首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study was to prepare two types of nanoparticles with poly(d,l-lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) polymers. Plasmid DNA (pDNA) was adsorbed either on PLGA/PEI nanoparticles, or as PEI/DNA complex onto the surface of PLGA nanoparticles. Both types of nanoparticles were prepared by the double emulsion method. The nanoparticles were characterized by their size, zeta potential and pDNA or PEI/DNA complex adsorption. The PEI/DNA complex adsorption was confirmed with ethidium bromide assay. pDNA adsorption onto PLGA/PEI nanoparticles (PLGA/PEI-DNA) was studied by electrophoresis on agarose gel. Cytotoxicity and transfection efficiency of both types of nanoparticle and PEI/DNA complexes formulations were studied in head and neck squamous carcinoma cell line (FaDu). To improve endosomal release, photochemical internalization (PCI) was used. The zeta potential increased when the PEI/DNA complex adsorbed onto PLGA nanoparticles (PLGA-PEI/DNA). Optimal pDNA adsorption efficiency was achieved for nitrogen/phosphorous ratio≥20/1. In vitro transfection and cells viability on FaDu cells with or without PCI were found to be variable depending on the type and concentration of nanoparticles. The results showed that transfection efficiency for PLGA/PEI-DNA or PLGA-PEI/DNA nanoparticles ranged between 2 and 80%, respectively. PCI was found to slightly improve the transfection efficiency for all formulations.  相似文献   

2.
Three blending methods were introduced to combine a biodegradable cationic- polyurethane (PUg3) and polyethylenimine (PEI) together with DNA by different mixing sequences. Results of gel electrophoresis assays and particle size measurements show that complexes prepared by method 1 and 3 bear an ability to condense DNA into small nanoparticles. On the contrary, the use of method 2 in making complexes produces significantly large particles because of the weaker interaction with DNA and lack of DNA condensation. Moreover, cell proliferation assays show that no cytotoxicity of the DNA/blended-polymers complexes (exhibited by method 1) was found and due to a result of the outer coating of PUg3, reducing cytotoxic PEI exposure outside the complexes. With a new technique in pharmaceutics, the complexes prepared for DNA delivery by mixing of PEI and PUg3 with DNA in a sequence (method 1) could achieve an even better transfection efficiency (reaching 40% higher) than using PEI alone as well as reduce the cytotoxicity substantially. In conclusion, a new class of complexes (non-viral combo-system) made by a skillful blending sequence (method 1) has been designed and demonstrated to obtain the beneficial properties from two useful and individual polymers for gene delivery. This method can be used in greatly improving the transfection efficiency of polymer-based gene vectors. The blended polymers with DNA also have a better biocompatibility and no cytotoxicity, which are the requirements and critical points for great success in performing gene therapy in vivo.  相似文献   

3.
Due to large surface area, tunable pore size, easy surface manipulation, and low-toxicity mesoporous silica nanoparticles (MSNs) may act as a suitable vector for gene delivery. In order to make MSNs as a suitable gene delivery system, we modified the surface of phosphonated MSNs (PMSN) with polyethyleneimine (PEI) 10 and 25?KDa. Then nanoparticles were loaded with chloroquine (CQ) (a lysosomotropic agent) and complexed with plasmid DNA. The transfection efficiency and cytotoxicity of these nanoparticles was examined using green fluorescent protein plasmid (pGFP) and cytotoxicity assay. All PEI coated nanoparticles showed positive zeta potential and mean size was ranged between 170 and 215?nm with polydispersity index bellow 0.35. PEI-coated MSNs significiantly enhanced GFP gene expression in Neuro-2?A cells compared to PEI 10 and 25?KDa. The results of the cytotoxicity assays showed that these nanoparticles have an acceptable level of viability but CQ loaded nanoparticles showed higher cytotoxicity and lower transfection activity than CQ free nanoparticles.  相似文献   

