首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Hwang SK  Jin H  Kwon JT  Chang SH  Kim TH  Cho CS  Lee KH  Young MR  Colburn NH  Beck GR  Yang HS  Cho MH 《Gene therapy》2007,14(18):1353-1361
The long-term survival of lung cancer patients treated with conventional therapies remains poor and therefore the need for novel approaches remains high. This has led to the re-emergence of aerosol delivery as a therapeutic intervention. In this study, glucosylated polyethylenimine (GPEI) was used as carrier to investigate programmed cell death 4 (PDCD4) and PDCD4 mutant (D418A), an eIF4A-binding mutant, on PDCD4-related signaling and activator protein-1 (AP-1) activity in the lungs of AP-1 luciferase reporter mice. After confirming the efficiency of GPEI as a carrier in lungs, the effects of aerosol-delivered PDCD4 were investigated in AP-1 luciferase reporter mice. Aerosol delivery of GPEI/PDCD4 through a nose-only inhalation facilitated the apoptosis of lungs whereas aerosol PDCD4 mutant did not. Also, such aerosol delivery regulated proteins relevant to cell-cycle control and suppressed AP-1 activity. Results obtained by western blot analysis, immunohistochemistry, luciferase assay and deoxynucleotidyl-transferase-mediated nick end labeling study suggest that combined actions such as facilitating apoptosis, controlling cell cycle and suppression of AP-1 activity by PDCD4 may provide useful tool for designing lung tumor prevention and treatment by which PDCD4 functions as a transformation suppressor in the future.  相似文献   

2.
Hwang SK  Kwon JT  Park SJ  Chang SH  Lee ES  Chung YS  Beck GR  Lee KH  Piao L  Park J  Cho MH 《Gene therapy》2007,14(24):1721-1730
The low efficiency of conventional therapies in achieving long-term survival of lung cancer patients calls for development of novel options. Aerosol gene delivery may provide the alternative for safe and effective treatment for lung cancer. Therefore, current study was performed to elucidate the potential effects of C-terminal modulator protein (CTMP) via aerosol on lung tumorigenesis. Lentiviral vector-CTMP was delivered into K-ras null lung cancer mice through the nose-only inhalation system for 30 min. After 48 h, the potential effects of CTMP on Akt1-related signals and cell cycle regulation in the lungs were evaluated by western blot, immunohistochemistry and zymography. Lentivirus-based CTMP delivery inhibited the Akt1 activity through selective suppression of Akt1 phosphorylation at Ser473. Aerosol delivery of CTMP inhibited proteins important for Akt1 signals, cell cycle and tumor metastasis in lungs of K-ras null mice. Together, our results suggest that lentivirus-mediated aerosol delivery of CTMP may be compatible with noninvasive in vivo gene therapy. Our results emphasize the importance of noninvasive-targeted delivery of CTMP for lung cancer therapy in the future. While the studies are conducted in mice, it is envisioned that noninvasive targeting the specific genes responsible for cancer progression is an attractive strategy for effective anticancer therapeutics.  相似文献   

3.
Lung cancer has emerged as a leading cause of cancer death in the world; however, most of the current conventional therapies are not sufficiently effective in altering the progression of disease. Therefore, development of novel treatment approaches is needed. Although several genes and methods have been used for cancer gene therapy, a number of problems such as specificity, efficacy and toxicity reduce their application. This has led to re-emergence of aerosol gene delivery as a noninvasive method for lung cancer treatment. In this study, nano-sized glucosylated polyethyleneimine (GPEI) was used as a gene delivery carrier to investigate the effects of Akt wild type (WT) and kinase deficient (KD) on Akt-related signaling pathways and protein translation in the lungs of CMV- LucR-cMyc-IRES-LucF dual reporter mice. These mice are a powerful tool for the discrimination between cap-dependent/-independent protein translation. Aerosols containing self-assembled nano-sized GPEI/Akt WT or GPEI/Akt KD were delivered into the lungs of reporter mice through nose-only-inhalation-chamber with the aid of nebulizer. Aerosol delivery of Akt WT caused the increase of protein expression levels of Akt-related signals, whereas aerosol delivery of Akt KD did not. Furthermore, dual luciferase activity assay showed that aerosol delivery of Akt WT enhanced cap-dependent protein translation, whereas a reduction in cap-dependent protein translation by Akt KD was observed. Our results clearly showed that targeting Akt may be a good strategy for prevention as well as treatment of lung cancer. These studies suggest that our aerosol delivery is compatible for in vivo gene delivery which could be used as a noninvasive gene therapy in the future.  相似文献   

