首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This study examined whether a 5 mg dose of melatonin induced a lower rectal temperature (T re) response at rest in both a cool and hot environment while wearing normal military combat clothing, and then examined the influence of this response on tolerance to exercise in the heat while wearing protective clothing. Nine men performed four randomly ordered trials involving 2 h of rest at ambient temperatures of either 23 °C or 40 °C followed by exercise at an ambient temperature of 40 °C. The double-blind ingestion of placebo or melatonin occurred after 30 min of rest. The mean T re during rest at 23 °C had decreased significantly from 36.8 (SD 0.1) °C to 36.7 (SD 0.2) °C at 90 min following the ingestion of the drug, whereas values during the placebo trial did not change. The lower T re response during the melatonin trial remained during the first 50 min of exercise in the heat while wearing the protective clothing. Since the final mean T re at the end of exercise also was significantly reduced for the melatonin [39.0 (SD 0.4) °C] compared with the placebo [mean 39.1 (SD 0.3) °C] trial, tolerance times approximated 95 min in both conditions. During rest at 40 °C, melatonin did not affect the mean T re response which increased significantly during the last 90 min from 36.9 (SD 0.1) °C to 37.3 (SD 0.1) °C. This increase in T re during the rest period prior to donning the protective clothing decreased tolerance time approximately 30 min compared with the trials that had involved rest at 23 °C. Total heat storage summated over the rest and exercise periods was not different among the trials at 15 kJ · kg−1. It was concluded that the small decrease in T re following the ingestion of 5 mg of melatonin at rest in a cool environment had no influence on subsequent tolerance during uncompensable heat stress. Accepted: 26 June 2000  相似文献   

2.
Seven healthy young men participated in six trials with three different types of local cooling [cool air breathing (CAB), face skin cooling (FaC), and combined cooling (CoC)] in a warm environment for 90 min while either resting (operative temperature: T 0 = 40°C, dew point temperature: T dp = 15°C, air velocity: v a = 0.3 m·s−1) or exercising on a cycle ergometer with an external work load of 90 W (T 0 = 36°C, T dp = 15°C, v a = 0.3 m·s−1). Cool air (10°C) arrived at the entry point of the hood and/or the mask at a ventilation rate of 12 m · s−1. Oesophageal temperature was not affected by any kind of cooling, while tympanic temperature was decreased at rest by both FaC and CoC [respectively −0.15 (0.06) and −0.09 (0.03)°C, P ≤ 0.05]. Mean skin temperature was decreased by FaC and CoC at rest [respectively −0.31 (0.07) and −0.27 (0.09)°C, P ≤ 0.05] and during exercise [respectively −0.64 (0.15) and −1.04 (0.22)°C, P ≤ 0.01]. CAB had no effect on skin temperatures. CoC and FaC reduced head skin temperature during both rest and work (P < 0.001) with no effect on the skin temperature of the rest of the body, except under CoC with exercise (P < 0.05). CAB did not influence local sweating. FaC, however, decreased the more profuse sweat rates (P ≤ 0.05) at rest, while CoC decreased all sweating rates at rest (P ≤ 0.05) and only the back, head and leg sweating rates during exercise (P ≤ 0.05). These results suggest that head skin cooling causes a reduction in heat strain, while CAB does not. This beneficial influence does not, however, appear to be the result of selective brain cooling. Tympanic temperature seems to be a good index of the core thermal inputs to the hypothalamic regulatory system, since variations in that parameter were associated with similarly directed variations in the sweating outputs. Accepted: 12 April 1999  相似文献   

