首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: We have previously demonstrated that CpG oligodeoxynucleotides (CpG-ODNs) protect against eosinophilia and airway hyperresponsiveness in murine models of allergen-induced asthma. Acute inflammation is hypothesized to induce chronic airway responses, but no previous studies have evaluated the effects of CpG-ODNs on allergen-induced airway remodeling. Because remodeling is thought to be responsible for many of the long-term adverse effects on asthmatic patients, we evaluated whether CpG-ODNs might similarly prevent these changes using a murine model of recurrent allergen exposure. OBJECTIVE: The purpose of this study was to evaluate the effect of CpG-ODNs on chronic inflammatory changes and airway remodeling by using a murine model of chronic allergen-induced asthma. METHODS: C57BL/6 mice were sensitized to ovalbumin (OVA) and subsequently exposed to nebulized OVA by means of inhalation 3 times weekly for 6 weeks. Some mice received CpG-ODNs by means of intraperitoneal injection at the time of sensitization. At the end of the exposure period, mice were evaluated for the development of airway inflammation, airway hyperresponsiveness, and airway remodeling. RESULTS: OVA-sensitized mice exposed to recurrent airway challenge with OVA have chronic inflammation, persistent airway hyperresponsiveness, and evidence of airway remodeling, including subepithelial collagen deposition and goblet cell hyperplasia-metaplasia. These changes are significantly reduced in mice treated with CpG-ODNs. Interestingly, mice treated with CpG-ODNs exhibit increased levels of bronchoalveolar lavage transforming growth factor beta, suggesting that regulatory T cells might be responsible for some of these protective effects. CONCLUSION: CpG-ODNs are effective not only in preventing acute inflammation but also appear to reduce markers of airway remodeling that develop after chronic allergen exposure.  相似文献   

2.
Increases in bone-marrow (BM) inflammatory cell progenitors are associated with allergen-induced airway hyperresponsiveness and inflammation in asthmatics and dogs. Here, for the first time, we compare the time course of airway hyperresponsiveness, inflammation, and marrow progenitor responses in a mouse model of airway allergen challenge. Sensitized BALB/c mice were studied at 2, 12, 24, 48, and 72 h after intranasal ovalbumin or saline challenges. Outcome measurements included airway responsiveness, airway inflammation as assessed via bronchoalveolar lavage (BAL) and lung tissue sections, and BM eosinophil colony-forming units (Eo-CFU) as enumerated using a semisolid culture assay with optimal concentrations of interleukin-5. We observed significant increases in BAL fluid eosinophils, neutrophils, lymphocytes, and macrophages by 2 h after the second of two intranasal allergen challenges (P < 0.05). Significant increases in airway responsiveness or BM Eo-CFU were observed at 24 h and persisted until 48 h after the second challenge (P < 0.05). Airway inflammation, including eosinophils, persisted until at least 72 h (P < 0.05). We observed that allergen-induced airway eosinophilia is accompanied by increases in BM eosinophil progenitors, indicating that in this model, increased eosinophil production involves an expansion of the relevant stem-cell population. These findings support the use of this model to explore the mechanisms of increased eosinopoiesis observed in human asthma.  相似文献   

3.
BACKGROUND: Pathologic changes, including inflammation and remodeling, occur in the asthmatic airway. However, their relative contribution to the components of airway hyperresponsiveness (AHR) remains unclear. OBJECTIVE: Attempting to delineate AHR into discrete immune-mediated and structural remodeling components, we performed a detailed time course of the development, progression, and persistence of maximal respiratory system resistance, airway reactivity, and airway sensitivity. METHODS: Mice exposed to increasing durations of persistent allergen were assessed for airway function, morphometry, and inflammation. RESULTS: Allergen exposure resulted in increases for all indices of AHR that persisted for at least 4 weeks after chronic allergen exposure (P < .01 for all values). Early increases in AHR were associated with increases in immune-mediated events, including airway eosinophils (P < .01), whereas sustained AHR was associated with structural remodeling events. Increased maximal respiratory system resistance, evident by 6 weeks postallergen and persisting for at least 4 weeks after 8 weeks of chronic exposure, was associated with an increase in collagen deposition (P < .01). Increased airway reactivity and sensitivity, each evident by 1 week after allergen and persisting for at least 4 weeks after 8 weeks of chronic exposure, were associated with an increase in airway smooth muscle area (P < .01). CONCLUSION: Our novel observation of distinct temporal relationships in the development, progression, and persistence of the individual indices of AHR supports our hypothesis that multiple underlying factors contribute to airway dysfunction. CLINICAL IMPLICATIONS: These findings illustrate the importance of clearly addressing specific components of airway dysfunction to provide greater insight into specific pathophysiologic mechanisms in airway disease.  相似文献   

