首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While airway hyperresponsiveness is usually associated with a diagnosis of asthma or symptoms of wheezing, some individuals with rhinitis show airway hyperresponsiveness as do some with no symptoms whatsoever. We have studied the correlations between symptoms, airway hyperresponsiveness and atopy as determined by skin-prick tests in a cohort of New Zealand children. A total of 662 members of a birth cohort were studied at age 13 years using a respiratory questionnaire, skin-prick tests to 11 common allergens, and an abbreviated validated methacholine challenge test to determine airway responsiveness. Airway hyperresponsiveness (methacholine PC20 FEV1 < or = 8 mg/ml) was strongly correlated with reported asthma and current wheezing (P<0.0001) and also with atopy, especially to house dust mite and cat (P<0.0001). As weal size for both house dust mite and cat increased, so did the proportion of children with airway hyperresponsiveness. All children with diagnosed asthma and airway hyperresponsiveness were atopic. Skin-test reactions to house dust mite and cat were strongly correlated with any degree of measurable airway responsiveness (PC20 FEV1 < or = 25 mg/ml) in children with rhinitis (P<0.00001), and remained significantly correlated even in children without current asthma, without asthma ever and without rhinitis (P<0.001). Atopy is a major determinant of airway hyperresponsiveness in children, not only in those with reported histories of asthma and wheezing, but also in the absence of any history suggesting asthma and rhinitis.  相似文献   

2.
BACKGROUND: Our recently developed murine asthma model is capable of inducing airway-specific chronic inflammatory changes and remodeling, features of human asthma commonly missing in conventional animal models. OBJECTIVES: To validate this model by site-specific physiological evaluation of hyperresponsiveness. METHODS: Non-sensitized and sensitized mice received either short-term uncontrolled or long-term controlled low-level exposures to aerosolized ovalbumin (OVA). Respiratory impedance (Zrs) was measured in response to increasing doses of methacholine (Mch). The constant-phase model was fitted to Zrs spectra to determine the specific site of hyperresponsiveness. RESULTS: Sensitized acutely exposed mice had significantly increased tissue damping (G), tissue elastance (H) and hysteresivity (eta) in response to Mch, but no significant increase in airway resistance (Raw), indicating tissue-specific hyperresponsiveness. In contrast, sensitized chronically exposed mice had significantly elevated Raw at all concentrations of Mch but no increases in G, H or eta indicating airway-specific hyperresponsiveness. CONCLUSIONS: Chronic inhalational exposure of sensitized mice to low-mass concentrations of OVA induces airway-specific hyperresponsiveness.  相似文献   

3.
Asthma, a complex, chronic disease characterized by airway inflammation, hyperresponsiveness and remodelling, affects over 300 million people worldwide. While the disease is typically associated with exaggerated allergen‐induced type 2 immune responses, these responses are strongly influenced by environmental exposures that stimulate innate immune pathways capable of promoting or protecting from asthma. The dual role played by innate immunity in asthma pathogenesis offers multiple opportunities for both research and clinical interventions and is the subject of this review.  相似文献   

4.
Airway hyperresponsiveness remains a defining characteristic of asthma. Traditional views assert that airway smooth muscle is an important structural effector cell in the bronchi that modulates bronchomotor tone induced by contractile agonists. New evidence, however, suggests that abnormalities in airway smooth muscle functions, induced by variety of extracellular stimuli, may play an important role in the development of airway hyperresponsiveness. Studies using isolated bronchial preparations or cultured cells show that inflammatory mediators and cytokines may alter calcium homeostasis in airway smooth muscle and render the cells nonspecifically hyperreactive to agonists.  相似文献   

5.
We have examined the role of intercellular adhesion molecule-1 (ICAM-1) in chronic airway inflammation and airway hyperresponsiveness in a primate model of asthma. Airway cellular composition was assessed by bronchoalveolar lavage (BAL) and airway responsiveness was measured as the bronchoconstrictor response to inhaled methacholine. In animals with chronic airway inflammation (increased BAL eosinophils) and sustained airway hyperresponsiveness, a 7 day dosing scheme with a murine anti-human ICAM-1 monoclonal antibody (R6.5, 2 mg/kg/day; i.v.) did not reduce the existing airway inflammation or airway hyperresponsiveness. In contrast, a similar dosing scheme with dexamethasone (0.2 mg/kg/day, i.m.) was found to significantly reduce both the airway eosinophilia and hyperresponsiveness. However, one week after cessation of dexamethasone treatment, the airway inflammation and hyperresponsiveness returned to pre-treatment levels. In further experiments where animals were first treated with dexamethasone (7 days) followed by a 7 day treatment with R6.5, the reoccurrence of airway inflammation and subsequent increase in airway responsiveness was prevented. We conclude that the efficacy of ICAM-1 is primarily associated with inhibition of the influx of inflammatory cells into the airways and subsequent reduction in airway responsiveness. These data suggest that in lungs with pre-existing inflammation the modulation of ICAM-1 following treatment with glucocorticoids may be a novel and more selective long-term treatment for control of the chronic airway inflammation and hyperresponsiveness associated with bronchial asthma.  相似文献   

