) length of task-specific sampling time; or, (4) among cup sizes of 100, 115 or 125 mm. No combination of factors or control methods reduced an 8-hr exposure level to below the recommended criterion of 0.025 mg/m3 for crystalline silica, requiring further refinement in engineering controls, administrative controls, or the use of respirators.  相似文献   

8.
Exposure to silica dust was studied in the grinding of castings in a steel foundry that used conventional personal sampling methods and new real-time sampling techniques developed for the identification of high-exposure tasks and tools. Approximately one-third of the personal samples exceeded the National Institute for Occupational Safety and Health recommended exposure limit for crystalline silica, a fraction similar to that identified in other studies of casting cleaning. Of five tools used to clean the castings, the tools with the largest wheels, a 6-in. grinder and a 4-in. cutoff wheel, were shown to be the major sources of dust exposure. Existing dust control consisted of the use of downdraft grinding benches. The size of the casting precluded working at a distance close enough to the grates of the downdraft benches for efficient capture of the grinding dust. In addition, measurements of air recirculated from the downdraft benches indicated that less than one-half of the respirable particles were removed from the contaminated airstream. Previous studies have shown that silica exposures in the cleaning of castings can be reduced or eliminated through the use of mold coatings, which minimize sand burn-in on the casting surface; by application of high-velocity, low-volume exhaust hoods; and by the use of a nonsilica molding aggregate such as olivine. This study concluded that all these methods would be appropriate control options.  相似文献   

9.
Indium-tin oxide production has increased greatly in the last 20 years subsequent to increased global demand for touch screens and photovoltaics. Previous studies used measurements of indium in blood as an indicator of indium exposure and observed associations with adverse respiratory outcomes. However, correlations between measurements of blood indium and airborne respirable indium are inconsistent, in part because of the long half-life of indium in blood, but also because respirable indium measurements do not incorporate inhalable indium that can contribute to the observed biological burden. Information is lacking on relationships between respirable and inhalable indium exposure, which have implications for biological indicators like blood indium. The dual IOM sampler includes the foam disc insert and can simultaneously collect respirable and inhalable aerosol. Here, the field performance of the dual IOM sampler was evaluated by comparing performance with the respirable cyclone and traditional IOM for respirable and inhalable indium and dust exposure, respectively. Side-by-side area air samples were collected throughout an indium-tin oxide manufacturing facility. Cascade impactors were used to determine particle size distribution. Several statistical methods were used to evaluate the agreement between the pairs of samplers including calculating the concordance correlation coefficient and its accuracy and precision components. One-way ANOVA was used to evaluate the effect of dust concentration on sampler differences. Respirable indium measurements showed better agreement (concordance correlation coefficient: 0.932) compared to respirable dust measurements (concordance correlation coefficient: 0.777) with significant differences observed in respirable dust measurements. The dual IOM measurements had high agreement with the traditional IOM for inhalable indium (concordance correlation coefficient: 0.997) but lower agreement for inhalable dust (concordance correlation coefficient: 0.886 and accuracy: 0.896) with a significantly large mean bias (-146.9 µg/m3). Dust concentration significantly affected sampler measurements of inhalable dust and inhalable indium. Results from this study suggest that the dual IOM is a useful single sampler for simultaneous measurements of occupational exposure to respirable and inhalable indium.  相似文献   

10.
Sanding drywall joint compound is a dusty construction activity. We studied potential factors influencing exposure to respirable and total dust for sanders and bystanders in the area of drywall joint compound finishing in 17 test events within a room-scale isolation chamber. We found the air change rate to be negatively correlated with dust C(twa) both in the sander's personal breathing zone and surrounding area. We could not conclude that sanding tool type systematically influences dust C(twa), but the use of 80-grit abrasive was associated with the highest dust C(twa). We found respirable dusts were uniformly dispersed 1-8.2 m from sanding activities at a fixed location. As anticipated, both respirable and total dust C(twa) in the sander's personal breathing zone are higher than in the surrounding area. The respirable fraction of the total dust mass C(twa) was greater in the surrounding area than in the sander's personal breathing zone. Respirable dust concentrations measured in real time increased over the duration of sanding, exhibiting a temporal trend that is similar to that predicted by the well-mixed box model with contaminant removal by mechanical ventilation only, and continuous emission. Dust concentrations returned to pre-activity (background) levels 2-4 hr after cessation of the sanding activity.  相似文献   

