首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patellofemoral pain (PFP) is a common complaint among female runners. The etiology for PFP is frequently associated with increased patellofemoral joint stress (PFJS) and altered hip and knee joint kinematics during running. However, whether PFJS during running is increased among runners with PFP is unknown. The primary aim of this study was to compare PFJS during running among females with and without PFP. We also compared hip and knee transverse plane kinematics during running due to their potential influence on patellofemoral contact area and PFJS. Three dimensional hip and knee running kinematics and kinetics were obtained from 20 females with PFP and 20 females with no pain. Patellofemoral joint stress during running was estimated using patellofemoral contact area and a sagittal plane patellofemoral joint model previously described. Patellofemoral joint stress, PFJS-time integral, and hip and knee transverse plane kinematics at the time of impact peak and peak ground reaction force were compared between groups using a multivariate analysis of variance. The results show that peak PFJS and PFJS-time integral were similar between groups. Peak knee flexion angle and net knee extension moment were not different between groups. However, females with PFP demonstrated hip internal rotation that was 6° greater (P=0.04) when ground reaction forces were greatest. The extent these results are influenced by compensations for pain is unclear. However, if increased PFJS contributes to the etiology or exacerbation of PFP, interventions to minimize altered transverse plane hip kinematics may be indicated among runners who demonstrate this characteristic.  相似文献   

2.
We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot–ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were?<?2.0° for rotations and?<?0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were?<?0.07 BW and?<?0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.  相似文献   

3.
The knee has been the focus of many studies linking mammalian postcranial form with locomotor behaviors and animal ecology. A more difficult task has been linking joint morphology with joint kinematics during locomotor tasks. Joint curvature represents one opportunity to link postcranial morphology with walking kinematics because joint curvature develops in response to mechanical loading. As an initial examination of mammalian knee joint curvature, the curvature of the medial femoral condyle was measured on femora representing 11 ungulate species. The position of a region of low curvature was measured using a metric termed the “angle to low curvature”. This low‐curvature region is important because it provides the greatest contact area between femoral and tibial condyles. Kinematic knee angles during walking were derived from the literature and kinematic knee angles across the gait cycle were correlated with angle to low curvature values. The highest correlation between kinematic knee angle and the angle to low curvature metric occurred at 20% of the walking gait cycle. This early portion of the walking gait cycle is associated with a peak in the vertical ground reaction force for some mammals. The chondral modeling theory predicts that frequent and heavy loading of particular regions of a joint surface during ontogeny will result in these regions being flatter than the surrounding joint surface. The locations of flatter regions of the femoral condyles of ungulates, and their association with knee angles used during the early stance phase of walking provides support for the chondral modeling theory. Anat Rec, 298:2039–2050, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
In musculoskeletal modeling, reliable estimates of muscle moment arms are an important step in accurately predicting muscle forces and joint moments. The degree of agreement between the two common methods of calculating moment arms—tendon excursion (TE) and geometric origin–insertion, is currently unknown for the muscles crossing the knee joint. Further, measured moment arm data are subject to variability in estimation of attachment sites as points from irregular surfaces on the bones, and due to differences in joint kinematics observed in vivo. Thus, the objectives of the present study were to compare moment arms of major muscles crossing the knee joint obtained from TE and geometric methods using a finite element-based lower extremity model, and to quantify the effects of potential muscle origin–insertion and tibiofemoral kinematic variability on the predicted moment arms using probabilistic methods. A semiconstrained, fixed bearing, posterior cruciate-retaining total knee arthroplasty was included due to available in vivo kinematic data. In this study, muscle origin and insertion locations and kinematic variables were represented as normal distributions with standard deviations of 5 mm for origin–insertion locations and up to 1.6 mm and 3.0° for the kinematic parameters. Agreement between the deterministic moment arm calculations from the two methods was excellent for the flexors, while differences in trends and magnitudes were observed for the extensor muscles. Model-predicted deterministic moment arms from both methods agreed reasonably with the experimental values from available literature. The uncertainty in input parameters resulted in substantial variability in predicted moment arms, with the size of 1–99% confidence interval being up to 41.3 and 35.8 mm for the TE and geometric methods, respectively. The sizeable range of moment arm predictions and associated excursions has the potential to affect a muscle’s operating range on the force–length curve, thus affecting joint moments. In this study, moment arm predictions were more dependent on muscle origin–insertion locations than the kinematic variables. The important parameters from the TE method were the origin and insertion locations in the sagittal plane, while the insertion location in the sagittal plane was the dominant parameter using the geometric method.  相似文献   