3.
To examine the mechanisms and regional differences in the age-related decrement of skin blood flow, 11 young (age 20–25 years) and 10 older (age 64–76 years) men were exposed to a mild heat stress by immersing their feet and lower legs in water at 42°C for 60 min, while they were sitting in near thermoneutral conditions [25°C and 45% relative humidity (rh)]. During the equilibrium period (25°C and 45% rh) before the heat test, no group differences were observed in rectal (T re) and mean skin (T sk) temperatures or mean arterial pressure (MAP). During passive heating, T sk was significantly lower in the older men 20 min after commencing exposure (P < 0.001), although there were similar increases in T re in both groups. Exposure time and age did not affect MAP. The local sweating rate ( sw) and the percentage change in skin blood flow by laser Doppler flowmetry (%LDF) relative to baseline values on the chest, back, forearm and thigh were significantly lower in the older men (P < 0.001), especially on the thigh. After starting the heat exposure, three temporal phases were observed in the relationship between %LDF and sw at most sites in each subject. In phase A, %LDF increased but with no increase in sw. In phase B, sw increased but with no secondary increase in %LDF. Finally, in phase C, there were proportional increases in %LDF and sw. The increase in %LDF in phase A was significantly lower on the forearm and thigh (P < 0.05) for the older men, but not on the chest and back. In phase C, the slopes of the regression lines between %LDF and sw were lower for the older men on the back (P < 0.03), forearm (P = 0.08) and thigh (P < 0.03), but not on the chest. These results would suggest that the age-related decrement in skin blood flow in response to passive heating may be due in part to a smaller release of vasoconstrictor tone and to less active vasodilatation once sweating begins. Regional differences exist in the impaired vasoconstriction and active vasodilatation systems. Accepted: 29 May 1998  相似文献   

4.
Summary Thermoregulatory and thermal subjective responses were studied in ten male, clothed subjects during continuous (C) and intermittent (I) exercise at the same average level of oxygen consumption. The subjects performed both I and C twice, dressed in two different three-layer cold-protective clothing ensembles of two thermal insulation levels [total clothing insulation = 2.59 clo (L) and 3.20 clo (H)]. Experiments were carried out at an ambient temperature of –10°C. Rectal temperatures increased similarly in both types of exercise. Mean skin temperature (T sk) was lower in 1 compared to C with both levels of clothing insulation. Over the last 0.5 h of the experimentT sk was approximately 1.3°C lower in 1 than in C for clothing L. The skin evaporation rate was higher in clothing H than L but did not differ between I and C. Subjective ratings for thermal sensations of the whole body (BTS) and hands were close to neutral in I and around slightly warm in C. The BTS was lower in I than in C and was lower in L compared to H. It was concluded that, at equal average energy expenditure, thermal responses to intermittent and continuous exercise in the Gold differ in clothed subjects, principally as a result of different patterns of heat exchange.  相似文献   

5.
Summary Seven volunteers (3 females and 4 males; 3 Caucasians and 4 Africans) participated in two 24 h sessions during the cool dry (CD) and the hot dry (HD) seasons of the sahelian tropical climate. Body temperatures were taken on portable cassette recorders for 24 h. Rectal (T re) and mean skin (¯T sk) temperatures decreased in the HD compared to the CD conditions, meeting one of the criteria for adaptation to heat. No ethnic differences in thermal responses were found. Males and females differed in their body temperature rhythms and in their reactions to heat. Body temperatures were higher in females than in males. Males reacted to heat with a decrease in T re, without change in the T reT sk gradient. Females showed a decrease in both T re and ¯T sk, more marked for ¯T sk, with an increase in the T reT sk gradient. It was concluded that males showed seasonal acclimatization to heat via a decrease in metabolism confirmed by a decrease in plasma levels of thyroid stimulating hormone (TSH) in the HD condition. Females showed a mixed metabolic and thermolytic type of acclimatization, with an absence of variation in plasma TSH levels. In conclusion, the steady rise in temperature between the CD and HD conditions was sufficient to trigger an acclimatization to heat similar in Caucasian and African subjects, although exposure to the external climate differed widely.  相似文献   