4.
Polymer nanoparticles have been used as non-viral gene delivery systems and drug delivery systems. In this study, biodegradable poly(L-lactic acid) (PLA)/polyethylenimine (PEI) and poly(D,L-lactide-co-glycolide) (PLGA)/PEI nanoparticles were prepared and characterized as gene delivery systems. The PLA/PEI and PLGA/PEI nanoparticles, which were prepared by a diafiltration method, had spherical shapes and smooth surface characteristics. The size of nanoparticles was controlled by the amount of PEI, which acted as a hydrophilic moiety, which effectively reduced the interfacial energy between the particle surface and the aqueous media. The nanoparticles showed an excellent dispersive stability under storage in a phosphate-buffered saline solution for 12 days. The positive zeta-potentials for the nanoparticles decreased and changed to negative values with increasing plasmid DNA (pDNA) content. Agarose gel electrophoresis showed that the complex formation between the nanoparticles and the pDNA coincided with the zeta-potential results. The results of in vitro transfection and cell viability on HEK 293 cells indicated that the nanoparticles could be used as gene delivery carriers.  相似文献   

5.
不同相对分子质量聚乙烯亚胺体外介导基因传递的研究   总被引:1,自引:0,他引:1  
目的研究4种不同相对分子质量聚乙烯亚胺(PEI)作为非病毒基因载体体外介导基因传递的能力。方法采用四甲基噻唑蓝法(MTT法)测定了PEI对Hela细胞的毒性,利用琼脂糖凝胶电泳阻滞试验考察PEI与DNA的结合能力,测定PEI—DNA复合物的粒径和Zeta电位,以及考察转染率。结果PEI的细胞毒性与相对分子质量呈正相关,高相对分子质量PEI的细胞毒性远大于低相对分子质量PEI;高相对分子质量PEI在较低的N/P比时就能对DNA起到完全阻滞作用;低相对分子质量PEI与DNA形成的复合物粒径明显大于高相对分子质量的PEI;Zeta电位随着PEI相对分子质量的增大而增大,复合物的粒径和Zeta电位都与组成中的N/P比有关;相对分子质量为2000的PEI(PEI2K)在Hela细胞中的转染率最低,而相对分子质量为25000的PEI(PEI25K)的转染率最高。结论PEI的相对分子质量对其各项性能指标以及介导基因传递的能力都有较大影响。  相似文献   

6.
Polyethylenimine (PEI) is a promising non-viral gene delivery polymer that produces high transfection efficiency both in vitro and in vivo. The use of PEI, however, is hindered by its toxicity, reflecting its polycationic nature. In an attempt to decrease this charge-dependent cytotoxicity, a polyanionic polymer, dextran sulfate (DS), has been incorporated into self-assembling PEI-DNA complexes with zinc as stabilizing agent. Spherical particles with a mean particle size of approximately 200 nm and a polydispersity index of 0.2 were achieved using the following optimal conditions: PEI solutions at pH 8, PEI/DS mass ratios of >or=2, and 25 microM zinc sulfate. Plasmid DNA was completely condensed within the nanoparticles as confirmed by an ethidium bromide accessibility assay. This result correlates well with DNase protection studies which find partial protection of the DNA nanoparticles from degradation by the enzyme. The DNA was incorporated into the PEI-DS particles with a high efficiency (>95%) and maintained a primarily supercoiled B-form as determined by gel electrophoresis and circular dichroism. The cytotoxicity of the DNA nanoparticles appeared to decrease as the amount of DS in the formulation was increased and they produced moderate transfection activities that were only modestly inhibited by the presence of serum.  相似文献   

7.
Cationic polyorganophosphazene has shown the ability to deliver gene. To obtain more efficient transfection, His(Boc)-OMe bearing histidine moiety was introduced to synthesize a new derivative of cationic polyphosphazenes with another side group of 2-dimethylaminoethylamine (DMAEA). The poly(DMAEA/His(Boc)-OMe)phosphazene (PDHP) and DNA could self-assemble into nanoparticles with a size around 110 nm and zeta potential of +15 mV at the PDHP/DNA ratio of 10:1 (w/w). The maximum transfection efficiency of PDHP/DNA self-assembled nanoparticles (PHSNs) against 293 T cells was much higher than that of poly(di-2-dimethylaminoethylamine) phosphazenes (PDAP)/DNA self-assembled nanoparticles (PASNs) and PEI 25/DNA self-assembled nanoparticles (PESNs) at the polymer/DNA ratio of 10:1, but the cytotoxicity of PDHP assayed by MTT was much lower than that of PDAP and PEI 25. These results suggested that PDHP could be a good candidate with high transfection efficiency and low cytotoxicity for gene delivery.  相似文献   