5.
With more than 29,000 OpenSim users, several musculoskeletal models with varying levels of complexity are available to study human gait. However, how different model parameters affect estimated joint and muscle function between models is not fully understood. The purpose of this study is to determine the effects of four OpenSim models (Gait2392, Lower Limb Model 2010, Full-Body OpenSim Model, and Full Body Model 2016) on gait mechanics and estimates of muscle forces and activations. Using OpenSim 3.1 and the same experimental data for all models, six young adults were scaled in each model, gait kinematics were reproduced, and static optimization estimated muscle function. Simulated measures differed between models by up to 6.5° knee range of motion, 0.012 Nm/Nm peak knee flexion moment, 0.49 peak rectus femoris activation, and 462 N peak rectus femoris force. Differences in coordinate system definitions between models altered joint kinematics, influencing joint moments. Muscle parameter and joint moment discrepancies altered muscle activations and forces. Additional model complexity yielded greater error between experimental and simulated measures; therefore, this study suggests Gait2392 is a sufficient model for studying walking in healthy young adults. Future research is needed to determine which model(s) is best for tasks with more complex motion.  相似文献   

6.
A kinematic model of the human long finger and the six muscles that actuate it is presented. The model transforms finger pose into estimates of muscle excursions and fingertip location. The effects of abduction/adduction about the metacarpo-phalangeal joint are accounted for, as are the effects of flexion of the three finger joints. A set of parameters are provided which approximate kinematics of the segments and muscles of a cadaver finger over the range of finger poses humans normally assume.  相似文献   

7.
There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a “trial-and-error” approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject.This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis.Resuls showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs.  相似文献   

8.
This paper introduces a new approach for computing lower extremity muscle forces by incorporating equations that consider “bone structure” and “prevention of bending by load reduction” into existing optimization algorithms.Lower extremity muscle and joint forces, during normal gait, were calculated and compared using two different optimization approaches. We added constraint equations that prevent femoral bending loads to an existing approach that considers “minimal total muscular force”. Gait parameters such as kinematics, ground reaction forces, and surface electromyographic activation patterns were examined using standardized gait analysis. A subject-specific anatomic model of the lower extremities, obtained from magnetic resonance images of a healthy male, was used for the simulations. Finite element analysis was used to calculate femoral loads.The conventional method of calculating muscle forces leads to higher rates of femoral bending and structural stress than the new approach. Adding equations with structural subject-specific parameters in our new approach resulted in reduced femoral stress patterns.These findings show that our new approach improves the accuracy of femoral stress and strain simulations. Structural overloads caused by bending can be avoided during inverse calculation of muscle forces.  相似文献   

9.
《The Knee》2019,26(3):564-577
BackgroundBraces for medial knee osteoarthritis can reduce medial joint loads through a combination of three mechanisms: application of an external brace abduction moment, alteration of gait dynamics, and reduced activation of antagonistic muscles. Although the effect of knee bracing has been reported independently for each of these parameters, no previous study has quantified their relative contributions to reducing medial knee loads.MethodsIn this study, we used a detailed musculoskeletal model to investigate immediate changes in medial and lateral loads caused by two different knee braces: OA Assist and OA Adjuster 3 (DJO Global). Seventeen osteoarthritis subjects and eighteen healthy controls performed overground gait trials in unbraced and braced conditions.ResultsAcross all subjects, bracing reduced medial loads by 0.1 to 0.3 times bodyweight (BW), or roughly 10%, and increased lateral loads by 0.03 to 0.2 BW. Changes in gait kinematics due to bracing were subtle, and had little effect on medial and lateral joint loads. The knee adduction moment was unaltered unless the brace moment was included in its computation. Only one muscle, biceps femoris, showed a significant change in EMG with bracing, but this did not contribute to altered peak medial contact loads.ConclusionsKnee braces reduced medial tibiofemoral loads primarily by applying a direct, and substantial, abduction moment to each subject's knee. To further enhance brace effectiveness, future brace designs should seek to enhance the magnitude of this unloader moment, and possibly exploit additional kinematic or neuromuscular gait modifications.  相似文献   