6.
To determine the effects of pre-warming on the human metabolic and thermoregulatory responses to prolonged steady-rate exercise in moderate ambient temperatures and relative humidities [means (SD) 21.7 (2.1)° C and 36.7 (5.4)%, respectively], six healthy men each ran at a steady-rate (70% maximal oxygen uptake) on a treadmill until exhausted after being actively pre-warmed (AH), passively pre-warmed (PH), and rested (Cont). Exercise time to exhaustion was significantly reduced following both AH and PH compared to Cont [AH 47.8 (14.0) min, PH 39.6 (16.0) min, Cont 62.0 (8.8) min; P<0.05]. During exercise there were no significant differences in oxygen uptake, total sweat loss, mean skin temperature (Tsk) and the thermal gradient (T re–Tsk, where T re is rectal temperature) following the three conditions. Serum prolactin, plasma catecholamine and plasma free fatty acid concentrations were also similar between all three trials. In contrast, T re, mean body temperature, heart rate and ratings of perceived exertion were significantly greater during the initial 25 min of exercise following both AH and PH, compared with Cont (P<0.05). At exhaustion, there were no significant differences in the metabolic and thermoregulatory responses to exercise between the trials. The current findings demonstrate that AH and PH promote a reduction in prolonged submaximal endurance performance under moderate environmental temperatures compared with pre-exercise rest. Such observations appear likely to have been mediated through mechanisms associated with the earlier development of high internal body temperature which resulted in changes in the capacity for heat storage. Electronic Publication  相似文献   

7.
The effect of ambient temperature on gross-efficiency in cycling   总被引:1,自引:0,他引:1  
Time-trial performance deteriorates in the heat. This might potentially be the result of a temperature-induced decrease in gross-efficiency (GE). The effect of high ambient temperature on GE during cycling will be studied, with the intent of determining if a heat-induced change in GE could account for the performance decrements in time trial exercise found in literature. Ten well-trained male cyclists performed 20-min cycle ergometer exercise at 60% (power output at which VO2max was attained) in a thermo-neutral climate (N) of 15.6 ± 0.3°C, 20.0 ± 10.3% RH and a hot climate (H) of 35.5 ± 0.5°C, 15.5 ± 3.2% RH. GE was calculated based on VO2 and RER. Skin temperature (T sk), rectal temperature (T re) and muscle temperature (T m) (only in H) were measured. GE was 0.9% lower in H compared to N (19.6 ± 1.1% vs. 20.5 ± 1.4%) (P < 0.05). T sk (33.4 ± 0.6°C vs. 27.7 ± 0.7°C) and T re (37.4 ± 0.6°C vs. 37.0 ± 0.6°C) were significantly higher in H. T m was 38.7 ± 1.1°C in H. GE was lower in heat. T m was not high enough to make mitochondrial leakage a likely explanation for the observed reduced GE. Neither was the increased T re. Increased skin blood flow might have had a stealing effect on muscular blood flow, and thus impacted GE. Cycling model simulations showed, that the decrease in GE could account for half of the performance decrement. GE decreased in heat to a degree that could explain at least part of the well-established performance decrements in the heat.  相似文献   

8.
The response of core temperature to exercise was investigated during recovery in order to avoid the antagonistic competition between exercise and thermal reflexes for the same effector systems which control skin blood flow. Five healthy, non-training males [mean (SD) age, 23.8 (2.04) years] were habituated to 29° C at relative 50% humidity for more than 2 h and then exercised by treadmill running at about 75% maximum oxygen uptake for 18 min. They then remained at 29° C for up to 65 min of recovery. Oesophageal (T es), rectal (T re) and skin temperatures (T sk) were recorded at 5-s intervals throughout. The abrupt fall of temperature gradient from the forearm to finger was used to identify the T es for skin vessel dilatation (T dil) during exercise. Mean (SE) Ts rose from a resting value of 36.67 (0.15)° C to 38.22 (0.24)° C, mean T re rose from 37.09 (0.25)° C to 38.23 (0.15)° C, and T dil occurred at 37.39 (0.32)° C. Within 10 min of recovery mean T es fell to 37.31 (0.24)° C, where it remained a significant 0.64° C above its pre-exercise (PrEx) level (P0.018) but insignificantly different from T dil for the remaining 55 min of recovery. Meanwhile, T re fell gradually throughout recovery to 37.64 (0.18)° C. The T sk at all non-acral sites except the thigh had recovered to PrEx levels by 20–30 min post-exercise (PoEx). The rapid PoEx fall of T es to the level of T dil and the subsequent plateau above PrEx values suggests that heat dissipation during recovery was primarily passive once T es had fallen to T dil, even though T es and T re were significantly elevated. The relationship of these results to the set-point and load error concepts of thermal control is discussed.These data have been presented at the Canadian Physiological Society Winter meeting, January 1993, but have not been previously published  相似文献   

