首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence supports the cancer stem cell theory, that is, that malignant tumors arise from cells termed cancer stem cells or tumor‐initiating cells that have the ability to self‐renew and are responsible for maintaining the tumor. Cells with marked tumor‐initiating capacity have recently been identified in a number of solid tumors. CD133 (PROM1, human prominin‐1) has been used as a marker to detect stem cells (progenitor cells) and cancer stem cells (tumor‐initiating cells) in various tissues. Ovarian yolk sac tumors (YSTs) are rare and highly malignant. The present study was designed to evaluate the tumor‐forming ability of CD133+ cells in ovarian YST cell lines and to examine the characteristics of CD133+ cells, such as cell growth and invasiveness. Our data suggest ovarian YST to be maintained by a rare fraction of cancer stem‐like cells that express the cell surface marker CD133. (Cancer Sci 2010)  相似文献   

2.
Malignantly transformed stem cells represent a potential common nidus for the primary cancer and the recurrent cancer that arises after treatment failure. Putative prostate stem cells and prostate tumor stem cells in benign and malignant human prostate tissue, in primary human prostate xenografts, and in the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model of prostate cancer, are defined by expression of breast cancer resistance protein (BCRP), a marker of pluripotent hematopoietic, muscle, and neural stem cells, and by an absence of androgen receptor (AR) protein. Inhibition of BCRP-mediated efflux of dihydrotestosterone by novobiocin or fumitremorgin C in a rat prostate progenitor cell line that expresses BCRP and AR mRNAs, but minimal AR protein, results in stabilization and nuclear translocation of AR protein, providing a mechanism for lack of AR protein in BCRP-expressing stem cells. In both benign and malignant human prostate tissue, the rare epithelial cells that express BCRP and lack AR protein are localized in the basal cell compartment, survive androgen deprivation, and maintain proliferative potential in the hypoxic, androgen-deprived prostate. Putative prostate tumor stem cells that express BCRP but not AR protein in TRAMP are the source of a BCRP-negative and AR-negative, Foxa2- and SV40Tag-expressing, transit amplifying compartment that progresses to the poorly differentiated carcinomas that arise rapidly after castration. Therefore, BCRP expression isolates prostate stem/tumor stem cells from the prostate tissue microenvironment through constitutive efflux of androgen, protecting the putative tumor stem cells from androgen deprivation, hypoxia, or adjuvant chemotherapy, and providing the nidus for recurrent prostate cancer.  相似文献   

3.
Prospective identification of tumorigenic prostate cancer stem cells   总被引:101,自引:0,他引:101  
Existing therapies for prostate cancer eradicates the bulk of cells within a tumor. However, most patients go on to develop androgen-independent disease that remains incurable by current treatment strategies. There is now increasing evidence in some malignancies that the tumor cells are organized as a hierarchy originating from rare stem cells that are responsible for maintaining the tumor. We report here the identification and characterization of a cancer stem cell population from human prostate tumors, which possess a significant capacity for self-renewal. These cells are also able to regenerate the phenotypically mixed populations of nonclonogenic cells, which express differentiated cell products, such as androgen receptor and prostatic acid phosphatase. The cancer stem cells have a CD44+/alpha2beta1hi/CD133+ phenotype, and we have exploited these markers to isolate cells from a series of prostate tumors with differing Gleason grade and metastatic states. Approximately 0.1% of cells in any tumor expressed this phenotype, and there was no correlation between the number of CD44+/alpha2beta1hi/CD133+ cells and tumor grade. The identification of a prostate cancer stem cell provides a powerful tool to investigate the tumorigenic process and to develop therapies targeted to the stem cell.  相似文献   

