共查询到20条相似文献,搜索用时 15 毫秒
1.
Ward Y Lake R Yin JJ Heger CD Raffeld M Goldsmith PK Merino M Kelly K 《Cancer research》2011,71(23):7301-7311
CD97, an adhesion-linked G-protein-coupled receptor (GPCR), is induced in multiple epithelial cancer lineages. We address here the signaling properties and the functional significance of CD97 expression in prostate cancer. Our findings show that CD97 signals through Gα12/13 to increase RHO-GTP levels. CD97 functioned to mediate invasion in prostate cancer cells, at least in part, by associating with lysophosphatidic acid receptor 1 (LPAR1), leading to enhanced LPA-dependent RHO and extracellular signal-regulated kinase activation. Consistent with its role in invasion, depletion of CD97 in PC3 cells resulted in decreased bone metastasis without affecting subcutaneous tumor growth. Furthermore, CD97 heterodimerized and functionally synergized with LPAR1, a GPCR implicated in cancer progression. We also found that CD97 and LPAR expression were significantly correlated in clinical prostate cancer specimens. Taken together, these findings support the investigation of CD97 as a potential therapeutic cancer target. 相似文献
2.
3.
Hepatic oval cells (HOC) are considered to be the stem cells of the liver and have been linked to the development of hepatic malignancies. Studies have demonstrated that chronic hepatitis B virus (HBV) infection and dietary aflatoxin B1 (AFB1) exposure are among the most important risk factors for the development of hepatocellular carcinoma (HCC). However, little research has been done to evaluate the role of oval cells in these two environmental factors on hepatocarcinogenesis. In this study, partial transformation of rat HOC (LE/6) were accomplished by transfected HBV x gene (HBx), and then transfected cells were implanted both intra-hepatically and subcutaneously into nude mice treated with AFB1 in vivo. We found the oval cells produced tumors (4/24 of the animals) in liver following transfection with HBx gene and treatment with AFB1. These intrahepatic tumors included HCC cells (immunopositive for HepParl, ALB, CK8 and AFP) and mesenchymal cells (immunopositive for Vimentin and SMA). Whereas mesenchymal tumors were observed at the subcutaneous tissue with a similar rate in all controls treated with cell lines (10/24 in HBx-oval cells/AFB1 group, 8/20 in HBx-oval cells/non-AFB1 group, 10/20 in non-HBx/AFB1 group; 9/20 in non-HBx/non-AFB1 group). Conversely, none of the controls developed intrahepatic tumors. These results provide an evidence that oval cells have the capacity to generate HCC through the combined effects of the HBx and AFB1 in the liver microenvironment. 相似文献
4.
5.
Naruomi Jinno Michihiro Yoshida Kazuki Hayashi Itaru Naitoh Yasuki Hori Makoto Natsume Akihisa Kato Kenta Kachi Go Asano Naoki Atsuta Hidenori Sahashi Hiromi Kataoka 《Cancer science》2021,112(2):668-678
Peritoneal dissemination and malignant ascites in pancreatic ductal adenocarcinoma (PDAC) patients represent a major clinical issue. Lysophosphatidic acid (LPA) is a lipid mediator that modulates the progression of various cancers. Based on the increasing evidence showing that LPA is abundant in malignant ascites, we focused on autotaxin (ATX), which is a secreted enzyme that is important for the production of LPA. This study aimed to elucidate the importance of the ATX‐LPA axis in malignant ascites in PDAC and to determine whether ATX works as a molecular target for treating peritoneal dissemination. In a PDAC peritoneal dissemination mouse model, the amount of ATX was significantly higher in ascites than in serum. An in vitro study using two PDAC cell lines, AsPC‐1 and PANC‐1, showed that ATX‐LPA signaling promoted cancer cell migration via the activation of the downstream signaling, and this increased cell migration was suppressed by an ATX inhibitor, PF‐8380. An in vivo study showed that PF‐8380 suppressed peritoneal dissemination and decreased malignant ascites, and these results were validated by the biological analysis as well as the in vitro study. Moreover, there was a positive correlation between the amount of ATX in ascites and the degree of disseminated cancer progression. These findings demonstrated that ATX in ascites works as a promotor of peritoneal dissemination, and the targeting of ATX must represent a useful and novel therapy for peritoneal dissemination of PDAC. 相似文献
6.