4.
During the preclinical study of new therapeutic modality, we evaluate whether the treatment can reverse the established asthma phenotypes in animal model. However, few have reported on the long term persistence of asthma phenotypes upon re-challenge with allergen (secondary challenge) in animal model. We evaluated the persistence of asthma phenotypes by secondary challenge at different times in previously challenged murine asthma model. BALB/c mice sensitized by intraperitoneal injections of 20 micro g of ovalbumin and 1 mg of alum on days 1 and 14 were challenged initially by the inhalation of 1% ovalbumin for 30 min on days 21, 22, and 23. Each group of mice was rechallenged at 5, 7, 9, or 12 weeks after the initial challenge. Airway hyperresponsiveness, BAL fluid, airway histology and serum ovalbumin-specific IgE level were evaluated. Airway eosinophilia, airway inflammation and serum ovalbumin-specific IgE production persisted upon secondary allergen challenges at least 12 weeks after the initial challenge. However, airway hyperresponsiveness persisted only until mice were rechallenged 7 weeks after the initial challenge. Airway inflammation and allergen specific IgE production may persist longer than airway hyperresponsiveness in a mouse asthma model of secondary allergen challenge.  相似文献   

5.
We investigated the therapeutic potential of a newly developed antifibrotic agent, pirfenidone, to regulate airway remodeling and the development of allergic airway inflammation and airway hyperresponsiveness after chronic allergen challenge. Administration of pirfenidone after sensitization but during the period of ovalbumin challenge significantly prevented the development of airway hyperresponsiveness and prevented eosinophil and lymphocyte accumulation in the airways. IL-4, IL-5, and IL-13 levels in bronchoalveolar lavage fluid and ovalbumin-specific serum IgE antibody levels were also significantly reduced. Treatment with pirfenidone significantly reduced transforming growth factor-beta1 and platelet-derived growth factor levels in bronchoalveolar lavage fluid. Pirfenidone reduced the expression of transforming growth factor-beta1, the development of goblet cell hyperplasia and subepithelial collagenization, and the increases in contractile elements in the lung. These data indicate that pirfenidone may play an important role in the treatment of asthma and has the potential reduce or prevent airway remodeling.  相似文献   

6.
The relationship between airway inflammation and structural changes of airway remodeling, and their relative effects on airway function, are poorly understood. Remodeling is thought to result from chronic repetitive injury to the airway wall caused by airway inflammation; however, the mechanisms regulating remodeling changes have not been clearly defined. We examined the sequence of events in remodeling using three commonly used mouse models of allergic airways disease in which mice are exposed to nebulized ovalbumin for four consecutive days (acute), seven consecutive days (subacute), or three times a week for 6 wk (chronic). Surprisingly, we found that a very short period of exposure to ovalbumin was sufficient to elicit early changes of remodeling. Goblet cell hyperplasia and epithelial thickening were evident after just 4 d. In chronically challenged mice, these changes persisted and, in addition, subepithelial collagen deposition was significantly increased. This collagen deposition was associated with a failure to upregulate matrix metalloproteinase (MMP)-2, in conjunction with increased transforming growth factor-beta and MMP-9 expression. The relationship between inflammation, remodeling changes, and airway hyperresponsiveness (AHR) were examined. The acute and subacute models exhibited marked airway inflammation, whereas the chronic model had very modest inflammation. Conversely, airway fibrosis was only evident in the chronic model. AHR was present in all three models; however, it was significantly higher in the chronic model compared with the acute (P<0.05) and subacute (P<0.05) models. These data demonstrate that both airway inflammation and airway fibrosis may contribute to AHR, with airway fibrosis leading to the greatest increases in AHR.  相似文献   

