首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smoking-induced ventral striatum dopamine release   总被引:11,自引:0,他引:11  
OBJECTIVE: Substantial evidence from animal models demonstrates that dopamine release in the ventral striatum underlies the reinforcing properties of nicotine. The authors used [(11)C]raclopride bolus-plus-continuous-infusion positron emission tomography (PET) to determine smoking-induced ventral striatum dopamine release in humans. METHOD: Twenty nicotine-dependent smokers (who smoked > or =15 cigarettes/day) underwent a [(11)C]raclopride bolus-plus-continuous-infusion PET session. During the session, subjects had a 10-minute break outside the PET apparatus during which 10 subjects smoked a cigarette and 10 did not smoke (as a control condition). RESULTS: The group that smoked had greater reductions in [(11)C]raclopride binding potential in ventral striatum regions of interest than the group that did not smoke, particularly in the left ventral caudate/nucleus accumbens and left ventral putamen (range for smoking group=-25.9% to -36.6% reduction). Significant correlations were found between change from before to after the smoking break in craving ratings and change from before to after the break in binding potential for these two regions. CONCLUSIONS: Nicotine-dependent subjects who smoked during a break in PET scanning had greater reductions in [(11)C]raclopride binding potential (an indirect measure of dopamine release) than nicotine-dependent subjects who did not smoke. The magnitude of binding potential changes was comparable to that found in studies that used similar methods to examine the effects of other addictive drugs.  相似文献   

2.
Dopamine release in human ventral striatum and expectation of reward   总被引:11,自引:0,他引:11  
Using the ability of [11C]raclopride to compete with dopamine for D(2)/D(3) receptors, we investigated by positron emission tomography the effect of placebo (saline) injection on dopamine release in the ventral striatum of patients with Parkinson's disease. We found evidence for placebo-induced dopamine release of similar magnitude to that reported in healthy volunteers after amphetamine administration. However, in contrast to the dorsal striatum, there were no differences in [11C]raclopride binding potential changes between patients who experienced the reward (those who reported placebo-induced clinical benefit) and those who did not. We conclude that the release of dopamine in the ventral striatum (nucleus accumbens) is related to the expectation of reward and not to the reward itself. These observations have potential implications for the treatment of drug addiction.  相似文献   

3.
In common with many addictive substances and behaviors nicotine activates the mesolimbic dopaminergic system. Brain microdialysis studies in rodents have consistently shown increases in extrasynaptic DA levels in the striatum after administration of nicotine but PET experiments in primates have given contradicting results. A recent PET study assessing the effect of smoking in humans showed no change in [(11)C]raclopride binding in the brain, but did find that "hedonia" correlated with a reduction in [(11)C]raclopride binding suggesting that DA may mediate the positive reinforcing effects of nicotine. In this experiment we measured the effect of nicotine, administered via a nasal spray, on DA release using [(11)C]raclopride PET, in 10 regular smokers. There was no overall change in [(11)C]raclopride binding after nicotine administration in any of the striatal regions examined. However, the individual change in [(11)C]raclopride binding correlated with change in subjective measures of "amused" and "happiness" in the associative striatum (AST) and sensorimotor striatum (SMST). Nicotine concentration correlated negatively with change in BP in the limbic striatum. Nicotine had significant effects on cardiovascular measures including pulse rate, systolic blood pressure (BPr), and diastolic BPr. Baseline [(11)C]raclopride binding potential (BP) in the AST correlated negatively with the Fagerstr?m score, an index of nicotine dependence. These results support a role for the DA system in nicotine addiction, but reveal a more complex relationship than suggested by studies in animals.  相似文献   