9.
The purpose of the present study was to examine the discrepancies in rectal temperature (T re) at various depths. Nineteen young males performed two bouts of bicycle exercise and recovery. T re was simultaneously measured at depth of 4, 6, 8, 10, 13, 16, and 19 cm, alongside the measurement of skin temperatures. We found small but statistically significant differences by depth in the absolute T re, the magnitude of rise in T re and the lag of response in T re. During the stabilization stage before exercise, T re at 4 cm-depth was 0.5°C lower than T re at 16 cm-depth (p < 0.05). As the depth measured in the rectum was shallower, the rise in T re during exercise was greater. However the rise in T re at 10, 13, 16 and 19 cm showed no systemic difference. Among seven depths, T re at 16 cm-depth had the most stable feature with the longest latent period (3.1 ± 1.3 min) and the smallest rise (0.8 ± 0.3°C), while T re at 4 cm-depth was the most responsive to the change of exercise and rest with the shortest latent period (1.0 ± 0.6 min) and the greatest rise (1.2 ± 0.5°C). The differences observed in the depths from 4 to 19 cm were offset by exercise to some extent. In summary, T re appeared in different manners according to the seven depths during the repetition of exercise and rest, but T re deeper than 10 cm-depth seemed to have no systematic differences.  相似文献   

10.
The relationship between body temperature and the hunting response (intermittent supply of warm blood to cold exposed extremities) was quantified for nine subjects by immersing one hand in 8°C water while their body was either warm, cool or comfortable. Core and skin temperatures were manipulated by exposing the subjects to different ambient temperatures (30, 22, or 15°C), by adjusting their clothing insulation (moderate, light, or none), and by drinking beverages at different temperatures (43, 37 and 0°C). The middle finger temperature (T fi) response was recorded, together with ear canal (T ear), rectal (T re), and mean skin temperature ( sk). The induced mean T ear changes were ?0.34 (0.08) and +0.29 (0.03)°C following consumption of the cold and hot beverage, respectively. sk ranged from 26.7 to 34.5°C during the tests. In the warm environment after a hot drink, the initial finger temperature (T fi,base) was 35.3 (0.4)°C, the minimum finger temperature during immersion (T fi,min) was 11.3 (0.5)°C, and 2.6 (0.4) hunting waves occurred in the 30-min immersion period. In the neutral condition (thermoneutral room and beverage) T fi,base was 32.1 (1.0)°C, T fi,min was 9.6 (0.3)°C, and 1.6 (0.2) waves occurred. In the cold environment after a cold drink, these values were 19.3 (0.9)°C, 8.7 (0.2)°C, and 0.8 (0.2) waves, respectively. A colder body induced a decrease in the magnitude and frequency of the hunting response. The total heat transferred from the hand to the water, as estimated by the area under the middle finger temperature curve, was also dependent upon the induced increase or decrease in T ear and sk. We conclude that the characteristics of the hunting temperature response curve of the finger are in part determined by core temperature and sk. Both T fi,min and the maximal finger temperature during immersion were higher when the core temperature was elevated; sk seemed to be an important determinant of the onset time of the cold-induced vasodilation response.  相似文献   