8.
PURPOSE: The purpose of this study was the design of a polymeric platform for effective gene delivery using DNA-loaded nanoparticles. METHODS: The polymers were synthesized by carbonyldiimidazole (CDI)-mediated coupling of diamines diethylaminopropylamine (DEAPA), dimethylaminopropylamine (DMAPA) or diethylaminoethylamine (DEAEA) to poly(vinyl alcohol) (PVA) with subsequent grafting of D,L-lactide and glycolide (1:1) in the stoichiometric ratios of 1:10 and 1:20 (free hydroxyl groups/monomer units). The polymers were characterized by 1H-NMR, gel permeation chromatography-multiple-angle laser-light-scattering, and differential scanning calorimetry. DNA-loaded nanoparticles prepared by a modified solvent displacement method were characterized with regard to their zeta (zeta)-potential and size. The transfection efficiency was assessed with the plasmid DNA pCMV-luc in L929 mouse fibroblasts. RESULTS: The polymers were composed of highly branched, biodegradable cationic polyesters exhibiting amphiphilic properties. The amine modification enhanced the rapid polymer degradation and resulted in the interaction with DNA during particle preparation. The nanoparticles exhibited positive zeta-potentials up to +42 mV and high transfection efficiencies, comparable to polyethylenimine (PEI) 25 kDa/DNA complexes at a nitrogen to phosphate ratio of 5. CONCLUSIONS: The polymers combined amine-functions and short poly(D,L-lactic-co-glycolic acid) (PLGA) chains resulting in water-insoluble polymers capable of forming biodegradable DNA nanoparticles through coulombic interactions and polyester precipitation in aqueous medium. The high transfection efficiency was based on fast polymer degradation and the conservation of DNA bioactivity.  相似文献   

9.
The derivatives of polyethylenimine (PEI 25 and 750kDa) were synthesized by partially substituting their amino groups with imidazolyl moieties. The series of imidazolyl-PEIs thus obtained were cross-linked with polyethylene glycol (PEG) to get imidazolyl-PEI-PEG nanoparticles (IPP). The component of hydrophobicity was introduced by grafting the lauryl groups in the maximal substituted IPP nanoparticles (IPPL). The nanoparticles were characterized with respect to DNA interaction, hydrodynamic diameter, zeta potential, in vitro cytotoxicity and transfection efficiency on model cell lines. The IPP and IPPL nanoparticles formed a loose complex with DNA compared to the corresponding native PEI, leading to more efficient unpackaging of DNA. The DNA loading capacity of IPP and IPPL nanoparticles was also lower compared to PEI. The imidazolyl substitution improved the gene delivery efficiency of PEI (750kDa) by nine- to ten-fold and PEI (25kDa) by three- to four-fold. At maximum transfection efficiency, the zeta potential of nanoparticles was positive after forming a complex with DNA. The maximum level of reporter gene expression was mediated by IPPL nanoparticles in both the series. The cytotoxicity, another pertinent problem with cationic polymers, was also negligible in case of IPP and IPPL nanoparticles.  相似文献   

10.
Preparation of nano-sized particles using lyophilization, which is a standard drying technique for high-molecular-weight compounds such as bioactive peptides, proteins, plasmid DNA and siRNA, often results in particle aggregation. In this study, spray-drying was applied for preparation of cationic PLGA nanospheres as gene delivery vectors in order to minimize aggregation and loss of gene transfection efficiency. PLGA nanoparticle emulsions were prepared by dropping an acetone/methanol mixture (2/1) containing PLGA and a cationic material, such as PEI, DOTMA, DC-Chol or CTAB, into distilled water with constant stirring. The PLGA nanosphere emulsion was dried with mannitol by spray-drying, and mannitol microparticles containing PLGA nanospheres were obtained. Mean particle diameter of spray dried PLGA particles was 100-250 nm, which was similar to that of the nano-emulsion before drying, whereas the lyophilized PLGA particles showed increased particle diameter due to particle aggregation. PEI, DOTMA and DC-Chol were useful for maintaining nanoparticle size and conferring positive charge to nanospheres. Transfection of pDNA (pCMV-Luc) using these spray-dried cationic PLGA nanospheres yielded high luciferase activity in COS-7 cells, particularly with PLGA/PEI nanospheres. The present spray-drying technique is able to provide cationic PLGA nanospheres, and may improve redispersal and handling properties.  相似文献   