4.
BACKGROUND: Studies in experimental animals have implicated the mesolimbic dopaminergic projections into the ventral striatum in the neural processes underlying behavioral reinforcement and motivated behavior; however, understanding the relationship between subjective emotional experience and ventral striatal dopamine (DA) release has awaited human studies. Using positron emission tomography (PET), we correlated the change in endogenous dopamine concentrations following dextroamphetamine (AMPH) administration with the associated hedonic response in human subjects and compared the strength of this correlation across striatal subregions. METHODS: We obtained PET measures of [(11)C]raclopride specific binding to DA D2/D3 receptors before and after AMPH injection (0.3 mg/kg IV) in seven healthy subjects. The change in [(11)C]raclopride binding potential (DeltaBP) induced by AMPH pretreatment and the correlation between DeltaBP and the euphoric response to AMPH were compared between the anteroventral striatum (AVS; comprised of accumbens area, ventromedial caudate, and anteroventral putamen) and the dorsal caudate (DCA) using an MRI-based region of interest analysis of the PET data. RESULTS: The mean DeltaBP was greater in the AVS than in the DCA (p <.05). The AMPH-induced changes in euphoria analog scale scores correlated inversely with DeltaBP in the AVS (r = -.95; p <.001), but not in the DCA (r =.30, ns). Post hoc assessments showed that changes in tension-anxiety ratings correlated positively with DeltaBP in the AVS (r =.80; p [uncorrected] <.05) and that similar relationships may exist between DeltaBP and emotion ratings in the ventral putamen (as were found in the AVS). CONCLUSIONS: The preferential sensitivity of the ventral striatum to the DA releasing effects of AMPH previously demonstrated in experimental animals extends to humans. The magnitude of ventral striatal DA release correlates positively with the hedonic response to AMPH.  相似文献   

5.
Ethanol increases the interstitial dopamine (DA) concentration in the nucleus accumbens (NAcc) of experimental animals, but positron emission tomography (PET) studies using the single-bolus protocol of the [11C]-raclopride competition paradigm have yielded conflicting results in humans. To resolve disparate previous findings, we utilized the bolus-plus-infusion (B/I) method, allowing both baseline and intervention quantification of [11C]raclopride binding during a single 105-minute PET scan, to investigate possible ethanol-induced DA release in nine healthy male subjects. A 25-minute intravenous ethanol (7.6%) infusion, resulting in a 1.3 g/L mean blood ethanol concentration, was administered using masked timing during the PET scan. Automated region-of-interest analysis testing the difference between baseline (40–50 minutes) and intervention (60–85 minutes) revealed an average 12.6% decrease in [11C]raclopride binding in the ventral striatum (VST, P=0.003) including the NAcc. In addition, a shorter time interval from the start of ethanol infusion to the first subjective effect was associated with a greater binding potential decrease bilaterally in the VST (r=0.92, P=0.004), and the feeling of pleasure was associated with a decrease in binding potential values in both the caudate nucleus (r=−0.87, P=0.003) and putamen (r=−0.74; P=0.02). These results confirm that ethanol induces rapid DA release in the limbic striatum, which can be reliably estimated using the B/I method in one imaging session.  相似文献   

6.
In rodents, stress causes rapid increases in extracellular dopamine (DA) concentration in cortical and subcortical brain regions, and positron emission tomography (PET) studies in healthy humans have suggested psychological and pharmacological stressors are associated with increased DA concentration in the striatum. In this experiment, we measured the effect of stress, induced by difficult mental arithmetic, on [11C]raclopride binding in order to index striatal DA release. To refine measurements and facilitate interpretation of results a combination of head movement correction, a carefully designed control condition and bolus infusion administration of [11C]raclopride were employed. Fourteen healthy volunteers were scanned using [11C]raclopride PET. Physiological and psychological responses to the task were consistent with a stress response with changes in cardiovascular, hormonal, and subjective state indices. No change of ventral or dorsal striatal [11C]raclopride binding was found in the stress condition compared to nonstress. This negative result suggests that significant DA release does not occur in the striatum in healthy humans after mild, psychological stress.  相似文献   

7.
Dopa-responsive dystonia (DRD) is a lifelong disorder in which dopamine deficiency is not associated with neuronal loss and therefore it is an ideal human model for investigating the compensatory changes that occur in response to this biochemical abnormality. Using positron emission tomography (PET), we examined the (+/-)-alpha-[(11)C]dihydrotetrabenazine ([(11)C]DTBZ) binding potential of untreated DRD patients and normal controls. Two other PET markers of presynaptic nigrostriatal function, d-threo-[(11)C]methylphenidate ([(11)C]MP) and 6-[(18)F]fluoro-L-dopa ([(18)F]-dopa), and [(11)C]raclopride were also used in the study. We found increased [(11)C]DTBZ binding potential in the striatum of DRD patients. By contrast, no significant changes were detected in either [(11)C]MP binding potential or [(18)F]-dopa uptake rate constant. In addition, we found evidence for increased dopamine turnover in one DRD patient by examining changes in [(11)C]raclopride binding potential in relation to levodopa treatment. We propose that the increase in [(11)C]DTBZ binding likely reflects the dramatic decrease in the intravesicular concentration of dopamine that occurs in DRD; upregulation of vesicular monoamine transporter type 2 (VMAT2) expression may also contribute. Our findings suggest that the striatal expression of VMAT2 (as estimated by [(11)C]DTBZ binding) is not coregulated with dopamine synthesis. This is in keeping with a role for VMAT2 in other cellular processes (i.e., sequestration and release from the cell of potential toxic products), in addition to its importance for the quantal release of monoamines.  相似文献   