6.
Maternal asthma significantly increases the risk of asthma in offspring, but the mechanisms remain poorly defined. We review animal models used to study the maternal effect, focusing on a murine model developed in our laboratory. Mother mice rendered allergic to ovalbumin produce offspring that are more susceptible to allergic sensitization, seen as airway hyperresponsiveness and allergic airway inflammation after a sensitization protocol, which has minimal effects on newborns from normal mothers. Mechanistic analyses identify a role for interleukin-4 (based on pre-mating injection of neutralizing antibodies), dendritic cells and allergen-specific T cells (based on adoptive transfer experiments). Other maternal exposures (e.g. pollutant exposure and non-pulmonary allergy) can increase asthma susceptibility in offspring. This observation implies that the maternal transmission of asthma represents a final common pathway to various types of inflammatory stimuli. Identification of the shared molecular mechanisms in these models may allow better prevention and therapy. Current knowledge, gaps in knowledge and future directions are discussed.  相似文献   

7.
Prognosis of occupational asthma induced by isocyanates   总被引:1,自引:0,他引:1  
Several studies on the prognosis of isocyanate-induced asthma show that a significant proportion of patients continue to experience asthmatic symptoms and nonspecific bronchial hyperresponsiveness after cessation of work, and that further exposure to isocyanates in sensitized subjects leads almost invariably to persistence of respiratory symptoms and of bronchial hyperresponsiveness and the deterioration of airway function. Specific bronchial reactivity to isocyanates may change after cessation of work; however, some subjects continue to be sensitive to TDI several months after cessation of work. The determinants of an unfavourable prognosis for asthma seem to be the same as those for other types of occupational asthma due to low molecular weight compounds (i.e. red cedar asthma): long duration of exposure before the onset of asthma, long duration of symptoms before diagnosis, airway obstruction, and dual airway response after specific challenge tests. Also, single acute exposure to high levels of TDI in the workplace (spills) can result in persistent nonspecific bronchial hyperresponsiveness. Potential mechanisms of persistence of symptoms and of nonspecific bronchial hyperresponsiveness may be chronic inflammation, bronchial smooth muscle alteration, autonomic nervous system disregulation.  相似文献   

8.
In a recent study, the difference between asthma and eosinophilic bronchitis (a condition characterized by cough but not airway hyperresponsiveness or airflow obstruction) was infiltration of airway smooth muscle (ASM) by mast cells. Mast cells produce a variety of lipid mediators, chemokines, cytokines, and enzymes that may interact with ASM cells to cause hyperreactivity to constrictive stimuli and proliferation, and activated ASM can produce stem cell factor and other chemokines, cytokines, and growth factors that may act in recruitment, differentiation, and retention of mast cells. Mast cell infiltration of the airways in asthma is T-cell-dependent, and TH2 cytokines from T cells and other sources act in mast cell expansion from circulating and tissue precursors. The recent data on interactions of mast cells and ASM suggest that this could be an important contributor to airway hyperresponsiveness in asthma. Why this occurs in asthma and how it is sustained remain to be established.  相似文献   

9.
During the preclinical study of new therapeutic modality, we evaluate whether the treatment can reverse the established asthma phenotypes in animal model. However, few have reported on the long term persistence of asthma phenotypes upon re-challenge with allergen (secondary challenge) in animal model. We evaluated the persistence of asthma phenotypes by secondary challenge at different times in previously challenged murine asthma model. BALB/c mice sensitized by intraperitoneal injections of 20 micro g of ovalbumin and 1 mg of alum on days 1 and 14 were challenged initially by the inhalation of 1% ovalbumin for 30 min on days 21, 22, and 23. Each group of mice was rechallenged at 5, 7, 9, or 12 weeks after the initial challenge. Airway hyperresponsiveness, BAL fluid, airway histology and serum ovalbumin-specific IgE level were evaluated. Airway eosinophilia, airway inflammation and serum ovalbumin-specific IgE production persisted upon secondary allergen challenges at least 12 weeks after the initial challenge. However, airway hyperresponsiveness persisted only until mice were rechallenged 7 weeks after the initial challenge. Airway inflammation and allergen specific IgE production may persist longer than airway hyperresponsiveness in a mouse asthma model of secondary allergen challenge.  相似文献   