Frankenberry KA Skinner H Somasundar P McFadden DW Vona-Davis LC 《International journal of oncology》2006,28(4):985-993
Obesity is considered a risk factor for many cancers, including breast cancer. Our laboratory has previously shown that leptin is mitogenic in many cancer cell lines, including breast. Information regarding the effects of high leptin levels on leptin receptor expression and signaling is lacking. The purpose of this study was to characterize leptin receptor expression in response to leptin in breast cancer cells. In addition, SOCS-3 expression (a leptin inducible inhibitor of leptin signaling), plus MAPK and PI3K signaling, were examined to determine their role in leptin-induced cell proliferation. Breast cancer cell lines, ZR75-1 and HTB-26, were treated with 0, 4, 40 or 80 ng/ml of leptin. Multiplex RT-PCR was performed to determine relative mRNA expression levels of the human short (huOB-Ra) or long (huOB-Rb) leptin receptor isoforms, or SOCS-3. MAPK and PI3K signaling was analyzed by phosphorylation of ERK and Akt, respectively, via Western blotting. Cell proliferation and inhibitor studies were analyzed by MTT assay. HTB-26 and ZR75-1 both expressed huOB-Ra, huOB-Rb and SOCS-3 mRNA; however, mRNA expression levels generally remained unchanged over time with leptin treatment. MAPK and PI3K pathways were activated in the presence of leptin over time. MAPK and PI3K inhibitors significantly blocked leptin-induced proliferation. Higher levels of circulating leptin contribute to breast cancer proliferation by activation of the MAPK and PI3K signaling pathways involved in cell growth and survival. The mitogenic effects of leptin are not a consequence of altered leptin receptor or SOCS-3 mRNA expression. 相似文献
7.
8.
Androgen receptor signaling in androgen-refractory prostate cancer. 总被引:37,自引:0,他引:37
Prostate cancer is the second most prevalent cancer in males in the United States. Standard therapy relies on removing, or blocking the actions of, androgens. In most cases, this therapy results in a regression of the cancer because the prostate and most primary prostate tumors depend on androgens for growth and the avoidance of apoptosis. However, a portion of the cancers eventually relapse, at which point they are termed "androgen refractory" and can no longer be cured by conventional therapy of any type. The precise molecular events that lead from androgen-sensitive prostate cancer to androgen-refractory prostate cancer are, therefore, of great interest. This review seeks to identify specific molecular events that may be linked directly to the progression to androgen-refractory cancer. Some of the mechanisms appear to involve the androgen receptor (AR) directly and include mutations in, or amplification of, the AR gene in a manner that allows the AR to respond to low doses of androgens, other steroids, or antiandrogens. In a less direct manner, coactivators may increase the sensitivity of the AR to androgens and even other nonandrogenic substances through a number of mechanisms. Additional indirect mechanisms that do not result from mutation of the AR may involve activation of the AR by peptide growth factors or cytokines or may involve bypassing the AR entirely via other cellular pathways. Identification of the role of these mechanisms in the progression to androgen-refractory prostate cancer is critical for developing therapies capable of curing this disease. 相似文献
9.
10.
Castration-resistant prostate cancer (CRPC), the invariably lethal phenotype of advanced prostate cancer, represents a clinical state defined by disease progression despite reduction of testosterone to castrate levels (i.e., ≤50 ng/dL). Although resistant to androgen-deprivation therapy (i.e., LHRH agonists/antagonists), CRPC continues to depend on the androgen receptor (AR)-signaling pathway. Supporting the importance of AR-signaling in a castration-resistant state, the next-generation AR-signaling inhibitors enzalutamide and abiraterone have been shown to afford a survival benefit in men with metastatic CRPC. However, primary and secondary resistance mechanisms to these agents inevitably drive continued disease progression—often as a result of re-activation of AR-signaling. With increased understanding of the mechanisms underlying how continued AR-signaling occurs in spite of drugs like abiraterone and enzalutamide, a new wave of therapies is emerging designed to more effectively target AR-signaling. This review will focus on the more clinically relevant mechanisms of CRPC drug resistance and our ongoing efforts to develop drugs to target these mechanisms. 相似文献
11.
Mohammed Ahmed Abdel Muneem Nouh Xiu-Xian Wu Homare Okazoe Hiroyuki Tsunemori Reiji Haba Abdel Muneem Mohammed Abou-Zeid Mohammed Diaa Saleem Masashi Inui Mikio Sugimoto Junken Aoki Yoshiyuki Kakehi 《Cancer science》2009,100(9):1631-1638
Lysophosphatidic acid (LPA) may enhance diverse biologic activities in prostate cancer. This study was conducted to analyze expression levels of LPA-producing enzymes, autotaxin (ATX) and acylglycerol kinase (AGK), in prostate cancer with relevance to clinicopathological parameters. Real-time RT-PCR and western blotting were performed for ATX and AGK in non-neoplastic prostate cells (PrECs and PrSCs) and prostate cancer cell-lines (DU-145, PC-3, LNCaP, and AILNCaP). Immunohistochemical analyses were conducted in tissue specimens of 132 localized prostate cancer patients who underwent radical prostatectomy between 2001 and 2007 (median observation period, 22 months). Both enzymes were negatively expressed in PrECs and PrSCs at mRNA and protein levels. ATX expression was higher than AGK in AILNCaP, DU-145, and PC-3 cell-lines, while AGK was mainly expressed in LNCaP cells. Immunohistochemically, ATX and AGK expressions were negative in non-neoplastic epithelia, while both were weakly expressed in the majority of high-grade intra-epithelial neoplasia (HG-PIN). In cancer foci, ATX and AGK expressions were strong in 49% and 62%, weak in 40% and 32%, and negative in 11% and 6%, respectively. Expressions of both enzymes were significantly correlated with primary Gleason grade of cancer foci ( P < 0.0001) and capsular invasion ( P = 0.03 and 0.003 respectively). ATX expression was significantly correlated with probability of prostate specific antigen (PSA)-failure after surgery ( P < 0.0001). In conclusion, LPA-producing enzymes (ATX and AGK) were frequently expressed in prostate cancer cells and precancerous HG-PIN. In particular, high expression levels of ATX were associated with both malignant potentials and poor outcomes. ( Cancer Sci 2009; 100: 1631–1638) 相似文献
12.