7.
Immunostimulatory sequences of DNA (ISS) inhibit eosinophilic airway inflammation, Th2 responses, and airway hyperreactivity (AHR) in mouse models of acute ovalbumin (OVA)-induced airway inflammation. To determine whether ISS inhibits airway remodeling, we developed a mouse model of airway remodeling in which OVA-sensitized mice were repeatedly exposed to intranasal OVA administration for 1-6 mo. Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation and sustained AHR to methacholine compared with control mice. In addition, the mice chronically exposed to OVA developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer, peribronchial myofibroblast accumulation, expression of the profibrotic growth factor transforming growth factor-beta, and subepithelial collagen deposition (assessed by quantitation of the area of peribronchial trichrome staining using image analysis, and immunostaining with anti-collagen V antibodies). Administration of ISS systemically every other week significantly inhibited the development of AHR, eosinophilic inflammation, airway mucus production, and importantly, airway remodeling in mice chronically exposed to OVA for 3-6 mo. In addition, ISS significantly reduced bronchoalveolar lavage and lung levels of the profibrotic cytokine transforming growth factor-beta. These studies demonstrate that ISS prevents not only Th2-mediated airway inflammation in response to acute allergen challenge, but also airway remodeling associated with chronic allergen challenge.  相似文献   

8.
Asthma is etiologically and clinically heterogeneous, making the genomic basis of asthma difficult to identify. We exploited the strain-dependence of a murine model of allergic airway disease to identify different genomic responses in the lung. BALB/cJ and C57BL/6J mice were sensitized with the immunodominant allergen from the Dermatophagoides pteronyssinus species of house dust mite (Der p 1), without exogenous adjuvant, and the mice then underwent a single challenge with Der p 1. Allergic inflammation, serum antibody titers, mucous metaplasia, and airway hyperresponsiveness were evaluated 72 hours after airway challenge. Whole-lung gene expression analyses were conducted to identify genomic responses to allergen challenge. Der p 1-challenged BALB/cJ mice produced all the key features of allergic airway disease. In comparison, C57BL/6J mice produced exaggerated Th2-biased responses and inflammation, but exhibited an unexpected decrease in airway hyperresponsiveness compared with control mice. Lung gene expression analysis revealed genes that were shared by both strains and a set of down-regulated genes unique to C57BL/6J mice, including several G-protein-coupled receptors involved in airway smooth muscle contraction, most notably the M2 muscarinic receptor, which we show is expressed in airway smooth muscle and was decreased at the protein level after challenge with Der p 1. Murine strain-dependent genomic responses in the lung offer insights into the different biological pathways that develop after allergen challenge. This study of two different murine strains demonstrates that inflammation and airway hyperresponsiveness can be decoupled, and suggests that the down-modulation of expression of G-protein-coupled receptors involved in regulating airway smooth muscle contraction may contribute to this dissociation.  相似文献   

9.
Asthma is a chronic inflammatory disease characterized by variable bronchial obstruction, hyperresponsiveness, and by tissue damage known as airway remodeling. In the present study we demonstrate that interleukin (IL)-5 plays an obligatory role in the airway remodeling observed in experimental asthma. BALB/c mice sensitized by intraperitoneal injections of ovalbumin and exposed daily to aerosol of ovalbumin for up to 3 wk, develop eosinophilic infiltration of the bronchi and subepithelial and peribronchial fibrosis. The lesions are associated with increased amounts of hydroxyproline in the lungs and elevated levels of eosinophils and transforming growth factor (TGF)-beta1 in the bronchoalveolar lavage fluid. After 1 wk of allergen challenge, TGF-beta is mainly produced by eosinophils accumulated in the peribronchial and perivascular lesions. At a later stage of the disease, the main source of TGF-beta is myofibroblasts, identified by alpha-smooth muscle actin mAb. We show that all these lesions, including fibrosis, are abolished in sensitized and allergen-exposed IL-5 receptor-null mice, whereas they are markedly accentuated in IL-5 transgenic animals. More importantly, treatment of wild-type mice with neutralizing anti-IL-5 antibody, administered before each allergen challenge, almost completely prevented subepithelial and peribronchial fibrosis. These findings demonstrated that eosinophils are involved in allergen-induced subepithelial and peribronchial fibrosis probably by producing a fibrogenic factor, TGF-beta1.  相似文献   