10.
Our goal was to estimate knee and hip joint contact forces during a variety of unconstrained “stretching” exercises that are often recommended for people with arthritis. The population of interest was aged females with and without significant osteoarthritis (OA). Three-dimensional (3-D) kinematic, force platform, and selected electromyographic (EMG) data were measured. A relatively standard and reasonably efficient technique was used for all subjects and tasks: inverse dynamics to estimate joint reaction forces and net moments, followed by heuristic reductionist techniques for predicting muscle load-sharing. Muscle force predictions were compatible with measured EMG activity for some tasks but less so for others, especially those with significant axial and medio-lateral movement components or high co-contraction. Such results suggest several improvements, which come at computational cost: 3-D joint models which better document muscle and passive tissue loading-sharing in abduction and axial torsion, and dynamic or novel static optimization approaches that can inherently predict muscle co-contraction. Nonetheless, the predicted joint contact loadings provide estimates that are essentially lower bounds on the likely joint contact loads. Based on our results we suggest that the side-kick and back-kick tasks be modified because the loading levels on the support leg are potentially excessive for the aged arthritic population.  相似文献   

11.
The classical stretch shortening cycle (SSC) describes sagittal joint flexion–extensions in motions like running or hopping. However, lateral movements are integral components of team sports and are associated with frontal plane joint displacements. The purpose of this study is to identify neuromuscular and kinematical mechanisms determining motor control and performance of reactive laterally conducted SSCs. Lateral jumps were performed from four distances in order to investigate the influence of lateral stretch loads on the lower extremity. Electromyographic (EMG) data of nine lower extremity muscles were collected. Foot, ankle, knee, and hip kinematics were recorded by 3-D motion analysis. High stretch loads were characterized by a greater foot exorotation during the initial phase of contact. In the sagittal plane knee and hip joint, displacements increased, whereas in the frontal plane only the hip joint displacement was significantly raised. In particular, frontal peak joint moments increased with stretch load. Thigh muscles’ mean pre-activity amplitude was enhanced. It was possible to detect stretch reflexes in the thigh muscles, whereas in particular the short-latency reflex (SLR) was stretch load-dependently modulated. The results of the present study suggest that the foot exorotation seems to play a decisive role in the movement control of lateral jumps. The association between exorotation and increased sagittal joint displacements may be seen as a compensation strategy to shift load from the frontal to the sagittal plane. Lateral load compensation seems to strongly depend on upper leg’s kinematic and neuromuscular adjustments, rather than on the ankle joint complex.  相似文献   

12.
The classical stretch shortening cycle (SSC) describes sagittal joint flexion–extensions in motions like running or hopping. However, lateral movements are integral components of team sports and are associated with frontal plane joint displacements. The purpose of this study is to identify neuromuscular and kinematical mechanisms determining motor control and performance of reactive laterally conducted SSCs. Lateral jumps were performed from four distances in order to investigate the influence of lateral stretch loads on the lower extremity. Electromyographic (EMG) data of nine lower extremity muscles were collected. Foot, ankle, knee, and hip kinematics were recorded by 3-D motion analysis. High stretch loads were characterized by a greater foot exorotation during the initial phase of contact. In the sagittal plane knee and hip joint, displacements increased, whereas in the frontal plane only the hip joint displacement was significantly raised. In particular, frontal peak joint moments increased with stretch load. Thigh muscles’ mean pre-activity amplitude was enhanced. It was possible to detect stretch reflexes in the thigh muscles, whereas in particular the short-latency reflex (SLR) was stretch load-dependently modulated. The results of the present study suggest that the foot exorotation seems to play a decisive role in the movement control of lateral jumps. The association between exorotation and increased sagittal joint displacements may be seen as a compensation strategy to shift load from the frontal to the sagittal plane. Lateral load compensation seems to strongly depend on upper leg’s kinematic and neuromuscular adjustments, rather than on the ankle joint complex.  相似文献   

13.
This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26 km/h, 11 g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards.  相似文献   