11.
In conscious sheep, total femoral blood flow and flow through arteriovenous anastomoses (AVAs) and capillaries (CAP) in skin of the hindleg were measured employing electromagnetic and radioactive microsphere techniques. Core temperature (T c) was manipulated using intravascular heat exchangers and hindleg skin temperature (T sk) was manipulated by immersion in temperature controlled water. WithT c set 1°C above normal, AVA flow was highest at the lowestT sk tested (34°C); AVAs progressively constricted asT sk was increased from 34 to 40–41°C, then dilated again asT sk reached the highest levels tested (42–44°C). Skin CAP flow was not altered byT sk of 34 to 42°C but was increased at aT sk of 44°C. Therefore total skin blood flow followed essentially the same pattern as AVA flow; total femoral flow also followed this pattern. WhenT c was set 0.5°C below normal, AVA flow was low at all levels ofT sk. It is concluded thatT c plays a dominant role in control of skin blood flow, however, onceT c is at a level requiring increased heat loss,T sk exerts an extremely potent influence on the nature and magnitude of changes in skin blood flow. The pattern of flow changes appears to reflect principally a negative feedback mechanism aimed at maintainingT sk at approximately 40°C; this may contrast with mechanisms associated with sweating and/or active vasodilation in other species.  相似文献   

12.
We evaluated the cooling rate of hyperthermic subjects, as measured by three estimates of deep core temperatures (esophageal, rectal and aural canal temperatures), during immersion in a range of water temperatures. The objective of the study was to compare the three indices of core temperature and define safe cooling limits when using rectal temperature to avoid the development of hypothermia. On 4 separate days, seven subjects (four males, three females) exercised for 45.4±4.1 min at 65% at an ambient temperature of 39°C, RH: 36.5%, until rectal temperature (T re) increased to 40.0°C (39.5°C for two subjects). Following exercise, the subjects were immersed in a circulated water bath controlled at 2, 8, 14 and 20°C until T re returned to 37.5°C. When T re reached normothermia during the cooling period (37.5±0.05°C), both esophageal (T es) (35.6±1.3°C) and aural canal (T ac) (35.9±0.9°C) temperatures were approaching or reaching hypothermia, particularly during immersion in 2°C water (T es=34.5±1.2°C). On the basis of the heat loss data, the heat gained during the exercise was fully eliminated after 5.4±1.5, 7.9±2.9, 10.4±3.8 and 13.1±2.8 min of immersion in 2, 8, 14 and 20°C water, respectively, with the coldest water showing a significantly faster cooling rate. During the immersion in 2°C water, a decrease of only 1.5°C in T re resulted in the elimination of 100% of the heat gained during exercise without causing hypothermia. This study would therefore support cooling the core temperature of hyperthermic subjects to a rectal temperature between 37.8°C (during immersion in water >10°C) and 38.6°C (during immersion in water <10°C) to eliminate the heat gained during exercise without causing hypothermia.  相似文献   

13.
Protective vests worn by global security personnel, and weighted vests worn by athletes, may increase physiological strain due to added load, increased clothing insulation and vapor resistance. The impact of protective vest clothing properties on physiological strain, and the potential of a spacer garment to reduce physiological strain, was examined. Eleven men performed 3 trials of intermittent treadmill walking over 4 h in a hot, dry environment (35°C, 30% rh). Volunteers wore the US Army battledress uniform (trial B), B + protective vest (trial P), and B + P + spacer garment (trial S). Biophysical clothing properties were determined and found similar to many law enforcement, industry, and sports ensembles. Physiological measurements included core (T c), mean skin (T sk) and chest (T chest) temperatures, heart rate (HR), and sweating rate (SR). The independent impact of clothing was determined by equating metabolic rate in all trials. In trial P, HR was +7 b/min higher after 1 h of exercise and +19 b/min by the fourth hour compared to B (P < 0.05). T c (+0.30°C), T sk (+1.0°C) and Physiological Strain Index were all higher in P than B (P < 0.05). S did not abate these effects except to reduce T sk (P > S) via a lower T chest (−0.40°C) (P < 0.05). SR was higher (P < 0.05) in P and S versus B, but the magnitude of differences was small. A protective vest increases physiological strain independent of added load, while a spacer garment does not alter this outcome.  相似文献   