10.
Allergen inhalation challenge has been useful for examining the mechanisms of allergen-induced airway inflammation and the associated physiological changes and for documenting the efficacy of drugs to treat asthma. Allergen inhalation by a sensitized subject results in acute bronchoconstriction, beginning within 15-30 min and lasting 1-3 hr, which can be followed by the development of a late asthmatic response. Individuals who develop both an early and late response after allergen have more marked increases in airway hyperresponsiveness, and greater increases in allergen-induced airway inflammation, particularly in airway eosinophils and basophils. All of the currently available and effective treatments for asthma modify some aspects of allergen-induced responses. These medications include short-acting and long-acting inhaled β2-agonists, inhaled corticosteroids, cromones, methylxanthines, leukotriene inhibitors, and anti-IgE monoclonal antibody. In addition, allergen inhalation challenge has become a useful method which can, in a very limited number of patients, provide key information on the therapeutic potential of new drugs being developed to treat asthma.  相似文献   

11.
Allergen-induced airway hyperresponsiveness   总被引:3,自引:0,他引:3  
Allergen inhalation in the laboratory can lead to an early (0 to 2 hours) and late (3 to 12 hours) asthmatic response and an increase in airway hyperresponsiveness to a variety of bronchoconstrictor mediators. Also, environmental allergen exposure increases airway responsiveness, symptoms of asthma, and the amount of treatment needed to control symptoms. Allergen inhalation causes an acute inflammatory response with an influx of predominantly neutrophils and/or eosinophils into the airway in both animal preparations and sensitized human subjects. The development of airway hyperresponsiveness is most likely a consequence of the inflammatory response. The mediators involved in initiating the inflammatory response or airway hyperresponsiveness have not yet been clearly identified. However, potent chemotactic factors, such as leukotriene B4 and platelet-activating factor can initiate both airway inflammation and airway hyperresponsiveness. In addition, in some animal preparations, cyclooxygenase products of arachidonate metabolism, possibly thromboxane, play a central role in the pathogenesis of airway hyperresponsiveness after inhalation of inflammatory stimuli such as allergen.  相似文献   

12.
OBJECTIVE AND DESIGN: We examined the effect of airway inflammation on airway remodeling and bronchial responsiveness in a mouse model of allergic asthma. MATERIALS AND METHODS: BALB/c mice were sensitized to ovalbumin (OA), and exposed to aerosolized OA (0.01, 0.1 and 1%). Twenty-four hours after the final antigen challenge, bronchial responsiveness was measured, and bronchoalveolar lavage (BAL) and histological examinations were carried out. RESULTS: Repeated antigen exposure induced airway inflammation, IgE/IgG1 responses, epithelial changes, collagen deposition in the lungs, subepithelial fibrosis associated with increases in the amount of transforming growth factor (TGF)-beta1 in BAL fluid (BALF), and bronchial hyperresponsiveness to acetylcholine. The number of eosinophils in BALF was significantly correlated with TGF-beta1 production in BALF and the amount of hydroxyproline. Furthermore, significant correlations were found between these fibrogenic parameters and the bronchial responsiveness. CONCLUSION: These findings demonstrated that in this murine model airway eosinophilic inflammation is responsible for the development of airway remodeling as well as bronchial hyperresponsiveness in allergic bronchial asthma.  相似文献   