14.
A Bayesian network dynamic model was developed to determine the kinematics of the intervertebral joints of the lumbar spine. Radiographic images in flexion and extension postures were used as input data for modeling, together with movement information from the skin surface using an electromagnetic motion tracking system. Intervertebral joint movements were then estimated by the graphic network. The validity of the model was tested by comparing the predicted position of the vertebrae in the neutral position with those obtained from the radiographic image in the neutral posture. The correlation between the measured and predicted movements was 0.99 (p < 0.01) with a mean error of less than 1.5°. The movement sequence of the various vertebrae was examined based on the model output, and wide variations in the kinematic patterns were observed. The technique is non-invasive and has potential to be used clinically to measure the kinematics of lumbar intervertebral movement. This work was supported by the Hong Kong Research Grant Council (Competitive Earmarked Research Grant CERG CUHK5251/04E).  相似文献   

15.
Movement of the marker positions relative to the body segments obscures in vivo joint level motion. Alternatively, tracking bones from radiography images can provide precise motion of the bones at the knee but is impracticable for measurement of body segment motion. Consequently, researchers have combined marker-based knee flexion with kinematic splines to approximate the translations and rotations of the tibia relative to the femur. Yet, the accuracy of predicting six degree-of-freedom joint kinematics using kinematic splines has not been evaluated. The objectives of this study were to (1) compare knee kinematics measured with a marker-based motion capture system to kinematics acquired with high speed stereo radiography (HSSR) and describe the accuracy of marker-based motion to improve interpretation of results from these methods, and (2) use HSSR to define and evaluate a new set of knee joint kinematic splines based on the in vivo kinematics of a knee extension activity. Simultaneous measurements were recorded from eight healthy subjects using HSSR and marker-based motion capture. The marker positions were applied to three models of the lower extremity to calculate tibiofemoral kinematics and compared to kinematics acquired with HSSR. As demonstrated by normalized RMSE above 1.0, varus–valgus rotation (1.26), medial–lateral (1.26), anterior–posterior (2.03), and superior–inferior translations (4.39) were not accurately measured. Using kinematic splines improved predictions in varus–valgus (0.81) rotation, and medial–lateral (0.73), anterior–posterior (0.69), and superior–inferior (0.49) translations. Using splines to predict tibiofemoral kinematics as a function knee flexion can lead to improved accuracy over marker-based motion capture alone, however this technique was limited in reproducing subject-specific kinematics.  相似文献   

16.
Thambyah A  Pereira BP  Wyss U 《The Knee》2005,12(5):383-388
In this study, the tibiofemoral contact forces were estimated from standard gait analysis data of adult walking. Knee angles, ground reaction forces, and external flexion-extension knee moments together with lines of action and moment arms of the force bearing structures in the knee previously determined were used to obtain bone-on-bone contact forces. The heel strike, the onset of single limb stance and terminal extension before toe-off each corresponded to a significant turning point on the force versus gait cycle curve. The tibiofemoral bone-on-bone peak forces calculated reached an estimated three times bodyweight. The estimated joint loads are clinically relevant and can either be used directly for evaluation of subjects in a gait analysis, or indirectly in studies of the knee joint where models simulating loading conditions are used to investigate various pathologies.  相似文献   

17.
背景:侧向跨步切入动作是运动领域最常见的进攻技术,这显著增加了运动员膝关节受伤的风险,但目前相关侧向跨步动作的生物力学表现策略及下肢关节负荷特征并不十分清楚。目的:选择大学女子甲组篮球、足球运动员进行侧向跨步切入下肢动作策略,进行生物力学测试,并分析下肢关节的运动学及动力学参数,从而为运动员及教练员预防下肢伤害,尤其是膝关节十字韧带损伤提供重要参考。方法:选择某高校女子甲组足球及篮球各12名运动员作为研究对象,利用三维测力台及运动图像拍摄系统同步获取其侧向跨步切入动作的相关运动学及动力学参数,并运用SPSS 21.0分析软件对相关数据进行处理分析。该试验方案经天津体育学院伦理委员会批准。结果与结论:①足球运动员有较大的着地瞬间踝关节跖屈角度及髋关节外展角度、最大踝关节外翻角度、膝关节屈曲及内旋角度、膝关节屈曲及内旋角度变化量;②足球运动员有较大的踝关节外旋与髋关节内收力矩峰值,篮球运动员则有较大的踝关节跖屈力矩峰值;③篮球运动员有较小的前后分力制动第一及第二峰值、垂直分力第一峰值及较大的前后分力推蹬力峰值;④结果表明,跨步切入动作过程中,足球运动员习惯于前足着地方式进行急停,进而产生较高的地面反作用力,并增加膝关节屈曲角度进行缓冲,同时有较大的踝关节外翻角度及膝关节内旋角度,而篮球运动员在切入过程中膝关节屈曲角度较少,不利于下肢关节对地面反作用力的缓冲,并进而增加前十字韧带损伤风险。  相似文献   