4.
Though human prostate cancer (PCa) heterogeneity can best be studied using multiple cell types isolated from clinical specimens, the difficulty of establishing cell lines from clinical tumors has hampered this approach. In this proof-of-concept study, we established a human PCa cell line from a prostatectomy surgical specimen without the need for retroviral transduction. In a previous report, we characterized the stromal cells derived from PCa specimens. Here, we characterized the epithelial cells isolated from the same tumors. Compared to the ease of establishing prostate stromal cell lines, prostatic epithelial cell lines are challenging. From three matched pairs of normal and tumor tissues, we established one new PCa cell line, HPE-15. We confirmed the origin of HPE-15 cells by short tandem repeat microsatellite polymorphism analysis. HPE-15 cells are androgen-insensitive and express marginal androgen receptor, prostate-specific antigen and prostate-specific membrane antigen proteins. HPE-15 expresses luminal epithelial markers of E-cadherin and cytokeratin 18, basal cell markers of cytokeratin 5 and p63 and neuroendocrine marker of chromogranin A. Interestingly, HPE-15 Cells exhibited no tumorigenicity in different strains of immune-deficient mice but can become tumorigenic through interaction with aggressive cancer cell types. HPE-15 cells can thus serve as an experimental model for the study of PCa progression, metastasis and tumor cell dormancy.  相似文献   

5.
The concept of cancer stem cells (CSCs) has been proposed to explain the ability of single disseminated cancer cells to reconstitute tumours with heterogeneity similar to that of the primary tumour they arise from. Although this concept is now commonly accepted, the origin of these CSCs remains a source of debate. First proposed to arise through stem/progenitor cell transformation, CSCs might also or alternatively arise from differentiated cancer cells through epithelial to mesenchymal transition (EMT), an embryonic transdifferentiation process. Using breast carcinomas as a study model, I propose revisiting the role of EMT in generating CSCs and the debate on potential underlying mechanisms and biological significance.  相似文献   

6.
7.
Korkaya H  Paulson A  Iovino F  Wicha MS 《Oncogene》2008,27(47):6120-6130
The cancer stem cell hypothesis proposes that cancers arise in stem/progenitor cells through disregulation of self-renewal pathways generating tumors, which are driven by a component of 'tumor-initiating cells' retaining stem cell properties. The HER2 gene is amplified in 20-30% of human breast cancers and has been implicated in mammary tumorigenesis as well as in mediating aggressive tumor growth and metastasis. We demonstrate that HER2 overexpression drives mammary carcinogenesis, tumor growth and invasion through its effects on normal and malignant mammary stem cells. HER2 overexpression in normal mammary epithelial cells (NMEC) increases the proportion of stem/progenitor cells as demonstrated by in vitro mammosphere assays and the expression of stem cell marker aldehyde dehydrogenase (ALDH) as well as by generation of hyperplastic lesions in humanized fat pads of NOD (nucleotide-binding oligomerization domain)/SCID (severe combined immunodeficient) mice. Overexpression of HER2 in a series of breast carcinoma cell lines increases the ALDH-expressing 'cancer stem cell' population which displays increased expression of stem cell regulatory genes, increased invasion in vitro and increased tumorigenesis in NOD/SCID mice. The effects of HER2 overexpression on breast cancer stem cells are blocked by trastuzumab in sensitive, but not resistant, cell lines, an effect mediated by the PI3-kinase/Akt pathway. These studies provide support for the cancer stem cell hypothesis by suggesting that the effects of HER2 amplification on carcinogenesis, tumorigenesis and invasion may be due to its effects on normal and malignant mammary stem/progenitor cells. Furthermore, the clinical efficacy of trastuzumab may relate to its ability to target the cancer stem cell population in HER2-amplified tumors.  相似文献   