13.
OBJECTIVE AND DESIGN: We carried out a time course study on the development of allergen-induced airway remodeling in a mouse model of allergic asthma. Moreover, we examined the effect of allergen avoidance on the established airway remodeling. MATERIALS AND METHODS: BALB/c mice were sensitized to ovalbumin (OA) with alum, and exposed daily for 3 weeks to aerosolized OA. At each designated point, bronchial responsiveness was measured, and bronchoalveolar lavage and histological examination were carried out. RESULTS: The numbers of inflammatory leukocytes in the airways and the percentage of goblet cells in the epithelium, Th2 cytokine production, IgE production, collagen deposition beneath the basement membrane and bronchial responsiveness to acetylcholine were all markedly increased after repeated antigen challenge for 1-3 weeks. In contrast, after cessation of antigen exposure, goblet cell hyperplasia, inflammatory infiltrates and bronchial hyperresponsiveness were gradually attenuated and had almost resolved 4 weeks after cessation, but subepithelial fibrosis was still observed at this time point. CONCLUSIONS: The present findings demonstrated that epithelial changes following repeated allergen challenge are rapidly induced and recover after the cessation of exposure, but subepithelial fibrosis has a late onset and relatively irreversible changes, and subepithelial fibrosis in contrast to goblet cells hyperplasia did not appear to contribute to bronchial hyperresponsiveness, at least, in this mouse model.  相似文献   

14.
Prolonged allergen challenge in mice leads to persistent airway remodelling   总被引:4,自引:0,他引:4  
BACKGROUND: Inflammatory infiltrates, airway hyper-responsiveness, goblet cell hyperplasia and subepithelial thickening are characteristic of chronic asthma. Current animal models of allergen-induced airway inflammation generally concentrate on the acute inflammation following allergen exposure and fail to mimic all of these features. OBJECTIVE: The aim of this study was to use a murine model of prolonged allergen-induced airway inflammation in order to characterize the cells and molecules involved in the ensuing airway remodelling. Moreover, we investigated whether remodelling persists in the absence of continued allergen challenge. METHODS: Acute pulmonary eosinophilia and airways hyper-reactivity were induced after six serial allergen challenges in sensitized mice (acute phase). Mice were subsequently challenged three times a week with ovalbumin (OVA) (chronic phase) up to day 55. To investigate the persistence of pathology, one group of mice were left for another 4 weeks without further allergen challenge (day 80). RESULTS: The extended OVA challenge protocol caused significant airway remodelling, which was absent in the acute phase. Specifically, remodelling was characterized by deposition of collagen as well as airway smooth muscle and goblet cell hyperplasia. Importantly, these airway changes, together with tissue eosinophilia were sustained in the absence of further allergen challenge. Examination of cytokines revealed a dramatic up-regulation of IL-4 and tumour growth factor-beta1 during the chronic phase. Interestingly, while IL-4 levels were significantly increased during the chronic phase, levels of IL-13 fell. Levels of the Th1-associated cytokine IFN-gamma also increased during the chronic phase. CONCLUSION: In conclusion, we have demonstrated that prolonged allergen challenge results in persistent airway wall remodelling.  相似文献   

15.
Little is known about effects of smoking on airway inflammation in asthma. We tested the hypothesis that smoking enhances established airway inflammation in a mouse model of allergic asthma. C57Bl/6j mice were sensitized to ovalbumin (OVA) and challenged with OVA (OVA-mice) or sham-sensitized to phosphate-buffered saline (PBS) and challenged with PBS aerosols (PBS-mice) for 7 wk. At 4 wk, mice were additionally exposed to air (nonsmoking controls) or mainstream smoke for 3 wk. Using whole body plethysmography, we found OVA-induced bronchoconstriction to be significantly inhibited in smoking OVA-mice as compared with nonsmoking OVA-mice (1 +/- 2% increase versus 22 +/- 6% increase in enhanced pause, respectively). Smoking did not change airway hyperresponsiveness (AHR) to methacholine in PBS-mice, yet significantly attenuated AHR in OVA-mice 24 h after OVA challenge as compared with nonsmoking mice. This was accompanied by reduced eosinophil numbers in lung lavage fluid and tissue of smoking OVA-mice compared with nonsmoking OVA-mice. In contrast to our hypothesis, short-term smoking reduced responsiveness to OVA and methacholine in OVA-mice and decreased airway inflammation when compared with nonsmoking mice. This effect of smoking may be different for long-term smoking, in which remodeling effects of smoking can be expected to interrelate with remodeling changes caused by asthmatic disease.  相似文献   