4.
Yao B  He QM  Tian L  Xiao F  Jiang Y  Zhang R  Li G  Zhang L  Hou JM  Wang L  Cheng XC  Wen YJ  Kan B  Li J  Zhao X  Hu B  Zhou Q  Zhang L  Wei YQ 《Human gene therapy》2005,16(9):1075-1086
Targeting tumor endothelium is an important strategy for cancer therapy. We evaluated the effectiveness of gene therapy, that is, intramuscular delivery of plasmid DNA encoding tumstatin (pSecTag2B-tum), combined with gemcitabine administration in vitro and in vivo, using colon carcinoma (CT26) and Lewis lung carcinoma (LLC) murine models. The in vitro growth-inhibitory and proapoptotic effects of gemcitabine and/or tumstatin on human umbilical vein endothelial cells (HUVECs) and mouse endothelial cells (SVEC4-10), respectively, were assessed. in vitro, conditioned medium from pSecTag2B-tum-transfected COS cells inhibited the growth of endothelial cells but not of CT26 or LLC cells, whereas gemcitabine inhibited the growth of both endothelial cells and CT26 and LLC cells. Mice bearing subcutaneously established CT26 or LLC tumors received pSecTag2B-tum alone or in combination with gemcitabine to assess tumor growth inhibition. in vivo, combined treatment with pSecTag2B-tum and gemcitabine significantly decreased tumor growth through increased inhibition of tumor angiogenesis and increased tumor cell apoptosis compared with either agent alone. Enhanced antiproliferative and proapoptotic activity of the combination therapy on tumor-associated endothelial cells was calculated to be significant. This study suggests that combined treatment by the intramuscular delivery of plasmid DNA encoding tumstatin and gemcitabine augments tumor growth inhibition by suppressing angiogenesis and enhancing apoptosis in murine models. A combination of these agents could be used in future studies and translated into the clinical setting.  相似文献   

5.
6.
Efficient gene delivery by urocanic acid-modified chitosan.   总被引:14,自引:0,他引:14  
Nonviral delivery systems for gene therapy have been increasingly proposed as safer alternatives to viral vectors. Chitosan is considered to be a good candidate for the gene delivery system since it is already known as a biocompatible, biodegradable, and low toxic material with high cationic charge potential. However, the use of chitosan for gene delivery is limited due to low transfection efficiency. To enhance the transfection efficiency, water-soluble chitosan (WSC) was coupled with urocanic acid (UA) bearing imidazole ring which can play the crucial role in endosomal rupture through proton sponge mechanism. The urocanic acid-modified chitosan (UAC) was complexed with DNA, and UAC/DNA complexes were characterized. The sizes of UAC/DNA complexes under physiological condition (109-342 nm) were almost same as those of chitosan-DNA complexes. UAC also showed good DNA binding ability, high protection of DNA from nuclease attack, and low cytotoxicity. The transfection efficiency of chitosan into 293T cells was much enhanced after coupling with UA and increased with an increase of UA contents in the UAC.  相似文献   

7.
The existence of drug resistance strikingly hampers the therapy of many malignancies, including breast cancer. Long non-coding RNAs (LncRNAs) have been reported to participate in the regulation of various biological processes associated with cancer progression. Whereas, the role of linc00472 in breast cancer pathogenesis and doxorubicin (ADR) resistance have not been well elucidated. In the present study, it is found that linc00472 expression was decreased in breast cancer tissues and cells. Moreover, higher linc00472 expression was positively associated with favorable disease status and prognosis for breast cancer patients. Functional analyses revealed that linc00472 overexpression suppressed proliferation and invasion, facilitated apoptosis and enhanced ADR sensitivity in breast cancer cells. Mechanistic studies discovered that linc00472 acted as a competing endogenous RNA (ceRNA) of miR-141 to sequester miR-141 from its target mRNA PDCD4 (programmed cell death 4). Furthermore, the inhibition effect of linc00472 on breast cancer cell progression and ADR resistance could be partly abrogated by miR-141 up-regulation or PDCD4 knockdown. In vivo assays also demonstrated that linc00472 hindered tumor growth by suppressing miR-141 expression and enhancing PDCD4 expression. In conclusion, linc00472 blocked breast cancer progression and induced ADR sensitivity through regulation of miR-141 and PDCD4, highlighting a potential therapeutic strategy for breast cancer patients.