14.
Summary In six male subjects the sweating thresholds, heart rate (f c, as well as the metabolic responses to exercise of different intensities [40%, 60% and 80% maximal oxygen uptake (VO2max)], were compared at ambient temperatures (T a) of 5° C (LT) and 24° C (MT). Each period of exercise was preceded by a rest period at the same temperature. In LT experiments, the subjects rested until shivering occurred and in MT experiments the rest period was made to be of exactly equivalent length. Oxygen uptake (VO2) at the end of each rest period was higher in LT than MT (P< 0.05). During 20-min exercise at 40%VO2max performed in the cold no sweating was recorded, while at higher exercise intensities sweating occurred at similar rectal temperatures (T re) but at lower mean skin (T sk) and mean body temperatures (T b) in LT than MT experiments (P<0.001). The exercise inducedVO2 increase was greater only at the end of the light (40%VO2max) exercise in the cold in comparison with MT (P<0.001). Bothf c and blood lactate concentration [la]b were lower at the end of LT than MT for moderate (60%VO2max) and heavy (80%VO2max) exercises. It was concluded that the sweating threshold during exercise in the cold environment had shifted towards lower (T b) andT sk. It was also found that subjects exposed to cold possessed a potentially greater ability to exercise at moderate and high intensities than those at 24° C since the increases inT re,f c and [la]b were lower at the lowerT a.  相似文献   

15.
Body heat storage can be estimated by calorimetry (from heat gains and losses) or by thermometry [from changes (Δ) in mean body temperature (T b) calculated as a weighted combination of rectal (T re) and mean skin temperatures (T sk)]. If an invariant weighting factor ofT re andT sk were to be used (for instance, ΔT b = 0.8 · ΔT re + 0.2 · ΔT sk under hot conditions), body heat storage could be over- or underestimated substantially relative to calorimetry, depending on whether the subject was wearing light or protective clothing. This study investigated whether discrepancies between calorimetry and thermometry arise from methodological errors in the calorimetric estimate of heat storage, from inappropriate weightings in the thermometric estimate, or from both. Residuals of calorimetry versus thermometric estimates were plotted against individual variables in the standard heat balance equation, applying various weighting factors toT re andT sk. Whether light or protective clothing was worn, the calorimetric approach generally gave appropriate estimates of heat exchange components and thus heat storage. One exception was in estimating latent heat loss from sweat evaporation. If sweat evaporation exceeded 650 g·h−1 when wearing normal clothing, evaporative heat loss was overestimated and thus body heat storage was underestimated. Nevertheless, if data beyond this ceiling were excluded from the analyses, the standard 4:1 weighting matched calorimetric heat storage estimates quite well. When wearing protective clothing, the same 4:1 weighting approximated calorimetric heat storage with errors of less than approximately 10%, but only if environmental conditions allowed a subject to exercise for more than 90 min. The best thermometric estimates of heat storage were provided by using two sets of relative weightings, based upon the individual's metabolic heat production ( in kilojoules per metre squared per hour): {4 − [( )· ] 2}:1 for an initial, thermoneutral environment and {4 + [( ) · ] · 5}: 1 for a final, hot environment; the optimal value of lay between 450 and 500 kJ m−2 · h−1. We concluded that the accuracy of thermometric estimates of heat storage can be improved by modifying weighting factors ofT re andT sk according to the environment, type of clothing, and metabolic rate.  相似文献   