8.
[(11)C]raclopride binding to D2 dopamine receptors in the striatum is sensitive to drug-induced changes of endogenous dopamine concentration. We recently developed the new radioligand [(11)C]FLB 457, which is suitable for positron emission tomography (PET) studies of extrastriatal D2 dopamine receptors. The purpose of this PET study was to examine the effect of amphetamine on [(11)C]FLB 457 binding in extrastriatal regions. Each of three cynomolgus monkeys was examined at baseline conditions, 15 min and 3 h after I.V. injection of amphetamine (2 mg/kg). The effect of amphetamine was calculated from the ratio of specific [(11)C]FLB 457 binding to the binding in the cerebellum, a region which was used as reference for free and nonspecific binding in the brain. The changes of the ratio in the striatum, the thalamus, and the neocortex were between -1.2% and -15.5% at 15 min and -2.1% and -16.3% at 3 h, respectively, after amphetamine administration. The reductions of the binding ratios in the extrastriatal regions are similar to those reported for [(11)C]raclopride binding in the striatum. These data in a limited series of monkeys suggest that [(11)C]FLB 457 binding to D2 dopamine receptors in extrastriatal regions is sensitive to changes in the concentration of endogenous dopamine.  相似文献   

9.
The availability of dopamine D(2/3) binding sites in brain of six male and six female G?ttingen minipigs was measured in a baseline condition and after challenge with amphetamine sulfate (1mg/kg, i.v.) in PET studies with [(11)C]raclopride. Maps of the binding potential (pB; B(max)/K(d)) of [(11)C]raclopride were spatially normalized and co-registered to a common stereotaxic coordinate system for pig brain. The pB maps were then analyzed by volume of interest and voxel-wise comparisons of gender and condition. The mean baseline pB tended to be 10-20% higher in striatum of the female group, but this gender difference was not significant. Variance of the mean baseline pB was higher in the males (44%) than in females (30%), but there was no correlation between pB and individual plasma cortisol or testosterone concentrations. Using statistical parametric mapping, we detected a focus in the right posterior putamen where the magnitude of the amphetamine-evoked decrease in pB was greater in the male than in the female group. Thus, the spatial pattern of reactivity of dopamine D(2/3) receptor availability to amphetamine challenge is not identical in male and female pigs. Within the entire population, the decline in pB evoked by amphetamine (Delta pB) was greater in the ventral striatum (-28%) than in the caudate nucleus (-17%), consistent with earlier reports in monkeys and humans. The magnitude of Delta pB correlated highly with the baseline pB values in all divisions of the striatum. Based upon the principles of competitive binding, the slope of this empirical relationship, f(i), is equal to the fraction of [(11)C]raclopride binding sites sensitive to endogenous dopamine; the magnitude of this fraction ranged from 0.29 in the caudate to 0.36 in the ventral striatum.  相似文献   

10.
Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [(11)C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([(11)C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [(11)C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.  相似文献   

11.
The effects of ketamine, a noncompetitive antagonist of NMDA receptors, on the striatal dopaminergic system were evaluated multiparametrically in the monkey brain using high-resolution positron emission tomography (PET) in combination with microdialysis. L-[beta-(11)C]DOPA, [(11)C]raclopride, and [(11)C]beta-CFT were used to evaluate dopamine synthesis rate, D(2) receptor binding, and transporter availability, respectively, in conscious and ketamine-anesthetized animals. Dopamine concentrations in the striatal extracellular fluid (ECF) were simultaneously measured by PET. Thirty minutes prior to PET scan, intravenous administration of ketamine was started by continuous infusion at a rate of 3 or 10 mg/kg/h. Ketamine infusion dose-dependently decreased [(11)C]raclopride binding, but induced no significant changes in dopamine concentration in the striatal ECF as measured by microdialysis at any dose used. In contrast, ketamine increased both dopamine synthesis and DAT availability as measured by L-[beta-(11)C]DOPA and [(11)C]beta-CFT, respectively, in a dose-dependent manner. These results suggest that the inhibition of glutamatergic neuronal activity modulates dopamine turnover in the striatum by simultaneous enhancement of the dynamics of dopamine synthesis and DAT availability to the same extent, resulting in no apparent changes in ECF dopamine concentration as measured by microdialysis. It also suggests that the alteration of [(11)C]raclopride binding in vivo as measured by PET might not simply be modulated by the static synaptic concentration of dopamine.  相似文献   