10.
BACKGROUND: Toluene diisocyanate (TDI) is a leading cause of occupational asthma. Although considerable controversy remains regarding its pathogenesis, TDI-induced asthma is an inflammatory disease of the airways characterized by airway remodeling caused, at least in part, by an excess of extracellular matrix deposition in the airway wall. Matrix metalloproteinases (MMPs) are major proteolytic enzymes that are involved in extracellular matrix turnover because of their ability to cleave all proteins constituting extracellular matrix. Previous studies have reported that MMP-9 might play a role in chronic airway inflammation and remodeling in asthma. OBJECTIVE: An aim of the current study was to evaluate the effects of MMP-inhibiting antibiotic, doxycycline, and MMP inhibitors on hyperresponsiveness and inflammation of the airways in TDI-induced asthma. METHODS: We used a murine model for TDI-induced asthma to examine the effect of doxycycline or MMP inhibitors on bronchial inflammation and airway hyperresponsiveness. RESULTS: The following typical pathophysiologic features are observed in the lungs of the mice: airway inflammation, airway hyperresponsiveness, and increased expression of MMP-9 mRNA and protein. Administration of doxycycline and MMP inhibitors reduced all of these pathophysiologic findings. In addition, the increased phosphorylated Akt but not Akt protein levels in lung tissues after TDI inhalation were significantly reduced by the administration of doxycycline and MMP inhibitors. CONCLUSION: These findings suggest that doxycycline may reduce airway inflammation and hyperresponsiveness through phosphatidylinositol 3-kinase pathway in a murine model of TDI-induced asthma.  相似文献   

11.
New concepts in the pathogenesis of bronchial hyperresponsiveness and asthma   总被引:24,自引:0,他引:24  
Recent studies have suggested that inflammation may play an important role in the characteristic bronchial hyperresponsiveness and symptoms of chronic asthma. The mechanisms by which inflammatory cells, mediators, and nerves interact to produce the features of asthma are still uncertain, however. Although mast cells play an important role in the immediate response to allergen (and probably exercise), pharmacologic evidence argues against a critical role in the late response or bronchial hyperresponsiveness in which other cells, such as macrophages and eosinophils, may play a more important role. Many mediators have been implicated in asthma, but only PAF causes a prolonged increase in bronchial responsiveness. PAF attracts eosinophils into tissues and potently activates these cells, which may lead to epithelial damage, a key feature of asthmatic airways. PAF is also a potent inducer of microvascular leakage in airways, which may result in submucosal edema and plasma exudation into the airway lumen in the future. PAF antagonists will reveal whether PAF plays an important role in the eosinophilic inflammation of asthma. Neural mechanisms may also make an important contribution. Inflammatory mediators may influence neurotransmitter release from airway nerves, and neurotransmitters may be proinflammatory. Neural control is complex and cholinergic, adrenergic, and NANC mechanisms may contribute to bronchial hyperresponsiveness. Many neuropeptides, which may be the transmitters of NANC nerves, have been identified in airways. Neuropeptides in airway sensory nerves, such as substance P, have potent proinflammatory effects and, if these are released by an axon reflex, may amplify the inflammatory response in asthma. Since asthma may be chronic eosinophilic bronchitis, it is logical that the primary treatment should involve drugs that suppress this inflammatory response. At present, corticosteroids appear to be the most effective therapy; they have potent effects against eosinophils and macrophages (but not on mast cells) and reduce bronchial hyperresponsiveness and symptoms. By contrast, bronchodilators, such as beta-agonists, although they reduce symptoms, do not reduce the chronic inflammatory response or bronchial hyperresponsiveness and may mask the underlying inflammation. New therapies should be directed toward controlling eosinophil infiltration and activation in airways.  相似文献   