Linc00472 expression was down-regulated in breast cancer tissues and cells, and was associated with the development and prognosis of breast cancer.  相似文献   

8.
Bladder cancer (BC) is a lethal cancer that threatens the health of millions of people. Chemotherapy drug resistance, for example, cisplatin (DDP) resistance, is a huge limitation for BC therapy. PTEN pseudogene-1 (PTENP1) has been identified as a significant biomarker of multiple cancers. Therefore, it is essential to illuminate the molecular mechanism of PTENP1 in BC cell DDP resistance and progression. Serum exosomes were isolated using an ExoQuick precipitation kit. Serum exosomes were round-shaped vesicles of 100 ± 60 nm in size. The expression of PTENP1 was down-regulated in serum exosomes isolated from cisplatin non-responsive patients compared with responsive patients. ROC curves certified the diagnostic value of PTENP1. Apparently, PTENP1 transfection inhibited DDP-resistant BC cell proliferation, migration, cisplatin resistance and facilitated apoptosis. Next, we discovered that PTENP1 was a sponge of miR-103a, while PDCD4 was a target of miR-103a. More importantly, PTENP1 regulated DDP-resistant cell viability, migration, apoptosis and cisplatin resistance by interacting with the miR-103a/PDCD4 axis. In addition, PTENP1 hindered tumor growth of cisplatin-resistant mice. Exosome-derived PTENP1 suppressed the DDP resistance of BC by inhibiting cell proliferation, migration and promoting apoptosis through regulating the miR-103a/PDCD4 axis, representing a targeted therapy for DDP-resistant BC patients.

Bladder cancer (BC) is a lethal cancer that threatens the health of millions of people.  相似文献   

9.
目的:探讨人凋亡相关新基因PNAS-4(hPNAS-4)基因通过脂质体转染至Lewis肺癌LL2细胞后对放射治疗的增敏作用。方法:用脂质体介导的转染技术,将hPNAS-4基因导入Lewis肺癌LL2细胞中,Western blot鉴定其过表达后,观察X射线照射对其集落形成的影响;流式细胞仪检测hPNAS-4基因或/和放疗(0,1,2,4,6 Gy)对LL2细胞生长抑制及凋亡的影响。结果:通过Western blot证实了hPNAS-4基因在LL2细胞中的过表达。Lip-hPNAS-4加放射治疗处理组细胞的生存能力明显降低,肿瘤细胞的克隆形成明显减少,流式细胞术检测体外培养的肿瘤细胞凋亡明显增加。结论:hPNAS-4基因联合放射治疗能产生协同抗肿瘤效应。  相似文献   

10.
11.
Tumor radioresponsiveness depends on endothelial cell death, which leads in turn to tumor hypoxia. Radiation-induced hypoxia was recently shown to trigger tumor radioresistance by activating angiogenesis through hypoxia-inducible factor 1-regulated (HIF-1-regulated) cytokines. We show here that combining targeted radioiodide therapy with angiogenic inhibitors, such as canstatin, enhances direct tumor cell apoptosis, thereby overcoming radio-induced HIF-1-dependent tumor survival pathways in vitro and in vivo. We found that following dual therapy, HIF-1alpha increases the activity of the canstatin-induced alpha(v)beta(5) signaling tumor apoptotic pathway and concomitantly abrogates mitotic checkpoint and tetraploidy triggered by radiation. Apoptosis in conjunction with mitotic catastrophe leads to lethal tumor damage. We discovered that HIF-1 displays a radiosensitizing activity that is highly dependent on treatment modalities by regulating key apoptotic molecular pathways. Our findings therefore support a crucial role for angiogenesis inhibitors in shifting the fate of radiation-induced HIF-1alpha activity from hypoxia-induced tumor radioresistance to hypoxia-induced tumor apoptosis. This study provides a basis for developing new biology-based clinically relevant strategies to improve the efficacy of radiation oncology, using HIF-1 as an ally for cancer therapy.  相似文献   