16.
The importance of IgE in airway inflammation and development of AHR in allergen-sensitized mice has been compared and contrasted in different models of sensitization and challenge. Using different modes of sensitization in normal and genetically manipulated mice after anti-IgE treatment, we have been able to distinguish the role of IgE under these different conditions. Striking differences in the three sensitization protocols were delineated in terms of the role of allergen-specific IgE, extent of eosinophilic airway inflammation, and development of AHR (Table 1). The highest levels of IgE and eosinophil infiltration (approximately 20-fold increases) were achieved after systemic sensitization with allergen (plus adjuvant) followed by repeated airway challenge. Passive sensitization with allergen-specific IgE followed by limited airway challenge induced a modest eosinophilic inflammatory response in the airways despite high levels of serum IgE. Exposure to allergen exclusively via the airways also resulted in a modest serum IgE response and a limited eosinophilic inflammatory response (approximately fourfold increases). Under all of these conditions, inhibition of IL-5-mediated eosinophilic airway inflammation was associated with attenuation of AHR. In contrast, the differences in the responses to the different modes of allergen exposure were associated with differences in the requirements for IgE in the development of AHR (Table 1). In the two models associated with mild eosinophil infiltration (passive sensitization and exclusive airway exposure), IgE was required for the development of AHR but did not substantially enhance airway inflammation on its own. However, IgE-allergen interaction was able to enhance T-cell function in vitro and induce T-cell expansion in vivo. In mice systemically sensitized and challenged via the airways, IgE (or IgE-mediated mast-cell activation) was not required for T-cell activation, eosinophilic inflammation and activation in the airways, or development of AHR. This was most clearly seen in B-cell-deficient and mast-cell-deficient, low-IgE-responder mouse strains (B6, B10) and in anti-IgE-treated high-IgEresponder mice (BALB/c). At the same time, we confirmed the importance of IgE in the induction of immediate-type hypersensitivity (mast-cell activation, immediate cutaneous hypersensitivity, passive cutaneous and systemic anaphylaxis). These differences were also highlighted by the means used to detect altered airway function. Passive sensitization and limited airway challenge or exclusive airway exposure to allergen over 10 days elicited changes in airway function that could be detected only in tracheal smooth-muscle preparations exposed to EFS. In contrast, systemic sensitization followed by repeated airway challenge resulted not only in changes in the contractile response to EFS but also in increased responsiveness to inhaled MCh. Thus, these results distinguish not only the differential involvement of IgE and eosinophil numbers but also their contribution to the readouts used to monitor airway function. Based on these studies, we conclude that IgE plays an important role in the development of airway inflammation and AHR under conditions in which limited IL-5-mediated eosinophilic airway infiltration is induced. In conditions where a robust eosinophilic inflammation of the airways is elicited, IgE (and IgE-mediated mast-cell activation) does not appear to be essential for airway inflammation and the development of AHR, detected as increased responsiveness to inhaled MCh. These findings reveal the potential importance of differential targeting in the treatment of allergic diseases with a predominance of IgE-mediated symptoms, e.g., allergic rhinitis and conjunctivitis, where anti-IgE may be an effective therapy, compared to those diseases with a predominant inflammatory component, e.g., AHR in atopic bronchial asthma, where anti-inflammatory or anti-IL-5 therapy may be more beneficial.  相似文献   