16.
The study was conducted to investigate the thermoregulation of young children compared to that of adults. A group of 19 children (ages 9 months-4.5 years), with only 3 children aged 3 years or above, and 16 adults first rested in a thermoneutral room (air temperature 25°C relative humidity 50%, air velocity 0.2 m·s–1). They were then exposed to a hot room (air temperature 35°C, relative humidity 70%, air velocity 0.3 m·s) next door for 30 min, and then returned to the thermoneutral room where they stayed for a further 30 min. The rectal temperature (T re), skin temperatures (T sk) at seven sites, heart rate (HR), total sweat rate ( ), local sweat rate ( ) and the Na+ concentration of the sweat were measured. There was no significant difference inT re between the children and their mothers in the rest phase. However, theT re of the children increased as soon as they entered the hot room and was significantly higher than during the control period, and than that of the mothers during heat exposure. MeanT sk, forehead, abdomen and instepT sk were significantly higher in the children during both the thermoneutral and heat exposure. The was significantly higher and Na+ concentrations in the sweat on the back and upperarm were significantly lower for the children during the heat exposure. They had a greater body surface area-to-mass ratio than the mothers by 64%, which indicated that they had advantages for thermal regulation. However, the sweating andT sk responses of the children were not enough to prevent a rise in body temperature. These results would suggest that the young children had the disadvantage of heating up easily due to their smaller body sizes and there may be maturation-related differences in thermoregulation during the heat exposure between young children and mothers.  相似文献   

17.
Early studies have demonstrated that rectal temperature (T re) decreases and mean skin temperature (T sk) increases in subjects changing their posture from standing to supine, and vice versa. Such changes have important implications insofar as thermal stress experiments are conducted and interpreted. However, the extent of these changes between steady-state conditions is not known. In addition, it is not known whether thermal balance is also affected by postural changes. To examine these questions, 11 healthy males were exposed to a thermoneutral air environment (28.2–28.5°C and 40% relative humidity) in various postures at rest. Body temperatures, heat losses, and metabolic rate were measured. Subjects wore shorts only and began in an upright posture (standing or sitting at an inclination of 7.5°) on a customized tilt-table. They were tilted twice, once into a supine position and then back to the original upright position. Each tilt occurred after steady state was satisfied based on the subject's circadian variation of T re determined previously in a 4.25 h control supine trial. Times to supine steady state following the first tilt were [mean (SE)] 92.6 (6.4) and 116.6 (5.1) min for the standing and sitting trials, respectively. Times to upright steady state following the second tilt were 107.9 (11.4) and 124.1 (9.0) min. Mean steady-state T re and T sk were 36.87 (0.07) and 34.04 (0.14), 37.47 (0.09) and 33.48 (0.14), and 37.26 (0.05) and 33.49 (0.10) °C for supine, standing, and sitting, respectively. Thermal balance was attained in all steady-state conditions, and allowing for a decrease in the weighting factor of T re for mean body temperature in the upright postures, it also appears that thermal balance was preserved between changes in posture. These results are consistent with no perceived changes by the subjects in their thermal comfort and skin wetness.  相似文献   