11.
Silicosis and coal worker's pneumoconiosis are serious occupational respiratory diseases associated with the coal mining industry and the inhalation of respirable dusts containing crystalline silica. The purpose of this study (funded by the Mine Health and Safety Council of South Africa) was to evaluate the individual contributions of underground coal mining tasks to the respirable dust and respirable silica dust concentrations in an underground section by sampling the respirable dust concentrations at the intake and return of each task. The identified tasks were continuous miner (CM) cutting, construction, transfer of coal, tipping, and roof bolting. The respirable dust-generating hierarchy of the tasks from highest to lowest was: transfer of coal > CM right cutting > CM left cutting > CM face cutting > construction > roof bolting > tipping; and for respirable silica dust: CM left cutting > construction > transfer of coal > CM right cutting. Personal exposure levels were determined by sampling the exposures of workers performing tasks in the section. Respirable dust concentrations and low concentrations of respirable silica dust were found at the intake air side of the section, indicating that air entering the section is already contaminated. The hierarchy for personal respirable dust exposures was as follows, from highest to lowest: CM operator > cable handler > miner > roof bolt operator > shuttle car operator, and for respirable silica dust: shuttle car operator > CM operator > cable handler > roof bolt operator > miner. Dust control methods to lower exposures should include revision of the position of workers with regard to the task performed, positioning of the tasks with regard to the CM cutting, and proper use of the line curtains to direct ventilation appropriately. The correct use of respiratory protection should also be encouraged.  相似文献   

12.
This study was designed to document the effect that wet abrasive blasting has on reducing worker exposure to crystalline silica, which has been associated with silicosis and premature death. In this study, worker exposure to respirable crystalline silica was monitored during wet abrasive blasting on the exterior walls of a parking garage to remove surface concrete and expose the underlying aggregate. In this process a wet sand mix comprised of 80% dry sand and 20% water was used. Sampling and analysis revealed that the geometric mean respirable quartz concentration was 0.2 mg/m(3) for workers conducting abrasive blasting and 0.06 mg/m(3) for helpers. When abrasive blasting was conducted in areas that apparently had reduced natural ventilation, dust exposures appeared to increase. When compared with other published data, this case study suggests that wet abrasive blasting causes less exposure to crystalline silica than dry abrasive blasting.  相似文献   

13.
To estimate the quantitative relation between exposure to respirable silica dust and risk of an attack of silicosis, 1151 workers exposed to silica dust and employed from 1958 to 1987 in a tungsten mine in China were investigated. The results showed that the ratio of respirable silica dust concentration to total silica dust concentration was 0.529. Then, the total silica dust concentration in historical surveillance and monitoring data was converted to respirable silica dust concentration. The free silica content in respirable dust determined by x ray diffraction averaged 24.7%. Multiple logistic regression was used for the dichotomous dependent variables (presence or absence of silicosis). The independent variables in the multiple logistic regression with presence of silicosis as the dependent variable were age when first exposed, tuberculosis (presence or absence), and cumulative exposure to respirable silica dust. The partial regression coefficient of individual cumulative exposure was estimated as 0.079. It implied a positive association between exposure to respirable silica dust and risk of an attack of silicosis. The exposure limit for respirable silica dust was estimated as 0.24 mg/m3 under given conditions.  相似文献   

14.
To estimate the quantitative relation between exposure to respirable silica dust and risk of an attack of silicosis, 1151 workers exposed to silica dust and employed from 1958 to 1987 in a tungsten mine in China were investigated. The results showed that the ratio of respirable silica dust concentration to total silica dust concentration was 0.529. Then, the total silica dust concentration in historical surveillance and monitoring data was converted to respirable silica dust concentration. The free silica content in respirable dust determined by x ray diffraction averaged 24.7%. Multiple logistic regression was used for the dichotomous dependent variables (presence or absence of silicosis). The independent variables in the multiple logistic regression with presence of silicosis as the dependent variable were age when first exposed, tuberculosis (presence or absence), and cumulative exposure to respirable silica dust. The partial regression coefficient of individual cumulative exposure was estimated as 0.079. It implied a positive association between exposure to respirable silica dust and risk of an attack of silicosis. The exposure limit for respirable silica dust was estimated as 0.24 mg/m3 under given conditions.  相似文献   

15.
A cross-sectional study of dust exposures and health outcomes was conducted in a stone-carving company in Thailand. 147 respirable dust samples were collected and 97 subjects participated. Exposure indices were constructed and health outcomes, including respiratory symptoms, pulmonary functions, and chest radiographs, were assessed. Severities of employees' current exposures to quartz were 0.5-8.8 times the ACGIH-TLV, depending on job and site. Durations of exposures ranged from 4 months to 30 years. The prevalence of silicosis (profusion grade > or = 1/0) was 2%. Pulmonary tuberculosis was also detected in 4%. Linear regression analyses revealed decreased lung function in workers with longer work durations (p < 0.05), regardless of age, sex, height, and smoking status. No clear association was seen between cumulative exposure metrics and indicators of silicosis. Elevated silica exposure levels indicate an ongoing risk of silicosis in this industry. Exposures were increased by the use of grinding tools with no ventilation and by proximity to other workers. However, because the number of workers with dust-exposure histories was limited, exposure measurements were confined to current conditions.  相似文献   