12.
CONTEXT: Preclinical studies demonstrate that nicotine administration leads to dopamine release in the ventral striatum. However, human studies reveal considerable interindividual variability in the extent of smoking-induced dopamine release. OBJECTIVE: To determine whether common gene variants of the brain dopamine pathway explain this observed phenotypic variability in humans. DESIGN: Blood samples were drawn to determine gene variants of dopamine system components, and positron emission tomography scanning with the radiotracer raclopride labeled with radioactive carbon (11C) was performed to measure smoking-induced dopamine release. SETTING: Academic brain imaging center. PARTICIPANTS: Forty-five tobacco-dependent smokers. INTERVENTIONS: Subjects either smoked a cigarette (n = 35) or did not smoke (n = 10) during positron emission tomography scanning. MAIN OUTCOME MEASURES: Gene variants of dopamine system components (the dopamine transporter variable nucleotide tandem repeat, D2 receptor Taq A1/A2, D4 receptor variable nucleotide tandem repeat, and catechol-O-methyltransferase Val158Met polymorphisms) and change in [11C]raclopride binding potential in the ventral caudate/nucleus accumbens on positron emission tomography scans. RESULTS: For subjects who smoked during scanning, those with at least one 9 allele of the dopamine transporter variable nucleotide tandem repeat, fewer than 7 repeats of the D4 variable nucleotide tandem repeat, and the Val/Val catechol-O-methyltransferase genotype had greater decreases in binding potential (an indirect measure of dopamine release) with smoking than those with the alternate genotypes. An overall decrease in ventral caudate/nucleus accumbens binding potential in those who smoked compared with those who did not smoke was also found but was smaller in magnitude than previously reported. CONCLUSIONS: Smokers with genes associated with low resting dopamine tone have greater smoking-induced (phasic) dopamine release than those with alternate genotypes. These findings suggest that dopamine system genotype variabilities explain a significant proportion of the interindividual variability in smoking-induced dopamine release and indicate that smoking-induced dopamine release has a genetic predisposition.  相似文献   

13.
The effects of dopamine release manipulated by drugs on the in vivo binding of [11C]raclopride in the striatum were evaluated in conscious monkeys combined with microdialysis. The in vivo binding of [11C]raclopride was evaluated by high resolution positron emission tomography (PET), and the dopamine concentrations in the striatal extracellular fluid (ECF) were measured by microdialysis in the same animals. The systemic administration of the direct dopamine enhancers, GBR12909 (a dopamine transporter (DAT) blocker, at 0.5, 2 and 5 mg/kg) or methamphetamine (a dopamine releaser, at 0.1, 0.3 and 1 mg/kg) dose-dependently increased the dopamine concentration in the striatal ECF, and decreased in vivo [11C]raclopride binding in the striatum. The administration of the indirect dopamine modulators benztropine (a muscarinic cholinergic antagonist, at 0.1, 0.3 and 1 mg/kg) or ketanserine (a 5-HT2 antagonist, at 0.3, 1 and 3 mg/kg) also increased dopamine level in the striatal ECF, and decreased [11C]raclopride binding in a dose-dependent manner. However, the plots of percentage change in dopamine concentration in striatal EFC against that in [11C] raclopride binding indicated different relationships between the effects of direct dopamine enhancers (GBR12909 and methamphetamine) and indirect dopamine modulators (benztropine and ketanserine). These results suggested that the alternation of [11C]raclopride binding in vivo as measured by PET was differently affected by different neuronal manipulations, and not simply by the synaptic concentration of dopamine.  相似文献   