12.
Airway hyperresponsiveness is one of the cardinal features of asthma but remains largely unexplained. The new concept of perturbed myosin binding within airway smooth muscle sheds light on the question of why airway narrowing is limited in the healthy lung and not in the asthmatic lung and points to unanticipated mechanisms through which lung development and allergic status may be major modulators of airway hyperresponsiveness.  相似文献   

13.
There is compelling evidence that human mast cells contribute to the pathophysiology of asthma. Mast cells, but not T cells or eosinophils, localize within the bronchial smooth muscle bundles in patients with asthma but not in normal subjects or those with eosinophilic bronchitis, a factor likely to be important in determining the asthmatic phenotype. The mechanism of mast cell recruitment by asthmatic airway smooth muscle involves the CXCL10/CXCR3 axis, and several mast cell mediators have profound effects on airway smooth muscle function. The autacoids are established as potent bronchoconstrictors, whereas the proteases tryptase and chymase are being demonstrated to have a range of actions consistent with key roles in inflammation, tissue remodeling, and bronchial hyperresponsiveness. IL-4 and IL-13, known mast cell products, also induce bronchial hyperresponsiveness in the mouse independent of the inflammatory response and enhance the magnitude of agonist-induced intracellular Ca2+ responses in cultured human airway smooth muscle. There are therefore many pathways by which the close approximation of mast cells with airway smooth muscle cells might lead to disordered airway smooth muscle function. Mast cells also infiltrate the airway mucous glands in subjects with asthma, showing features of degranulation, and a positive correlation with the degree of mucus obstructing the airway lumen, suggesting that mast cells play an important role in regulating mucous gland secretion. The development of potent and specific inhibitors of mast cell secretion, which remain active when administered long-term to asthmatic airways, should offer a novel approach to the treatment of asthma.  相似文献   

14.
Asthma is a prevalent and complex syndrome with several phenotypic variants. The central features are bronchial inflammation and airway hyperresponsiveness. Many aspects of asthma, such as control of airway hyperresponsiveness, causative factors, and variable responses to treatment, remain poorly understood. This review highlights some of the latest insights into the pathogenesis of asthma that might ultimately bear on the development or choice of treatment modalities.  相似文献   

15.
The level of exhaled nitric oxide (NO) has been demonstrated to reflect the degree of airway inflammation in patients with asthma and to be related to the severity of asthma, as well as to the efficacy of treatment. In contrast, lung function tests provide information about airway volumes and flows reflecting the level of airway obstruction, but do not allow any direct information about the degree of airway inflammation. Several studies have evaluated the relationships between the level of airway inflammation assessed by exhaled NO and the levels of airway obstruction and/or bronchial hyperresponsiveness in asthmatic adults and children. These studies highlight the complex pathophysiology of asthma and suggest that exhaled NO may have a promising role in addition to lung function measurement in the evaluation of asthma severity in children.  相似文献   

16.
The airway diseases asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous conditions with overlapping pathophysiological and clinical features. It has previously been proposed that this heterogeneity may be characterized in terms of five relatively independent domains labelled from A to E, namely airway hyperresponsiveness (AHR), bronchitis, cough reflex hypersensitivity, damage to the airways and surrounding lung parenchyma, and extrapulmonary factors. Airway hyperresponsiveness occurs in both asthma and COPD, accounting for variable day to day symptoms, although the mechanisms most likely differ between the two conditions. Bronchitis, or airway inflammation, may be predominantly eosinophilic or neutrophilic, with different treatments required for each. Cough reflex hypersensitivity is thought to underlie the chronic dry cough out of proportion to other symptoms that can occur in association with airways disease. Structural changes associated with airway disease (damage) include bronchial wall thickening, airway smooth muscle hypertrophy, bronchiectasis and emphysema. Finally, a variety of extrapulmonary factors may impact upon airway disease, including rhinosinusitis, gastroesophageal reflux disease, obesity and dysfunctional breathing. This article discusses the A to E concept in detail and describes how this framework may be used to assess and treat patients with airway diseases in the clinic.  相似文献   