17.
We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma.  相似文献   

18.
During the course of establishing an animal model of chronic asthma, we tried to elucidate the time sequence of airway hyperresponsiveness (AHR), airway inflammation, airway remodeling, and associated cytokines. Seven-week-old female BALB/c mice were studied as a chronic asthma model using ovalbumin (OVA). After sensitization, mice were exposed twice weekly to aerosolized OVA, and were divided into three groups depending on the duration of 4 weeks, 8 weeks, and 12 weeks. At each time point, airway responsiveness, inflammatory cells, cytokines in bronchoalveolar lavage fluids (BALF), serum OVA-specific IgE, IgG1, IgG2a, and histological examination were carried out. AHR to methacholine, increased levels of OVA-specific IgG1 and IgG2a, and goblet cell hyperplasia were continuously sustained at each time point of weeks. In contrast, we observed a time-dependent decrease in serum OVA-specific IgE, BALF eosinophils, BALF cytokines such as IL-13, transforming growth factor-beta1, and a time-dependent increase in BALF promatrix metalloproteinase-9 and peribronchial fibrosis. In this OVA-induced chronic asthma model, we observed airway remodelings as well as various cytokines and inflammatory cells being involved in different time-dependent manners. However, increased airway fibrosis did not directly correlate with a further increase in airway hyperresponsiveness.  相似文献   

19.
Structural changes to the lung are associated with chronic asthma. In addition to alterations to the airway wall, asthma is associated with vascular modifications, although this aspect of remodeling is poorly understood. We sought to evaluate the character and kinetics of vascular remodeling in response to chronic aeroallergen exposure. Because many ovalbumin-driven models used to investigate allergic airway disease do so in the absence of persistent airway inflammation, we used a protocol of chronic respiratory exposure to house dust mite extract (HDME), which has been shown to induce persistent airway inflammation consistent with that seen in humans with asthma. Mice were exposed to HDME intranasally for 7 or 20 consecutive weeks, and resolution of the inflammatory and remodeling response to allergen was investigated 4 weeks after the end of a 7-week exposure protocol. Measures of vascular remodeling, including total collagen deposition, procollagen I production, endothelial and smooth muscle cell proliferation, smooth muscle area, and presence of myofibroblasts, were investigated histologically in lung vessels of different sizes and locations. We observed an increase in total collagen content, which did not resolve upon cessation of allergen exposure. Other parameters were significantly increased after 7 and/or 20 weeks of allergen exposure but returned to baseline after allergen withdrawal. We conclude that respiratory HDME exposure induces airway remodeling and pulmonary vascular remodeling, and, in accordance with airway remodeling, some components of these structural changes may be irreversible.  相似文献   

20.
Airway remodeling in bronchial asthma results from chronic, persistent airway inflammation. The effects of the reversal of airway remodeling by drug interventions remain to be elucidated. We investigated the effects of ONO-1301, a novel prostacyclin agonist with thromboxane inhibitory activity, on the prevention and reversibility of airway remodeling in an experimental chronic asthma model. Mice sensitized and challenged to ovalbumin (OVA) three times a week for 5 consecutive weeks were administered ONO-1301 or vehicle twice a day from the fourth week of OVA challenges. Twenty-four hours after the final OVA challenge, airway hyperresponsiveness (AHR) was assessed, and bronchoalveolar lavage was performed. Lung specimens were excised for staining to detect goblet-cell metaplasia, airway smooth muscle, and submucosal fibrosis. Mice administered ONO-1301 showed limited increases in AHR compared with mice administered the vehicle. The histological findings of airway remodeling were improved in ONO-1301-treated mice compared with vehicle-treated mice. Presumably, these therapeutic effects of ONO-1301 are attributable to the up-regulation of production of hepatocyte growth factor (HGF) in lung tissue, because the neutralization of HGF by antibodies prevented the effects of ONO-1301 on AHR and airway remodeling. Mice administered ONO-1301 showed similar levels of AHR and airway remodeling as mice administered montelukast, a cysteinyl-leukotriene-1 receptor antagonist, and lower levels were observed in mice administered dexamethasone. These data suggest that ONO-1301 exerts the effect of reversing airway remodeling, at least in part through an elevation of HGF in the lungs, and may be effective as an anti-remodeling drug in the treatment of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号