14.
The D(2) receptors exist in either the high- or low-affinity state with respect to agonists, and while agonists bind preferentially to the high-affinity state, antagonists do not distinguish between the two states. [(11)C]-(+)-PHNO is a PET D(2) agonist radioligand and therefore provides a preferential measure of the D(2) (high) receptors. In contrast, [(11)C]raclopride is an antagonist radioligand and thus binds with equal affinity to the D(2) high- and low-affinity states. The aim was to compare the brain uptake, distribution and binding characteristics between [(11)C]-(+)-PHNO and [(11)C]raclopride in volunteers using a within-subject design. Both radioligands accumulated in brain areas rich in D(2)/D(3)-receptors. However, [(11)C]-(+)-PHNO showed preferential uptake in the ventral striatum and globus pallidus, while [(11)C]raclopride showed preferential uptake in the dorsal striatum. Mean binding potentials were higher in the putamen (4.3 vs. 2.8) and caudate (3.4 vs 2.1) for [(11)C]raclopride, equal in the ventral-striatum (3.4 vs. 3.3), and higher in the globus pallidus for [(11)C]-(+)-PHNO (1.8 vs. 3.3). Moreover [(11)C]-(+)-PHNO kinetics in the globus pallidus showed a slower washout than other regions. One explanation for the preferential binding of [(11)C]-(+)-PHNO in the globus pallidus and ventral-striatum could be the presence of a greater proportion of high- vs. low-affinity receptors in these areas. Alternatively, the observed distribution could also be explained by a preferential binding of D(3)-over-D(2) with [(11)C]-(+)-PHNO. This differential binding of agonist vs. antagonist radioligand, especially in the critically important region of the limbic striatum/pallidum, offers new avenues to investigate the role of the dopamine system in health and disease.  相似文献   

15.
BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) has been used as a treatment for neuropsychiatric disorders such as depression and Parkinson's disease (PD). Despite the growing interest in therapeutic application of rTMS, precise mechanisms of its action remain unknown. With respect to PD, activation of the mesostriatal dopaminergic pathway is likely to be a candidate mechanism underlying the therapeutic effects; however, modulating effects of rTMS over the primary motor cortex (M1) on the dopaminergic system have not been studied. METHODS: We used [11C]raclopride positron emission tomography to measure changes of extracellular dopamine concentration after 5Hz rTMS over the M1 in eight anesthetized monkeys. RESULTS: rTMS over the right M1 induced a reduction of [11C]raclopride binding potential (BP) in the bilateral ventral striatum, including the nucleus accumbens, and a significant increase of BP in the right putamen; no significant BP reduction was found in the dorsal striatum. These data indicate that rTMS over the motor cortex induces a release of endogenous dopamine in the ventral striatum. CONCLUSIONS: Our results suggest that therapeutic mechanisms of rTMS may be explained in part by an activation of the mesolimbic dopaminergic pathway, which plays critical roles in rewards, reinforcement, and incentive motivation.  相似文献   

16.
Electrophysiological studies have shown that mesostriatal dopamine (DA) neurons increase activity in response to unpredicted rewards. With respect to other functions of the mesostriatal dopaminergic system, dopamine’s actions show prominent laterality effects. Whether changes in DA transmission elicited by rewards also are lateralized, however, has not been investigated. Using [11C]raclopride‐PET to assess the striatal DA response to unpredictable monetary rewards, we hypothesized that such rewards would induce an asymmetric reduction in [11C]raclopride binding in the ventral striatum, reflecting lateralization of endogenous dopamine release. In 24 healthy volunteers, differences in the regional D2/3 receptor binding potential (ΔBP) between an unpredictable reward condition and a sensorimotor control condition were measured using the bolus‐plus‐constant‐infusion [11C]raclopride method. During the reward condition subjects randomly received monetary awards while performing a ‘slot‐machine’ task. The ΔBP between conditions was assessed in striatal regions‐of‐interest and compared between left and right sides. We found a significant condition × lateralization interaction in the ventral striatum. A significant reduction in binding potential (BPND) in the reward condition vs. the control condition was found only in the right ventral striatum, and the ΔBP was greater in the right than the left ventral striatum. Unexpectedly, these laterality effects appeared to be partly accounted for by gender differences, as our data showed a significant bilateral BPND reduction in women while in men the reduction reached significance only in the right ventral striatum. These data suggest that DA release in response to unpredictable reward is lateralized in the human ventral striatum, particularly in males.  相似文献   