11.
藻酸盐/PEI/DNA复合载体作为一种新型基因递送系统   总被引:4,自引:0,他引:4  
目的克服多聚乙烯亚胺(PEI,polyethlenimine)/DNA载体对细胞的毒性以及在含血清培养基里对癌细胞基因的转移率低的问题。方法利用具有水溶性、可生物降解的、并带有负电的藻酸盐(alginate)对PEI/DNA载体进行包衣,制备出复合载体,并在体外含50%血清培养基里,与PEI/DNA载体比较对C3癌细胞转染率。结果 在含50%血清的培养基里,藻酸盐包衣制备的复合体载体[alginate:DNA,0.15 (w/w);PEI:DNA,N:P=10]与PEI/DNA载体相比,对C3癌细胞基因转染率高出10~30倍,而且其表面正电荷数比PEI/DNA载体减少了一半,颗粒较小,并降低对细胞毒性和红血球集聚反应。结论作为新型的藻酸盐包衣制备的复合载体能提高在体外含高浓度血清培养基里对C3癌细胞的转染率,并能减少其对细胞毒性。  相似文献   

12.
Polyethylenimine (PEI) is one of the most efficient polycationic non-viral gene delivery vectors. Its efficiency and cytotoxicity depends on molecular weight, with the 25-kDa PEI being most efficient but accompanied with cytotoxicity. In the present study, enhancement in gene delivery efficiency along with reduction in cytotoxicity by attachment of guanidinium side group was explored. The hypothesis was that the guanidination would lead to the delocalization of charge present on primary amines of the polymer thereby leading to enhancement in gene delivery efficiency along with reduction in cytotoxicity. The polymer was guanidinated using O-methylisourea hemisulfate and the chemical linkage characterized by FTIR spectroscopy. The hydrodynamic diameter of guanidinated PEI-DNA complexes was determined using DLS. Subsequently, these complexes were used for DNA binding assay and zeta-potential measurements, taking native PEI as reference. Further, guanidinated PEI-DNA complexes were investigated for their gene delivery efficacy on HEK 293 cells. The hydrodynamic diameter of guanidinated PEI-DNA complexes was found to be in the range of 176-548 nm. As expected, the zeta potential values increased, on increasing the N/P ratios. It was found that guanidinated PEI had higher transfection efficiency at the majority of the N/P ratios tested as compared to commercially available transfecting agent lipofectin and native PEI itself. The toxicity of guanidinated PEI-DNA complexes was also reduced considerably in comparison to PEI polymer, as determined by MTT colorimetric assay. Out of the various derivatives prepared, gPEI 56% was found to be the most efficient in in vitro transfection.  相似文献   

13.
Nanoparticles formulated from biodegradable polymers such as poly (lactic acid) and poly (D,L-lactide-co-glycolide) (PLGA) are being extensively investigated as non-viral gene delivery systems due to their sustained release characteristics and biocompatibility. PLGA nanoparticles for DNA delivery are mainly formulated using an emulsion-solvent evaporation technique. However, this formulation procedure results in the formation of particles with heterogeneous size distribution. The objective of the present study was to determine the relative transfectivity of the smaller- and the larger-sized fractions of nanoparticles in cell culture. PLGA nanoparticles containing a plasmid DNA encoding luciferase protein as a marker were formulated by a multiple emulsion-solvent evaporation method (mean particle diameter = 97 +/- 3 nm) and were fractionated using a membrane (pore size: 100 nm) filtration technique. The particles that passed through the membrane were designated as the smaller-sized nanoparticles (mean diameter = 70 +/- 2 nm) and the fraction that was retained on the membrane as the larger-sized nanoparticles (mean diameter = 202 +/- 9 nm). The smaller-sized nanoparticles showed a 27-fold higher transfection than the larger-sized nanoparticles in COS-7 cell line and a 4-fold higher transfection in HEK-293 cell line. The surface charge (zeta potential), cellular uptake, and the DNA release were almost similar for the two fractions of nanoparticles, suggesting that some other yet unknown factor(s) is responsible for the observed differences in the transfection levels. The results suggest that the particle size is an important factor, and that the smaller-sized fraction of the nanoparticle formulation predominantly contributes towards their transfection.  相似文献   