8.
Understanding of molecular genetic mechanisms underlying prostate carcinogenesis would be greatly advanced by in vitro models of prostate tumors representing primary tumors. We have successfully established a neoplastic immortalized human prostate epithelial (HPE) clonal culture derived from a primary tumor of a prostate cancer patient (RC-58T) with hTERT, the catalytic subunit of telomerase. The early passage RC-58T cells derived from a radical prostatectomy specimen of a 52-year-old white male patient was transduced through infection with a retrovirus vector expressing the hTERT for the establishment of the RC-58T/hTERT cell line. One clonal line, soft-agar derived from the RC-58T/hTERT cell line, was isolated and further characterized phenotypically and genetically. These clonal (RC-58T/hTERT SA#4) cells are currently growing well at passage 70 and exhibit transformed morphology. The RC-58T/hTERT SA#4 line expressed a high level of telomerase activity and showed anchorage-independent growth in soft agar. The clonal line like the untransduced RC-58T cells (passage 3) expressed prostate specific antigen (PSA), androgen receptor (AR), prostate stem cell antigen (PSCA), and an androgen-regulated prostate specific gene NKX3.1, P16, and cytokeratin (CK) 8. Growth is slightly stimulated by dihydrotestosterone (DHT), and lyates are immunoreactive with AR antibody by Western blot analysis. More importantly, this clonal line produced adenocarcinomas when transplanted into SCID mice. A number of chromosome alterations were observed including the loss of chromosome Y, 1q, 2p, 3p, 4q, 8p, 11p, 14p, 17p and 18q. Our results demonstrate that this primary tumor-derived HPE cell line retained its neoplastic phenotypes and its prostate specific markers and should allow elucidating molecular and genetic alterations involved in prostate cancer. This is the first documented case of an AR and PSA expressing telomerase established human prostate cancer cell line with neoplastic phenotypes from a primary tumor of a prostate cancer patient.  相似文献   

9.
Engelmann K  Shen H  Finn OJ 《Cancer research》2008,68(7):2419-2426
Chemotherapy, radiation, and growth inhibitory drugs preferentially eliminate actively growing cancer cells. Cancer recurrence is currently thought to be due to nondividing cancer stem/progenitor cells that are resistant to these therapies. Different therapeutic approaches need to be considered for the elimination of the cancer stem cell population. Immunotherapy is one such approach. In addition to specificity and lack of toxicity, immunotherapy targets cancer cells irrespective of their state of proliferation, as long as they express particular tumor antigens. For that reason, it is important to examine if the tumor antigens that are currently being tested as immunotherapeutic agents are also present on cancer stem cells. This study aimed to determine if one well-known tumor antigen, MUC1, which is being tested as an immunotherapy target on tumor cells, is also expressed on the quiescent cancer stem/progenitor cells. We used the so-called side population (SP) cells found in the MCF7 breast cancer cell line, which we first confirmed by cell surface markers and gene profiling to be highly enriched in cells that fulfill specific functional, phenotypic, and molecular criteria for being tumor stem/progenitor cells. We show that these cells express MUC1 and give rise to MUC1(+) tumors in vivo, which maintain the MUC1(+) SP population. MUC1 on SP cells is hypoglycosylated and heavily sialylated; the characteristics of the tumor-specific form were expressed on mature cancer cells and recognized by tumor-specific T cells and antibodies. This suggests that stem/progenitor cells, like mature tumor cells, would be targets of MUC1-directed immunotherapy.  相似文献   

10.
A novel human cancer culture model for the study of prostate cancer.   总被引:2,自引:0,他引:2  
Research into molecular and genetic mechanisms underlying prostate carcinogenesis would be greatly advanced by in vitro models of prostate tumors representing primary tumors. We have successfully established an immortalized human prostate epithelial (HPE) cell culture derived from a primary tumor with telomerase. The actively proliferating early passaged RC-58T cells were transduced through infection with a retrovirus vector expressing the human telomerase catalytic subunit (hTERT). A high level of telomerase was detected in RC-58T/hTERT cells but not RC-58T cells. RC-58T/hTERT cells are currently growing well at passage 50, whereas RC-58T cells senesced at passage 7. RC-58T/hTERT cells exhibit transformed morphology. More importantly, these immortalized cells showed anchorage-independent growth as they formed colonies in soft agar and grew above the agar layer. Expression of androgen-regulated prostate specific gene NKX3.1 and epithelial specific cytokeratin 8 (CK8) but not prostate specific antigen (PSA) and androgen receptor was detected in RC-58T/hTERT cells. Prostate stem cell antigen (PSCA) and p16 were also expressed in this cell line. RC-58T/hTERT cells showed growth inhibition when exposed to retinoic acid and transforming growth factor (TGF)-beta1 known potent inhibitors of prostate epithelial cell growth. A number of chromosome alterations were observed including the loss of chromosomes Y, 3p, 10p, 17p, 18q and the gain of chromosomes 16 and 20. These results demonstrate that this primary tumor-derived HPE cell line retained its transformed phenotypes and should allow studies to elucidate molecular and genetic alterations involved in prostate cancer. This is the first documented case of an established human prostate cancer cell line from a primary tumor of a prostate cancer patient with telomerase.  相似文献   