17.
Epidemiological studies have provided evidence that caffeine, an adenosine receptor antagonist, reduces the risk for Parkinson's disease. There are indications of specific interactions between striatal adenosine A(2A) and dopamine D(2) receptors, but the in vivo effects of caffeine on human dopamine system have not been investigated. In the present study, the dopaminergic effects of caffeine were examined with [(11)C]raclopride positron emission tomography (PET) in eight healthy habitual coffee drinkers after 24 h caffeine abstinence. Compared to oral placebo, 200 mg oral caffeine induced a 12% decrease in midline thalamic binding potential (p < 0.001). A trend-level increase in ventral striatal [(11)C]raclopride binding potential was seen with a correlation between caffeine-related arousal and putaminal dopamine D(2) receptor binding (r = -0.81, p = 0.03). The findings indicate that caffeine has effects on dopaminergic neurotransmission in the human brain, which may be differential in the striatum and the thalamus.  相似文献   

18.
To elucidate the dynamic effects of deep brain stimulation (DBS) in the subthalamic nucleus (STN) during activity on the dopaminergic system, 12 PD patients who had STN-DBS operations at least 1 month prior, underwent two positron emission tomography scans during right-foot movement in DBS-off and DBS-on conditions. To quantify motor performance changes, the motion speed and mobility angle of the foot at the ankle were measured twice. Estimations of the binding potential of [11C]raclopride (BPND) were based on the Logan plot method. Significant motor recovery was found in the DBS-on condition. The STN-DBS during exercise significantly reduced the [11C]raclopride BPND in the caudate and the nucleus accumbens (NA), but not in the dorsal or ventral putamen. The magnitude of dopamine release in the NA correlated negatively with the magnitude of motor load, indicating that STN-DBS facilitated motor behavior more smoothly and at less expense to dopamine neurons in the region. The lack of dopamine release in the putamen and the significant dopamine release in the ventromedial striatum by STN-DBS during exercise indicated dopaminergic activation occurring in the motivational circuit during action, suggesting a compensatory functional activation of the motor loop from the nonmotor to the motor loop system.  相似文献   

19.
Animal studies indicate that mu-opioids indirectly modulate neurotransmission in the nigrostriatal dopaminergic pathway. We used positron emission tomography (PET) to study the effects of alfentanil (a mu-opioid receptor agonist) on striatal dopamine D2 receptor binding in eight healthy male volunteers. D2 receptor binding was determined by using [(11)C]raclopride as radioligand. Each subject underwent two PET sessions on the same day, the first without the drug (control) and the second during alfentanil infusion. Alfentanil was administered as target-controlled infusion to maintain pseudo steady-state plasma concentration of 80 ng/ml throughout the PET session. A freeze lesion model was used for pain testing at the end of both PET sessions. A mechanical pain stimulus of 5 N was rated by the subjects using a visual analog scale. Regions of interest for the putamen, caudate nucleus, and cerebellum were drawn on MRI images and transferred to PET images. Alfentanil increased the binding potential of [(11)C]raclopride in the putamen by 6.0% (P = 0.04) and in the caudate nucleus by 7.4% (P = 0.008). Alfentanil caused a small reduction in respiratory rate (P = 0.046) and oxygen saturation (P < 0.001), and a moderate consistent increase in end-tidal CO(2) (P < 0.001). Pain scores were significantly smaller after alfentanil PET scan (median VAS 9 (0-42) vs. 23.5 (15-52), P = 0.008). These results indicate that pharmacologically relevant concentrations of alfentanil increase D2 dopamine receptor binding in the striatum in man. This increase is assumed to reflect reduced dopamine release.  相似文献   

20.
Nicotine injections and nicotine skin patches significantly improve attention, memory, and learning in Alzheimer's disease. In animal studies, nicotine improves the performance of various memory-related tasks, an effect that is thought to be mediated by the neuronal dopaminergic system as systemic administration of nicotine decreased [(11)C]raclopride binding in the anesthetized state. Since high doses of systemically administered nicotine are harmful, we administrated it directly into the rat striatum via microdialysis. We then examined the acute effects of continuous central administration of high doses of nicotine on striatal dopamine concentrations by measuring [(11)C]raclopride binding by positron emission tomography. The concentration of dopamine in the dialysates was significantly increased from basal levels when microdialysis with 100 mM nicotine was initiated. However, contrary to expectations, the binding potential (BP) of [(11)C]raclopride in the nicotine-perfused striatum was significantly higher than that in control striatum. Preinjection of mecamylamine (3 mg/kg), a nicotinic antagonist, had no effect on either extracellular dopamine levels or on the BP of [(11)C]raclopride. These findings suggest that the high dose of local nicotine administration induced mecamylamine-insensitive local increases in extracellular dopamine, but might have decreased the total amount of extracellular dopamine in the striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号