12.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL24), selectively induces apoptosis in cancer cells without harming normal cells. It also exerts immunomodulatory and antiangiogenic effects, as well as potent antitumor bystander effects, making it an ideal candidate for a new anticancer gene therapy. Here, we examined the feasibility of adeno-associated virus type 1 (AAV1) vector-mediated systemic gene therapy using mda-7/IL24. In vitro studies showed that medium conditioned by AAV1-mda7-transducedC2C12 cells induces tumor cell-specific apoptosis and inhibits angiogenesis in a human umbilical vein endothelial cell tube formation assay. To assess the in vivo effects of AAV1-mediated systemic delivery of MDA-7/IL24, we generated a subcutaneous tumor model by injecting Ehrlich ascites tumor cells into the dorsum of DDY mice. A single intravenous injection of AAV1-mda7 (2.0 x 10(11) viral genomes) significantly inhibited tumor growth. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and immunohistochemical analyses showed significant induction of tumor-cell-specific apoptosis and reduction of microvessel formation within the tumors, and there was a significant increase in survival among the AAV1-mda7-treated mice. These results clearly demonstrate that continuous systemic delivery of MDA-7/IL24 can serve as an effective treatment for cancer. Thus, AAV1 vector-mediated systemic delivery of MDA-7/IL24 represents a potentially important new approach to anticancer therapy.  相似文献   

13.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is of particular interest in the development of prostate carcinoma therapeutics as it preferentially induces apoptosis of tumor cells. To employ adenoviral vectors for highly efficient and specific TRAIL gene transfer into cancer cells could overcome some potential problems for recombinant TRAIL. The vascular endothelial growth factor receptor FLT-1 is involved in regulation of angiogenesis and tumor growth, invasion, and metastasis of prostate carcinoma. FLT-1 expression is observed in both tumor endothelial cells and prostate cancer cells. We developed an adenoviral vector encoding the TRAIL gene under control of the FLT1 promoter (AdFlt-TRAIL), which produced endothelial and prostate cancer cell death. The combination of ionizing radiation and adenovirus-driven TRAIL expression overcame human prostate cancer cell resistance to TRAIL. Furthermore, in vivo administration of AdFlt-TRAIL at the site of tumor growth in combination with radiation treatment produced significant suppression of the growth of DU145 human prostate tumor xenografts in athymic nude mice. Our results suggest that specific TRAIL delivery employing the FLT1 promoter can effectively inhibit tumor growth and demonstrate the advantage of combination radiotherapy and gene therapy for the treatment of prostate cancer.  相似文献   

14.
The melanoma differentiation-associated gene-7 (mda-7), cloned from a human melanoma cell line H0-1, is known to induce tumor cell-selective growth inhibition in breast cancer cells in vitro and loss of tumorigenicity ex vivo. Yet, the mechanisms underlying these effects are still unknown. Therefore, we investigated these mechanisms on the molecular level in human non-small cell lung carcinoma (NSCLC) cells in vitro. Overexpression of mda-7 protein by Ad-mda-7 significantly suppressed proliferation and induced G2/M cell cycle arrest in wild-type p53 (A549, H460), and p53-null (H1299) non-small cell lung cancer cell lines, but not in normal human lung fibroblast (NHLF) cells. p53, Bax, and Bak protein expression was up-regulated in wild-type p53 tumor cell lines, but not in p53-null cells, suggesting that an intact p53 pathway was required for Bax and Bak induction. However, in all three cancer cell lines tested, activation of the caspase cascade and cleavage of poly(ADP-ribose) polymerase (PARP) appeared to be independent of the p53 mutational status. Together, these results suggest that apoptosis may be induced via multiple pathways by Ad-mda-7 in lung cancer cells and that Ad-mda-7 has the potential to become a novel therapeutic for clinical cancer gene therapy. Gene Therapy (2000) 7, 2051-2057.  相似文献   

15.
Lung cancer is a leading cause of death world-wide and the long-term survival rate for lung cancer patients is one of the lowest for any cancer. New therapies are urgently needed. The present study was designed to evaluate an immunomodulatory oligonucleotide as a novel type of therapy for lung cancer. The in vivo effects of the immunomodulatory oligonucleotides were determined in four tumor models derived from human non-small cell lung cancer (NSCLC) cell lines (A549, H1299, H358, and H520), administered alone or in combination with conventional chemotherapeutic agents used to treat lung cancer. The in vitro effects of the immunomodulatory oligonucleotide on the growth, apoptosis, and proliferation of NSCLC cells were also determined. We also examined NSCLC cells for expression of Toll-like receptor 9 (TLR9), the receptor for the immunomodulatory oligonucleotide. We showed several important findings: (a) treatment with the immunomodulatory oligonucleotide led to potent antitumor effects, inhibiting tumor growth by at least 60% in all four in vivo models; (b) combination with the immunomodulatory oligonucleotide led to enhanced effects following treatment with gemcitabine or Alimta; (c) the immunomodulatory oligonucleotide increased apoptosis, decreased proliferation, and decreased survival in A549 cells in vitro; and (d) both TLR9 mRNA and protein were expressed in NSCLC cells. The immunomodulatory oligonucleotide has potent antitumor effects as monotherapy and in combination with conventional chemotherapeutic agents, and may act directly on NSCLC cells via TLR9. The present study provides a rationale for developing the immunomodulatory oligonucleotide for lung cancer therapy.  相似文献   