18.
This study determined whether a torso-vest forced ambient air body ventilation system (BVS) reduced physiological strain during exercise-heat stress. Seven heat-acclimated volunteers attempted nine, 2-h treadmill walks at 200 W m−2 in three environments, −40°C, 20% rh (HD), 35°C, 75% rh (HW), and 30°C, 50% rh, (WW) wearing the Army Combat Uniform, interceptor body armor (IBA) and Kevlar helmet. Three trials in each environment were BVS turned on (BVSOn), BVS turned off (BVSOff), and no BVS (IBA). In HD, BVSOn significantly lowered core temperature (T re), heart rate (HR), mean skin temperature (T sk), mean torso skin temperature (T torso), thermal sensation (TS), heat storage (S), and physiological strain index (PSI), versus BVSOff and IBA (P < 0.05). For HW (n = 6), analyses were possible only through 60 min. Exercise tolerance time (min) during HW was significantly longer for BVSOn (116 ± 10 min) versus BVSOff (95 ± 22 min) and IBA (96 ± 18 min) (P < 0.05). During HW, BVSOn lowered HR at 60 min versus IBA, T sk from 30 to 60 min versus BVSOff and IBA, and PSI from 45 to 60 min versus BVSOff and at 60 min versus IBA (P < 0.05). BVSOn changes in T re and HR were lower in HD and HW. During WW, BVSOn significantly lowered HR, T sk, and T torso versus BVSOff and IBA (P < 0.05) during late exercise. Sweating rates were significantly lower for BVSOn versus BVSOff and IBA in both HD and WW (P < 0.05), but not HW. These results indicate that BVSOn reduces physiological strain in all three environments by a similar amount; however, in hot-dry conditions the BVSOff increases physiological strain.  相似文献   

19.
Hand cooling is a cold pressor test, which induces general sympathetic stimulation. This cooling procedure is often performed to investigate cold induced vasodilatation (CIVD) in one finger. To investigate the effects of this sympathetic stimulation on local CIVD, 12 subjects immersed either the right index finger (T1), right hand (T2) or left hand and right index finger (T3) for 30 min in water at 5°C followed by 15-min recovery. Skin temperature and skin blood flow ( sk) measured by laser Doppler flowmetry on the right index finger, as well as heart rate (f c) and mean arterial blood pressure (), were continuously monitored during the three tests. Cutaneous vascular conductance was calculated as sk/. Concentrations of plasma noradrenaline (NA) and adrenaline (AD) were measured at different times during the tests. The results showed no cardiovascular change in T1, whereas f c and increased significantly at the beginning of both T2 and T3. Similarly, sympathetic stimulation was reflected in the NA concentrations, which increased significantly (P < 0.01) during T2 and T3 after 5 min of immersion, and remained elevated until the recovery period. The AD concentration did not change during the three tests. During T2, the CIVD appeared later and slower in comparison with T1 [CIVD onset: 12.81 (SEM 2.30) min in T2 and 5.62 (SEM 0.33) min in T1] . During T3, the CIVD onset was not delayed compared to T1 [6.38 (SEM 0.67) min], but the rewarming was lower [+5.40 (SEM 0.86)°C in T3 and +9.10 (SEM 1.31)°C in T1]. These results showed that CIVD could be altered by sympathetic stimulation but it also appeared that the onset of CIVD could be influenced by local cooling, independently of the general sympathetic stimulation. Accepted: 23 September 1999  相似文献   

20.
The effect of altering input from cutaneous thermoreceptors of the face and trunk on the relationship between hypothalamic temperature (T hy) and heat production (HP) was studied in three rats. The signal from cutaneous receptors was altered in two ways: by altering skin temperature (T sk) and by sectioning nerves supplying cutaneous receptors. It was found that whenT sk was lowered in normal ratsT hy threshold for thermoregulatory HP was elevated, but the slope of the relationship betweenT hy and HP was not significantly altered. After the spinal nerves serving the trunk skin were sectioned, the slope was reduced and the threshold was elevated markedly at both test ambient temperatures (T a), butT a had essentially the same effect on theT hy vs. HP relationship after cutaneous denervation as before. Clearly, eliminating input from trunk cutaneous thermoreceptors has a different effect than does lowering or raisingT sk, but thermoregulation is being achieved by the same basic mechanism before and after cutaneous denervation. After the cranial nerves supplying the skin of the face were also sectioned, there was a further elevation in theT hy threshold for HP atT a=25° C but no change atT a=15°C. It is concluded that cutaneous denervation does not substantially interfere with the rat's ability to regulate its body temperature, and that the reduced Thy sensitivity and increased Thy threshold exhibited after cutaneous denervation is the result of input from intact warm- and cold-thermoreceptors located in the core and in tissues intermediate to core and skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号