14.
The goal of this study was to develop a gene delivery vehicle that can specifically target cell surface receptors with low nonspecific protein adsorption and low cytotoxicity. Toward this goal, four-arm poly(ethylene glycol) vehicles were functionalized with DNA-binding peptides (DBPs) and integrin-binding (RGD) peptides. We have previously described a novel PEG-based gene delivery vehicle functionalized with DBPs that successfully transfected Chinese hamster ovary (CHO) cells with low toxicity and low protein adsorption. This work investigated whether incorporating RGD peptides onto PEG-DBP vehicles could target specific cell surface receptors and increase transfection efficiency of HEPG2 cells. DBP and RGD peptides were coupled onto PEG-tetraacrylate (PEG-TA) in three combinations (molar ratios of DBP:RGD of 1:3, 2:2, and 3:1) and characterized by measuring particle size, zeta potential, and transfection efficiency as a function of charge ratio (peptide amine groups:DNA phosphate). Nonspecific protein adsorption and cytotoxicity of PEG-DBP-RGD vehicles were also measured. Dynamic light scattering showed that PEG-DBP-RGD vehicles condensed DNA into particles having mean diameters of 250-300 nm and zeta potentials ranging from -10 to 7 mV. It was found that coupling two RGD peptides to the PEG-DBP 2 vehicle increased the transfection efficiency at a polymer/DNA charge ratio of 5:1 (+/-) and 6:1 (+/-) and that these vehicles had transfection efficiencies similar to those of polyethylenimine (PEI)/DNA particles. However, coupling one or three RGD peptides to PEG-DBP vehicles did not increase the transfection efficiency. Additionally, the PEG-DBP-RGD/DNA particles adsorbed less protein than PEI particles and were less toxic to HEPG2 cells.  相似文献   

15.
The nonviral gene delivery system is an attractive alternative to cancer therapy. A new kind of gelatin-silica nanoparticles (GSNPs) was developed through a two-step sol-gel procedure. To improve the transfection efficacy, GSNPs modified with different fusion peptides (Tat, HA2, R8, Tat/HA2, and Tat/R8) were prepared for particle size, zeta potential, cellular uptake, hemolysis activity at physiological pH (7.0) or acidic pH (5.0), and condensation of plasmid DNA. The results suggest that the sizes and zeta potentials of GS-peptide conjugates were 147 - 161 nm and 19 - 33 mV, respectively; GS-peptide conjugates exhibited low cytotoxicity; the plasmid DNA was readily entrapped at a GS-peptide/pDNA weight ratio of 50 - 200. The in vitro and in vivo studies demonstrated that the synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2 could promote the efficient cellular internalization, endosome escape, and nucleus targeting, hence delivering the therapeutic nucleic acid efficiently.  相似文献   

16.
Organic-inorganic nanohybrids have been studied for their use as non-viral transfection agents. The purpose of this study was to examine the ability of mesoporous silica nanoparticles (MSN) coupled with mannosylated polyethylenimine (MP) to transfect plasmid DNA in vitro. Although MSN is biocompatible and has low cytotoxicity, it is not easily transfected into a variety of cell types. To overcome this barrier, MP was coupled to MSN (abbreviated as MPS) to target macrophage cells with mannose receptors and enhance transfection efficiency. The DNA conveyance ability of MPS was examined by evaluating properties such as particle size, zeta potential, complex formation, protection of plasmid DNA against DNase-I, and the release of DNA upon cell entry. Particle sizes of the MPS/DNA complexes decreased with increasing weight ratio of MPS to DNA, while the zeta potential increased. Complete MPS/DNA complexes were formed at a weight ratio of five, and their resistance to DNase-I was evaluated. Cytotoxicity studies showed that MPS/DNA complexes resulted in a high percentage of cell viability, compared with PEI 25K as a vector. The transfection efficiency of MPS/DNA complexes was evaluated on Raw 264.7 and HeLa cell lines. It was found that MPS/DNA complexes showed enhanced transfection efficiency through receptor-mediated endocytosis via mannose receptors. These results indicate that MPS can be employed in the future as a potential gene carrier to antigen presenting cells.  相似文献   