Role of estrogen receptor alpha in modulating IGF-I receptor signaling and function in breast cancer 总被引:8,自引:0,他引:8
The insulin-like growth factor I (IGF-I) receptor (IGF-IR) is a multifunctional transmembrane tyrosine kinase that has been implicated in neoplastic transformation. The tumorigenic potential of IGF-IR relies on its strong anti-apoptotic and mitogenic activity. The growth and survival signals of IGF-IR are mediated through multiple intracellular pathways, many of which emanate from insulin receptor substrate 1 (IRS-1). In hormone-dependent breast cancer cells, IGF-IR and IRS-1 are often co-expressed with the estrogen receptor alpha (ERalpha), and IGF-I and ER systems are engaged in a powerful functional cross-talk. Most notably, activation of ERalpha upregulates the expression of IRS-1, IGF-IR, and IGF-1, which results in amplification of IGF-I responses. Reciprocally, stimulation of IGF-IR increases the phosphorylation and activity of ERalpha. In contrast, in ERalpha-negative breast cancer cells and tumors, the levels of IGF-IR and IRS-1 are often decreased and IGF-I is non-mitogenic. Our data suggest that defective IGF-IR signaling in ERalpha-negative cells is related, at least in part, to improper activation of the IRS-1/PI-3K/Akt/GSK-3 pathway and lack of Rb1 phosphorylation. These defects are partially reversed by re-expression of ERalpha. Interestingly, some non-mitogenic IGF-I responses, such as migration and invasion are retained in the absence of ERalpha, suggesting that IGF-IR function in breast cancer cells might depend on the ERalpha status. The understanding of how ERalpha may dictate IGF-I responses will help in devising rational anti-IGF-IR strategies for breast cancer treatment. 相似文献
13.
Altered ErbB receptor signaling and gene expression in cisplatin-resistant ovarian cancer 总被引:3,自引:0,他引:3
Macleod K Mullen P Sewell J Rabiasz G Lawrie S Miller E Smyth JF Langdon SP 《Cancer research》2005,65(15):6789-6800
14.
Dysregulation of the androgen receptor (AR) and its signaling in the prostate often occurs during normal aging or after androgen ablation, consequently leading to the development of hormone-refractory prostate cancer (HRPC). Hyaluronan (HA) plays an important role in this transformation of androgen-independent cancer. Previous studies have shown that activation of the receptor for hyaluronan-mediated motility, CD168, was correlated with the Gleason's score, cancer stage, transformation and metastasis in >90% of HRPC patients. However, the relationship between loss of AR dependency and HA-mediated CD168 signaling remains unclear. We report here that AR regulates normal CD168 expression and its downstream signaling in androgen-dependent (AD) prostatic epithelial cell lines. Furthermore, we observed that the concurrent treatments of HA and dihydrotestosterone (DHT), a native androgen, significantly promoted the tumorigenicity of AD prostate cancer cell lines, which showed elevated rates of cell proliferation, invasion and metastasis to the human bone marrow endothelial cell layer. Inhibition of CD168 downstream Rho-activated protein kinases completely prevented this type of tumorigenicity. These findings suggest that the interaction of androgen and AR is essential for regulating HA-mediated cancer progression via the CD168/ROCK signal transduction pathway and also indicate that the loss of AR regulation not only causes CD168 overexpression but it also activates HA-mediated CD168 signaling in malignant cancer progression and metastasis of HRPC. 相似文献
15.
16.