11.
12.
We established two human prostate cancer cell lines, MDA PCa 2a and MDA PCa 2b, the TabBO model system, that reflect common features of human androgen-independent prostate cancer that are not present in other model systems: bone origin, prostate-specific antigen production, androgen receptor expression, and androgen sensitivity. We therefore hypothesized that molecular pathways in our model system reflect common alterations responsible for the progression of a subset of human prostate cancer. Progression to androgen independence has been hypothesized to be largely associated with impairment of the regulation of cell growth or apoptosis of prostate cancer cells. Therefore, in this study, we examined molecular markers known or suspected to be important in prostate cancer progression and key regulators of cell growth and apoptosis: p53, p21WAF1/CIP1, Bcl-2, Bax, retinoblastoma (Rb), and p16INK4A/MITS1. We analyzed the expression of these markers in the cell lines, their tumor of origin, and tumors derived from the cell lines by s.c. inoculation into nude mice. DNA sequencing of the entire open reading frames of the p53 and p21 genes revealed no mutations. Additionally, accumulation of the p53 protein was not found by Western blot analysis, nor was overexpression of the Bcl-2 oncoprotein detected. Bax expression was detected in MDA PCa 2a cells, whereas it was absent in MDA PCa 2b. Rb and p16 protein expression was normal as measured by both Western blot and immunochemical analyses. Immunohistochemical studies of p53, p21, Bcl-2, and Rb in both samples from the original human cancer from which the lines were derived and mouse xenografts derived from the lines revealed similar levels of protein. These results are consistent with reports indicating that 40-50% of bone metastases of prostate cancer have wild-type p53, 50-70% do not overexpress the Bcl-2 protein, and mutations in the p21 gene are rare. Therefore, we conclude that MDA PCa 2a and MDA PCa 2b reflect molecular pathways in a common subset of human androgen-independent prostate cancer and that important molecular players in apoptosis (namely, p53 and Bcl-2) seem to be intact in this subset of androgen-independent prostate cancer. Understanding the signal-transduction pathways operating in these cell lines may help to identify therapeutic targets for prostate cancer.  相似文献   

13.
Bhatia B  Tang S  Yang P  Doll A  Aumüeller G  Newman RA  Tang DG 《Oncogene》2005,24(22):3583-3595
Normal human prostatic (NHP) epithelial cells undergo senescence in vitro and in vivo, but little is known about the tissue-specific molecular mechanisms. Here we first characterize young primary NHP cells as CK5(+)/CK18(+) intermediate basal cells that also express several other putative stem/progenitor cell markers including p63, CD44, alpha2beta1, and hTERT. When cultured in serum- and androgen-free medium, NHP cells gradually lose the expression of these markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-lipoxygenase 2 (15-LOX2), a molecule with a restricted tissue expression and most abundantly expressed in adult human prostate, in the replicative senescence of NHP cells. First, the 15-LOX2 promoter activity and the mRNA and protein levels of 15-LOX2 and its multiple splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner. Second, all immortalized prostate epithelial cells and prostate cancer cells do not express 15-LOX2. Third, PCa cells stably transfected with 15-LOX2 or 15-LOX2sv-b, a splice variant that does not possess arachidonate-metabolizing activity, show a passage-related senescence-like phenotype. Fourth, infection of early-passage NHP cells with retroviral vectors encoding 15-LOX2 or 15-LOX2sv-b induces partial cell-cycle arrest and big and flat senescence-like phenotype. Finally, 15-LOX2 protein expression in human prostate correlates with age. Together, these data suggest that 15-LOX2 may represent an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence.  相似文献   