16.
Materials used in the construction industry frequently contain large quantities of silica. When they are cut or shaped with power tools considerable respirable dust can be produced. Three dust control systems for use with cut-off saws have been evaluated on site: wet dust suppression using mains water, the same system using water from a portable water tank, and local exhaust ventilation. The efficiency of water suppression on cut-off saws has been precisely quantified in controlled laboratory conditions by means of measurements with and without dust control. When dust control was used on-site, the mean concentrations of airborne silica were reduced by a factor of between three and seven, the accuracy being limited by the relatively high limit of detection for silica. All controls systems generally reduced respirable dust levels by at least 90%. Although the effectiveness of dust suppression did not depend on blade type, a diamond blade was more effective than a resin-bonded blade with the pressurised water system; cutting a slab with this type of blade could be completed before the water tank required repressurization. In laboratory tests, the application of water reduced the dust concentration to < 4% of its value without control. The method for monitoring the dust concentration was sufficiently sensitive to measure a difference in concentration produced during cutting in different directions. It is important, however, that the pressure in supply reservoirs is properly maintained, that the water is correctly applied and that it is used at the correct rate. If this is done effective dust control can be achieved.  相似文献   

17.
Flock workers' exposures and respiratory symptoms in five plants   总被引:1,自引:0,他引:1  
BACKGROUND: Sentinel cases of lymphocytic bronchiolitis in flock production and coating operations triggered a five-plant study of airborne respirable dust and fiber exposures and health symptoms. METHODS: Job histories from 219 current workers were linked to a job-exposure matrix derived from personal exposure measurements of respirable dust and fibers. Univariate group comparisons and multivariate modeling tested for relations between indices of cumulative and current exposure, and respiratory and systemic symptom outcomes. RESULTS: Respiratory symptoms and repeated flu-like illnesses were associated with use of compressed air to clear equipment (blow-downs) and with respirable dust exposure (current and cumulative) after controlling for smoking. Blow-downs had an equal or greater effect than smoking status on most symptoms. CONCLUSIONS: Eliminating compressed air cleaning, engineering control of dust exposure, and respirators are needed to limit exposures to particulates. Longitudinal follow up may provide guidance for a dust or fiber level without adverse respiratory health effects.  相似文献   

18.
Occupational exposure to high levels of respirable quartz can result in respiratory and other diseases in humans. The Mine Safety and Health Adminstration (MSHA) regulates exposure to respirable quartz in coal mines indirectly through reductions in the respirable coal mine dust exposure limit based on the content of quartz in the airborne respirable dust. This reduction is implemented when the quartz content of airborne respirable dust exceeds 5% by weight. The intent of this dust standard reduction is to restrict miners' exposure to respirable quartz to a time-weighted average concentration of 100 μg/m(3). The effectiveness of this indirect approach to control quartz exposure was evaluated by analyzing respirable dust samples collected by MSHA inspectors from 1995 through 2008. The performance of the current regulatory approach was found to be lacking due to the use of a variable property-quartz content in airborne dust-to establish a standard for subsequent exposures. In one situation, 11.7% (4370/37,346) of samples that were below the applicable respirable coal mine dust exposure limit exceeded 100 μg/m(3) quartz. In a second situation, 4.4% (895/20,560) of samples with 5% or less quartz content in the airborne respirable dust exceeded 100 μg/m(3) quartz. In these two situations, the samples exceeding 100 μg/m(3) quartz were not subject to any potential compliance action. Therefore, the current respirable quartz exposure control approach does not reliably maintain miner exposure below 100 μg/m(3) quartz. A separate and specific respirable quartz exposure standard may improve control of coal miners' occupational exposure to respirable quartz.  相似文献   

19.
Respiratory effects and dust exposures in hog confinement farming   总被引:5,自引:0,他引:5  
Fifty-three hog confinement farmers and 43 control farmers were studied. Pulmonary function, total and respirable personal dust levels, and responses to a health status questionnaire were obtained for all farmers. The hog farmers' total and respirable personal dust exposures were significantly higher than the respective levels of the control farmers. Higher dust levels were associated with the use of floor (scatter) feeding, indoor feed grinding, and the use of high moisture corn feed. Pork producers reported respiratory symptoms significantly more often than controls. Lung function did not differ between the two groups of farmers, nor could dust exposure levels be related to lung function.  相似文献   

20.
Dental technicians are exposed to respirable particles during their everyday work. This study investigated particulate production during dental laboratory procedures. Real-time air sampling of dental laboratory production processes was carried out, including the use of a plaster hopper, trimming study models and the trimming and polishing of removable orthodontic appliances. Respirable dust volumes in mg/m(3) were determined using real-time air sampler and were compared with the Workplace Exposure Limits (WELs) advised by the Control of Substances Harmful to Health regulations. The use of the plaster hopper produced the highest level of respirable dusts, which might exceed the recommended WELs for respirable dusts. Trimming study models and removable orthodontic appliances using suitable ventilation produced levels of respirable dusts, well below the WEL. Suitable ventilation adjacent to the plaster hoppers is advisable in order to reduce any inhalation risk to dental technicians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号