17.
Animal models of asthma and chronic bronchitis   总被引:3,自引:0,他引:3  
Human asthma is characterized by three critical phenotypic traits: intermittent reversible airway obstruction, airway hyperresponsiveness and airway inflammation. In animal models of asthma, airway hyperresponsiveness is an important feature. This trait is characterized by an exaggerated bronchoconstrictor response that would have little physiological consequence in an otherwise unaffected or normal individual. In this article we explore two distinct facets of airway responsiveness. The first is the genetic basis for variations in airway responsiveness that occur in mice in the absence of any specific environmental manipulation. We demonstrate that standard genetic approaches can be successfully applied to the identification of regions of the mouse genome linked to the expression of airway hyperresponsiveness. The second topic addressed in this review is the change in airway responsiveness induced in rats by repeated exposure to sulphur dioxide gas. With daily exposure to high concentrations of sulphur dioxide gas, there is chronic injury and repair of epithelial cells. Over time, rats develop mucous hypersecretion, airway inflammation, increased airway resistance and airway hyperresponsiveness. This model has provided useful information on the mechanisms underlying the pathophysiological events that typify the chronic bronchitis in humans.  相似文献   

18.
BACKGROUND: IL-5 is central to the pathogenesis of airway eosinophilic inflammation and hyperresponsiveness associated with both atopic and nonatopic asthma. The therapeutic potential of IL-5 antagonists in asthma is supported by the inhibition of airway eosinophilia and hyperresponsiveness in animal models receiving neutralizing anti-IL-5 mAbs intravenously or intraperitoneally. OBJECTIVE: The purpose of this study was to test the hypothesis that mAbs against IL-5 delivered by way of the respiratory tract are as effective as those delivered intraperitoneally in diminishing the pulmonary eosinophilic inflammation and airway hyperresponsiveness in a murine model of ovalbumin-induced asthma. METHODS: Ovalbumin-sensitized Balb/c mice were given an anti-IL-5 mAb delivered intranasally or an isotype-matched control mAb delivered intranasally before respiratory challenge with ovalbumin. Outcome variables included respiratory system resistance responses to methacholine, bronchoalveolar lavage fluid cellularity, and lung histopathology. RESULTS: Anti-IL-5 mAbs administered intranasally to ovalbumin-sensitized and challenged mice significantly decreased eosinophil counts in bronchoalveolar lavage fluid and lung tissue and significantly reduced airway hyperresponsiveness relative to ovalbumin-sensitized and challenged mice that received either no mAb treatment or an isotype-matched control mAb. Similar results were obtained when an anti-IL-5 mAb was given intraperitoneally. CONCLUSION: This is the first study to demonstrate that delivery of anti-IL-5 mAbs into the respiratory tract is efficacious in attenuating the asthma phenotype in a murine model. These results provide impetus for the development of inhaled IL-5 antagonists for the treatment of human asthma.  相似文献   

19.
Bronchial asthma and chronic obstructive pulmonary disease (COPD) are characterized by airway inflammation and oedema. The oedema of the airway wall may contribute to airway narrowing and hyperresponsiveness by increasing airway wall thickness, by altering airway compliance, or by impairing the transmission of the lung elastic recoil to the airway smooth muscle (ASM). We hypothesized that the i.v. infusion of mannitol, an osmotic diuretic, would reduce the water content of the airway wall in asthma and COPD, thus decreasing airway responsiveness to methacholine (MCh). In eight asthmatic and in six COPD patients, airway responsiveness to MCh, lung volumes and lung mechanics were measured before and after infusion of mannitol. In the asthmatics, mannitol decreased airway responsiveness to MCh and lung elastic recoil. In the COPD patients, no differences were recorded after mannitol infusion. These data suggest that the airway wall oedema, in asthma, has an impact on airway responsiveness to MCh. The differential effect of mannitol in asthma versus COPD, may relate to the specific pathologic features of the diseases.  相似文献   

20.
Epidemiologic data indicate that obesity increases the prevalence and incidence of asthma and reduces asthma control. Obese mice exhibit innate airway hyperresponsiveness and augmented responses to certain asthma triggers, further supporting a relationship between obesity and asthma. Here I discuss several mechanisms that may explain this relationship. In obesity, lung volume and tidal volume are reduced, events that promote airway narrowing. Obesity also leads to a state of low-grade systemic inflammation that may act on the lung to exacerbate asthma. Obesity-related changes in adipose-derived hormones, including leptin and adiponectin, may participate in these events. Comorbidities of obesity, such as dyslipidemia, gastroesophageal reflux, sleep-disordered breathing, type 2 diabetes, or hypertension may provoke or worsen asthma. Finally, obesity and asthma may share a common etiology, such as common genetics, common in utero conditions, or common predisposing dietary factors. Novel therapeutic strategies for treatment of the obese patient with asthma may result from an increased understanding of the mechanisms underlying this relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号