14.
15.
Research into molecular and genetic mechanisms underlying prostate carcinogenesis would be greatly advanced by in vitro models of prostate tumors representing primary tumors. The generation of immortalized primary prostate cancer cells that will accurately reflect the in situ characteristics of malignant epithelium is greatly needed. We have successfully established a neoplastic immortalized human prostate epithelial (HPE) cell culture derived from a primary tumor. The RC-9 cells transduced through infection with a retrovirus vector expressing the E6 and E7 genes (E6E7) of human papilloma virus-16 (HPV-16) are currently growing well at passage 40, whereas RC-9 cells senesced at passage 7. RC-9/E6E7 cells exhibit epithelial morphology and high level of telomerase activity. More importantly, these immortalized cells produced tumors (SCID5038D) when inoculated into SCID mice. RC-9/E6E7 cells and SCID-5038D cells exhibit a high level of telomerase activity and androgen-responsiveness when treated with R1881. Expression of prostate specific antigen (PSA), androgen receptor (AR), prostate stem cell antigen (PSCA), an androgen-regulated prostate specific gene (NKX3.1), p16, cytokeratins 8, 15 and HPV-16 E6 gene was detected in both of these cells. RC-9/E6E7 and SCID5038D cells also showed growth inhibition when exposed to retinoic acid and transforming growth factor (TGF)-beta1, potent inhibitors of prostate epithelial cell growth. A number of chromosome alterations were observed including the loss of chromosomes 2p, 3p, 8p, 13, 14, 16, 17, 18, 21 and the gain of 7 and 20 in the tumor cell line (SCID5038D). These results demonstrate that this primary tumor-derived HPE cell line retained its neoplastic phenotypes and its prostate-specific markers and should allow studies to elucidate molecular and genetic alterations involved in prostate cancer. This is the first documented case of a malignant AR and PSA positive established human prostate cancer cell line from a primary tumor of a prostate cancer patient.  相似文献   

16.
The cancer stem cell hypothesis proposes that tumors arise in stem or progenitor cells generating in tumors driven by a subcomponent that retains cancer stem cell properties. Recent evidence supports the hypothesis that the BRCA1 gene involved in hereditary breast cancer plays a role in breast stem cell function. Furthermore, studies using mouse BRCA1 knockout models provide evidence for the existence of heterogeneous cancer stem cell populations in tumors generated in these mice. Although these populations may arise from different stem/progenitor cells, they share the expression of a common set of stem cell regulatory genes and show similar characteristics in in vitro mammosphere assays and xenograft models. Furthermore, these 'cancer stem cells' display resistance to chemotherapeutic agents. These studies suggest that breast tumors may display intertumor stem cell heterogeneity. Despite this heterogeneity, cancer stem cells may share common characteristics that can be used for their identification and for therapeutic targeting.  相似文献   

17.
Stem cell-like cancer cells in cancer cell lines   总被引:5,自引:0,他引:5  
Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Moreover, a small number of cancer cells express stem cell markers, including CD133 and ATP-binding cassette transporters, by which the cells can pump out specific fluorescence dyes, such as Hoechst33342, as well as anti-cancer drugs, suggesting that either cancer cells resemble stem cells or cancers contain stem cell-like cancer cells, called "cancer stem cells (CSCs)". Using the common characteristics of tissue-specific stem cells, it was demonstrated that many types of tumors and cancer cell lines contain CSCs, which self-renew, express stem cell markers, and are tumorigenic. It was also shown that CSCs are resistant to anti-cancer drugs and irradiation. Thus CSCs might be a crucial target for the therapy. Because tumors contain CSCs and recruited normal stem cells, both of which contribute to tumorigenesis, it is difficult to separate CSCs from tumors. By contrast, cancer cell lines do not have any contaminating normal stem cells that quickly loose mulitpotentiality and differentiate in normal culture condition, suggesting that cancer cell lines could be an attractive alternative source of cells for CSC research. In this review I summarize the recent progress in CSC research using cancer cell lines.  相似文献   