17.
Both polyethylenimine (PEI) polymers and cationic nanoparticles have been widely used for non-viral DNA transfection. Previously, we reported that cationic nanoparticles composed of cholesteryl-3beta-carboxyamidoethylene-N-hydroxyethylamine and Tween 80 (NP-OH) could deliver plasmid DNA (pDNA) with high transfection efficiency. To increase the transfection activity of NP-OH, we investigated the potential synergism of PEI and NP-OH for the transfection of DNA into human prostate tumor PC-3, human cervices tumor Hela, and human lung adenocarcinoma A549 cells. The transfection efficiency with low-molecular PEI (MW 600) was low, but that with a combination of NP-OH and PEI was higher than with NP-OH alone, being comparable to commercially available lipofectamine 2,000 and lipofectamine LTX, with very low cytotoxicity. Low-molecular weight PEI could not compact pDNA in size, but rather might help to dissociate pDNA from the complex and release pDNA from the endosome to cytoplasm by the proton sponge effect. Therefore, the combination of cationic cholesterol-based nanoparticles and a low-molecular PEI has potential as a non-viral DNA vector for gene delivery.  相似文献   

18.
The study aimed to design novel bioadhesive PLGA nanoparticles for efficient gene delivery to lung cancer cells. The bioadhesive agent and stabilizer, Carbopol 940 was chosen to establish bioadhesive PLGA nanoparticles and Pluronic F68, Pluronic F127 stabilized PLGA nanoparticles were formulated as control. The effects of different surfactants on the physicochemical and biological characterizations of PLGA nanoparticles were compared. All the obtained nanoparticles showed negative surface charge, similar spherical morphology, a relatively narrow particle size distribution, and lower cytotoxicity to A549 cells comparing with Lipofectamine 2000. Carbopol stabilized nanoparticles hold advantages in DNA-binding efficiency (>80%) at an optimal Carbopol concentration, DNA protection from enzymatic degradation in vitro release and better buffering capacity. Most importantly, higher transfection efficiency in A549 cells was observed comparing to Pluronics stabilized nanoparticles or naked DNA, similar to that of Lipofectamine 2000. These results revealed that the bioadhesive PLGA nanoparticles formulated with Carbopol might be a very attractive candidate as a non-viral vector for lung cancer gene therapy and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.  相似文献   

19.
Background: Polyethylenimines (PEIs) are synthetic, charged polymers which function as transfection reagents based on their ability to compact DNA into complexes. Recently, PEI-mediated delivery of nucleic acids has been extended towards small interfering RNAs (siRNAs) which are instrumental in the induction of RNA interference (RNAi). Since RNAi represents a powerful method for specific gene silencing, the PEI-based delivery of siRNAs is a promising tool for novel putative therapeutic strategies. Aim: For therapeutic use, major requirements are the development of formulations which (i) are sufficiently stable in the presence of serum, and which can be (ii) easily and reproducibly manufactured and (iii) stored for a prolonged time with full retention of their integrity and bioactivity. In this paper, we explore the potential of PEI F25-LMW, a low-molecular weight PEI with superior transfection efficacy and low toxicity, towards these goals. Results: We have systematically analyzed and determined optimal DNA and siRNA complexation conditions with regard to various parameters including buffer concentration, ionic strength, pH and incubation time. As opposed to 22kDa linear PEI (L-PEI), the low-molecular weight (4-10kDa) PEI F25-LMW performs DNA transfection and siRNA gene targeting with identical efficacies in the presence of serum, thus emphasizing its usefulness in vivo. Furthermore, in contrast to other polyethylenimines, PEI F25-LMW-based DNA or siRNA complexes allow freeze/thawing and frozen storage for several months. Their activity is fully retained without requiring specific buffer conditions or the addition of any lyoprotectant. Physicochemical analysis and atomic force microscopy reveal a distinct size pattern with the presence of two complex subgroups and show that frozen PEI F25-LMW complexes remain stable with little increase in complex size, no changes regarding their zeta potential and cytotoxicity, and full retention of nucleic acid protection. Conclusions: Frozen PEI F25-LMW-based complexes represent efficient and stable ready-to-use formulations of DNA- or siRNA-based gene therapy products.  相似文献   

20.
A bovine derived antimicrobial peptide, indolicidin (IL), was studied of its new application for gene transfer. Plasmid DNA was complexed with both IL and polyethylenimine (PEI) as ternary particles. Compared to DNA/IL complexes, the DNA/IL/PEI particles demonstrated high zeta potentials, small particle sizes, and superior loading efficiencies, suggesting the incorporation of polycations can support IL for gene delivery. For in vitro experiments, these ternary particles significantly improved gene transfection efficiencies over the sole administrations of IL or PEI. This synergistic effect revealed that IL and PEI may play different roles for gene transfer. Our results suggest that IL should be a potential carrier for gene delivery. As our knowledge, our study should be the first article indicating the carrier ability of IL for gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号