18.
Anticipatory control of upright posture is the focus of this study that combines experimental and modeling work. Individuals were asked to raise or lower their arms from two initial postures such that the final posture of the arm was at 90 degrees with respect to the body. Holding different weights in the hand varied the magnitude of perturbation to postural stability generated by the arm movement. Whole body kinematics and ground reaction forces were measured. Inverse dynamic analysis was used to determine the internal joint moments at the shoulder, hip, knee and ankle, and reaction forces at the shoulder. Center of mass (COM) of the arm, posture (rest of the body without the arms) and whole body (net COM) were also determined. Changes in joint moment at the hip, knee and ankle revealed a significant effect of the direction of movement. The polarities of the joint moment response were appropriate for joint stabilization. Net COM change showed a systematic effect of the direction of movement even though the arm COM was displaced by the same amount and in the same direction for both arm raising and lowering conditions. In order to determine the effects of the passive forces and moments on the posture COM, the body was modeled as an inverted pendulum. The model was customized for each participant; the relevant model parameters were estimated from data obtained from each trial. The ankle joint stiffness and viscosity were adjusted to ensure postural equilibrium prior to arm movement. Joint reactive forces and moments generated by the arm movements were applied at the shoulder level of this inverted pendulum; these were the only inputs and no active control was included. The posture COM profile from the model simulation was calculated. Results show that simulated posture COM profile and measured posture COM profile are identical for about 200 ms following the onset of arm movement and then they deviate. Therefore, the initial control of COM is passive in nature and the observed joint moment response is for joint stabilization and not for the control of COM.  相似文献   

19.
The interactions between different tissues within the knee joint and between different kinematic DOF and joint flexion during normal gait were investigated. These interactions change following ACL transection, in both short (4 weeks) and long (20 weeks) term. Ten skeletally mature sheep were used in control (N = 5) and experimental (N = 5) groups. The 6-DOF stifle joint motion was first measured during normal gait. The control group were then euthanized and mounted on a unique robotic testing platform for kinetic measurements. The experimental group underwent ACL transection surgery, and kinematics measurements were repeated 4 and 20 weeks post-operatively. The experimental group were then euthanized and underwent kinetic assessment using the robotic system. Results indicated significant couplings between joint flexion vs. abduction and internal tibial rotation, as well as medial, anterior, and superior tibial translations during both normal and ACL-deficient gait. Distinct kinetic interactions were also observed between different tissues within the knee joint. Direct relationships were found between ACL vs. LM/MM, and PCL vs. MCL loads during normal gait; inverse relationships were detected between ACL vs. PCL and PCL vs. LM/MM loads. These kinetic interaction patterns were considerably altered by ACL injury. Significant inter-subject variability in joint kinematics and tissue loading patterns during gait was also observed. This study provides further understanding of the in vivo function of different tissues within the knee joint and their couplings with joint kinematics during normal gait and over time following ACL transection.  相似文献   

20.
目的 通过跳伞着陆模拟实验分析负重重心位置对下肢关节运动的影响,进行损伤评估。方法 招募7名受试者进行负重跳伞着陆模拟实验,负重重心位置分别为背部下侧(位置1)、背部上侧(位置2)、腹部(位置3)。结果 负重重心在位置2处的垂直地面反作用力峰值显著小于(P<0.05)负重重心在位置1处;负重重心在位置2处髋关节矢状面关节力矩显著大于负重重心在位置1、3处;负重重心在位置2处髋关节吸收能量显著大于负重重心在位置1处;负重重心在位置2处髋关节矢状面角位移显著大于负重重心在位置1处,显著小于负重重心在位置3处;负重重心在位置2处髋关节矢状面角速度显著小于负重重心在位置3处。结论 不同的负重重心位置能够显著影响髋关节的动力学和运动学参数,负重重心在背部上侧处能够降低下肢损伤风险。研究结果可以为跳伞者背包负重重心位置评估、减少跳伞着陆损伤提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号