18.
Primary keratinocytes exhibit three typical clonal morphologies represented by holoclones, meroclones, and paraclones, with holoclones containing self-renewing stem cells, and meroclones and paraclones containing more mature and differentiated cells. Interestingly, long-term-cultured human epithelial cancer cells in clonal cultures also form holoclones, meroclones, and paraclones, and tumor cell holoclones have been hypothesized to harbor stem-like cells or cancer stem cells. However, the key question of whether tumor cell holoclones genuinely contain tumor-initiating cells has not been directly addressed. Here, using PC3 human prostate carcinoma cells as a model, we provide direct experimental evidence that tumor cell holoclones contain stem-like cells that can initiate serially transplantable tumors. Importantly, holoclones derived from either cultured PC3 cells or holoclone-initiated tumors can be serially passaged and regenerate all three types of clones. In contrast, meroclones and paraclones cannot be continuously propagated and fail to initiate tumor development. Phenotypic characterizations reveal high levels of CD44, alpha(2)beta(1) integrin, and beta-catenin expression in holoclones, whereas meroclones and paraclones show markedly reduced expression of these stem cell markers. The present results have important implications in understanding morphologic heterogeneities and tumorigenic hierarchies in human epithelial cancer cells.  相似文献   

19.
Recently, we have shown that prostate epithelium-specific deficiency for p53 and Rb tumor suppressors leads to metastatic cancer, exhibiting features of both luminal and neuroendocrine differentiation. Using stage-by-stage evaluation of carcinogenesis in this model, we report that all malignant neoplasms arise from the proximal region of the prostatic ducts, the compartment highly enriched for prostatic stem/progenitor cells. In close similarity to reported properties of prostatic stem cells, the cells of the earliest neoplastic lesions express stem cell marker stem cell antigen 1 and are not sensitive to androgen withdrawal. Like a subset of normal cells located in the proximal region of prostatic ducts, the early neoplastic cells coexpress luminal epithelium markers cytokeratin 8, androgen receptor, and neuroendocrine markers synaptophysin and chromogranin A. Inactivation of p53 and Rb also takes place in the lineage-committed transit-amplifying and/or differentiated cells of the distal region of the prostatic ducts. However, the resulting prostatic intraepithelial neoplasms never progress to carcinoma by the time of mouse death. Interestingly, in an ectopic transplantation assay, early mutant cells derived from either region of the prostatic ducts are capable of forming neoplasms within 3 months. These findings indicate that p53 and Rb are critically important for the regulation of the prostatic stem cell compartment, the transformation in which may lead to particularly aggressive cancers in the context of microenvironment.  相似文献   

20.
Human lung tumor cell lines established from the major histological types of lung cancer were examined by immunofluorescent staining techniques for their patterns of intermediate filament (keratin, vimentin, and neurofilament triplet protein) expression. All cell lines examined, both small cell lung carcinoma (SCLC) and non-SCLC (squamous cell carcinoma, adenocarcinoma, large cell carcinoma, and mesothelioma) contained keratin, consistent with their epithelial derivation. These lung carcinoma cell lines also expressed vimentin, the characteristic intermediate filament of mesenchymal cells in vivo. In light of the proposed neuroectodermal origin of SCLC, cell lines were also studied for neurofilament expression. Two of four SCLC tumor cell lines, as well as non-SCLC cell lines, showed no reactivity with antibodies to neurofilament triplet protein. Two of the SCLC cell lines stained weakly with anti-neurofilament antibody. Examination of specific keratin patterns in human lung tumor cell lines by selective immunoprecipitation with keratin antiserum and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that small-sized keratin proteins (Mr 44,000 to 52,000) were present in cell lines derived from SCLC and non-SCLC types of lung cancer. Tumor cell lines exhibiting squamous differentiation by light microscopic criteria (i.e., intracellular keratin, intercellular bridging, "pearl" formation, and/or individual cell keratinization) also displayed a preponderance of intermediate-sized keratins (Mr 57,000 and 59,000) and exhibited another feature of terminal keratinocyte differentiation (cross-linked envelope formation). Mesothelioma cell lines had varying keratin profiles. The presence of keratin proteins in all SCLC cell lines examined argues against a neuroectodermal origin for these tumors and is consistent with the notion that these tumors arise from a common bronchial "stem cell," similar to that from which other types of bronchogenic carcinomas arise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号