Kohei Kato Kyohei Yoshikawa Eriko Tanabe Misaho Kitayoshi Rie Fukui Nobuyuki Fukushima Toshifumi Tsujiuchi 《Tumour biology》2012,33(5):1739-1744
Lysophosphatidic acid (LPA) interacts with at least six G protein-coupled transmembrane LPA receptors. Recently, it has been demonstrated that each LPA receptor acts as a positive or negative regulator of cellular function. In the present study, to assess a biological role of LPA receptors on cell migration of pancreatic cancer cells, we generated LPA receptor-1 (LPA1) and LPA3 knockdown cells from hamster pancreatic cancer cells by transfection with short hairpin RNA plasmids and measured their cell motile and invasive abilities. In cell motility and invasion assay, a Cell Culture Insert, coated with or without a Matrigel, was used. While the cell motility and invasion of Lpar1 knockdown cells were markedly enhanced than those of control cells, Lpar3 knockdown cells showed significantly lower cell motility and invasion. Moreover, to investigate an involvement of LPA1 and LPA3 in the development of pancreatic cancers, we also measured the expression levels of Lpar1 and Lpar3 genes in hamster pancreatic duct adenocarcinomas (PDAs) induced by a nitroso compound. The expressions of Lpar1 gene in PDAs were significantly lower than those in normal pancreatic tissues. By contrast, the elevated expressions of Lpar3 gene were detected in PDAs. We thus demonstrate that LPA1 and LPA3 play the different roles on cell migration ability of pancreatic cancer cells, suggesting the opposite effects via LPA1 and LPA3 may contribute to the pathogenesis of pancreatic cancers in hamsters. 相似文献
17.
Sven Perner Marcus V. Cronauer Andres Jan Schrader Helmut Klocker Zoran Culig Aria Baniahmad 《Oncotarget》2015,6(34):35542-35555
Prostate Cancer (PCa) is an important age-related disease being the most common cancer malignancy and the second leading cause of cancer mortality in men in Western countries. Initially, PCa progression is androgen receptor (AR)- and androgen-dependent. Eventually advanced PCa reaches the stage of Castration-Resistant Prostate Cancer (CRPC), but remains dependent on AR, which indicates the importance of AR activity also for CRPC. Here, we discuss various pathways that influence the AR activity in CRPC, which indicates an adaptation of the AR signaling in PCa to overcome the treatment of PCa. The adaptation pathways include interferences of the normal regulation of the AR protein level, the expression of AR variants, the crosstalk of the AR with cytokine tyrosine kinases, the Src-Akt-, the MAPK-signaling pathways and AR corepressors. Furthermore, we summarize the current treatment options with regard to the underlying molecular basis of the common adaptation processes of AR signaling that may arise after the treatment with AR antagonists, androgen deprivation therapy (ADT) as well as for CRPC, and point towards novel therapeutic strategies. The understanding of individualized adaptation processes in PCa will lead to individualized treatment options in the future. 相似文献
18.
Lysophosphatidic acid (LPA), a major G protein coupled receptor (GPCR)-activating ligand present in serum, elicits growth factor like responses by stimulating specific GPCRs coupled to heterotrimeric G proteins such as G(i), G(q), and G12/13. Previous studies have shown that the overexpression of wild-type Galpha12 (Galpha12WT) results in the oncogenic transformation of NIH3T3 cells (Galpha12WT-NIH3T3) in a serum-dependent manner. Based on the potent growth-stimulating activity of LPA and the presence of LPA and LPA-like molecules in the serum, we hypothesized that the serum-dependent neoplastic transformation of Galpha12WT-NIH3T3 cells was mediated by the stimulation of LPA-receptors (LPARs) by LPA in the serum. In the present study, using guanine nucleotide exchange assay and GST-TPR binding assay, we show that the treatment of Galpha12WT-NIH3T3 with 2 muM LPA leads to the activation of Galpha12. Stimulation of these cells with LPA promotes JNK-activation, a critical component of Galpha12-response and cell proliferation. We also show that LPA can substitute for serum in stimulating JNK-activity, DNA synthesis, and proliferation of Galpha12WT-NIH3T3 cells. LPA-mediated proliferative response in NIH3T3 cells involves Galpha12, but not the closely related Galpha13. Pretreatment of Galpha12WT-NIH3T3 cells with suramin (100 microM), a receptor-uncoupling agent, inhibited LPA-stimulated proliferation of these cells by 55% demonstrating the signal coupling between cell surface LPAR and Galpha12 in the neoplastic proliferation of NIH3T3 cells. As LPA and LPAR mediated mitogenic pathways have been shown to play a major role in tumor genesis and progression, a mechanistic understanding of the signal coupling between LPAR, Galpha12, and the downstream effectors is likely to unravel additional targets for novel cancer chemotherapies. 相似文献
19.
Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling 总被引:12,自引:0,他引:12
Clarke R Liu MC Bouker KB Gu Z Lee RY Zhu Y Skaar TC Gomez B O'Brien K Wang Y Hilakivi-Clarke LA 《Oncogene》2003,22(47):7316-7339