16.
Wu Y  Li ZY  Zhao X  Kan B  Wei YQ 《Human gene therapy》2006,17(9):941-948
The growth and persistence of solid tumors and their metastases are angiogenesis dependent. Targeting angiogenesis represents a new strategy for the development of antitumor therapies. The extracellular immunoglobulin- like domain of VEGFR-2 (KDR/Flk-1), soluble VEGFR-2, may form a heterodimeric complex with a wild-type VEGF receptor and function as a dominant negative receptor. We assessed the effects of sFlk-1 on SKOV3 cell growth and proliferation in vitro. Furthermore, we investigated the effectiveness of recombinant soluble Flk-1 adenovirus on inhibition of tumor growth in an ovarian tumor (SKOV3) nude murine model, combined with cis-diamminedichloroplatinum (DDP). Nude mice bearing SKOV3 tumors received adsFlk- 1 (recombinant soluble Flk-1 adenovirus) and DDP, respectively or in combination, and tumor growth inhibition, microvessel density, and apoptosis in tumor tissue were assessed by immunohistochemical analysis. Our data revealed that sFlk-1 had little effect on tumor cell growth in vitro, whereas ad-sFlk-1 administration could inhibit tumor growth significantly (p < 0.05) in the nude murine model, accompanied by angiogenesis suppression and apoptosis induction, and augmented efficiency was observed in combination with DDP as well. The present findings suggest that gene therapy with ad-sFlk-1 is an efficient antiangiogenesis strategy, which may be important in further exploration and possible translation into a clinical trial.  相似文献   

17.
18.
Sun X  Kanwar JR  Leung E  Vale M  Krissansen GW 《Gene therapy》2003,10(25):2081-2089
The von Hippel-Lindau tumor suppressor protein (pVHL) suppresses tumor formation by binding the alpha subunits of hypoxia-inducible factors (HIFs) responsible for stimulating tumor angiogenesis and glycolysis, targeting them for ubiquitination and proteasomal destruction. Loss of pVHL leads to the development of sporadic renal cell carcinomas (RCCs). In the present study, we sought to determine whether engineered overexpression of pVHL in tumors other than RCC can inhibit tumor growth, either as a monotherapy, or in combination with antisense HIF-1alpha therapy. Intratumoral injection of subcutaneous EL-4 thymic lymphomas with an expression plasmid encoding pVHL resulted in the downregulation of HIF-1alpha and vascular endothelial growth factor (VEGF). There was a concomitant reduction in tumor angiogenesis and increased tumor cell apoptosis due in part to downregulation of Bcl-2 expression. VHL therapy resulted in the complete regression of small (0.1 cm diameter) tumors whereas, in contrast, large (0.4 cm diameter) EL-4 tumors were only slowed in their growth. Nevertheless, large tumors completely regressed in response to intratumoral injection of a combination of antisense HIF-1alpha and VHL plasmids. Combination therapy resulted in increased losses of HIF-1alpha, VEGF, and tumor blood vessels, and increased tumor cell apoptosis. These novel results suggest that synergistic therapies that simultaneously block the expression or function of HIF-1alpha, and enhance the expression or function of VHL may be beneficial in the treatment of cancer.  相似文献   

19.
A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi‐mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off‐target effects of RNAi.  相似文献   

20.
Wang H  Thompson TC 《Gene therapy》2008,15(10):787-796
There is a critical need to develop new and effective cancer therapies that target bone, the primary metastatic site for prostate cancer and other malignancies. Among the various therapeutic approaches being considered for this application, gene-modified cell-based therapies may have specific advantages. Gene-modified cell therapy uses gene transfer and cell-based technologies in a complementary fashion to chaperone appropriate gene expression cassettes to active sites of tumor growth. In this paper, we briefly review potential cell vehicles for this approach and discuss relevant gene therapy strategies for prostate cancer. We further discuss selected studies that led to the conceptual development and preclinical testing of IL-12 gene-modified bone marrow cell therapy for prostate cancer. Finally, we discuss future directions in the development of gene-modified cell therapy for metastatic prostate cancer, including the need to identify and test novel therapeutic genes such as GLIPR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号