首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The population with SCI is at a significant risk for both insulin resistance and type 2 diabetes mellitus (T2DM) secondary to neurogenic obesity. The prevalence of insulin resistance and T2DM in persons with SCI suggests that disorders of carbohydrate metabolism are at epidemic proportions within the population. However, the true frequency of such disorders may be underestimated because biomarkers of insulin resistance and T2DM used from the population without SCI remain nonspecific and may in fact fail to identify true cases that would benefit from intervention. Furthermore, diet and exercise have been used to help mitigate neurogenic obesity, but results on disorders of carbohydrate metabolism remain inconsistent, likely because of the various ways carbohydrate metabolism is assessed. The objective of this article is to review current literature on the prevalence and likely mechanisms driving insulin resistance and T2DM in persons with SCI. This article also explores the various assessments and diagnostic criteria used for insulin resistance and T2DM and briefly discusses the effects of exercise and/or diet to mitigate disorders of carbohydrate metabolism brought on by neurogenic obesity.  相似文献   

3.
4.
Adiponectin is a protein secreted by adipocytes that modulates insulin action. To assess whether variants of this gene contribute to the prevalence of insulin resistance in Caucasians, we genotyped 413 nondiabetic individuals for two single nucleotide polymorphisms (SNPs) at this locus. The two SNPs (45T-->G and 276G-->T) were chosen because of their association with type 2 diabetes in Japanese. Whereas each polymorphism was significantly associated with some correlate of insulin resistance, the haplotype defined by the two together was strongly associated with many components of the insulin resistance syndrome. Homozygotes for the risk haplotype had higher body weight (P = 0.03), waist circumference (P = 0.004), systolic (P = 0.01) and diastolic (P = 0.003) blood pressure, fasting glucose (P = 0.02) and insulin (P = 0.005) levels, homeostasis model assessment (HOMA) for insulin resistance (P = 0.003), and total to HDL cholesterol ratio (P = 0.01). Homozygotes also had significantly lower plasma levels of adiponectin (P = 0.03), independent of sex, age, and body weight. In an independent study group of 614 Caucasians, including 310 with type 2 diabetes, the risk haplotype was confirmed to be associated with increased body weight (P = 0.03) but not with type 2 diabetes per se. We conclude that variability at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome, but given the nature of the two SNPs, the risk haplotype is most probably a marker in linkage disequilibrium with an as yet unidentified polymorphism that affects plasma adiponectin levels and insulin sensitivity.  相似文献   

5.
6.
Adiponectin is an abundant adipose tissue-derived protein with important metabolic effects. Plasma adiponectin levels are decreased in obese individuals, and low adiponectin levels predict insulin resistance and type 2 diabetes. Two variants in the adiponectin gene ACDC have been previously associated with plasma adiponectin levels, obesity, insulin resistance, and type 2 diabetes. To determine the role of genetic variation in ACDC in susceptibility to obesity and type 2 diabetes in Pima Indians, we screened the promoter, exons, and exon-intron boundaries of the gene to identify allelic variants. We identified 17 informative polymorphisms that comprised four common (minor allele frequency >15%) linkage disequilibrium clusters consisting of 1-4 variants each. We genotyped one representative polymorphism from each cluster in 1,338 individuals and assessed genotypic association with type 2 diabetes, BMI, serum lipid levels, serum adiponectin levels, and measures of insulin sensitivity and secretion. None of the ACDC variants were associated with type 2 diabetes, BMI, or measures of insulin sensitivity or secretion. One variant, single nucleotide polymorphism (SNP)-12823, was associated with serum adiponectin levels (P = 0.002), but this association explained only 2% of the variance of serum adiponectin levels. Our findings suggest that these common ACDC polymorphisms do not play a major role in susceptibility to obesity or type 2 diabetes in this population.  相似文献   

7.
The metabolic syndrome is a cluster of metabolic and inflammatory abnormalities including obesity, insulin resistance, type 2 diabetes, hypertension, dyslipidemia, and atherosclerosis. The fatty acid binding proteins aP2 (fatty acid binding protein [FABP]-4) and mal1 (FABP5) are closely related and both are expressed in adipocytes. Previous studies in aP2-deficient mice have indicated a significant role for aP2 in obesity-related insulin resistance, type 2 diabetes, and atherosclerosis. However, the biological functions of mal1 are not known. Here, we report the generation of mice with targeted null mutations in the mal1 gene as well as transgenic mice overexpressing mal1 from the aP2 promoter/enhancer to address the role of this FABP in metabolic regulation in the presence or absence of obesity. To address the role of the second adipocyte FABP in metabolic regulation in the presence and deficiency of obesity, absence of mal1 resulted in increased systemic insulin sensitivity in two models of obesity and insulin resistance. Adipocytes isolated from mal1-deficient mice also exhibited enhanced insulin-stimulated glucose transport capacity. In contrast, mice expressing high levels of mal1 in adipose tissue display reduced systemic insulin sensitivity. Hence, our results demonstrate that mal1 modulates adipose tissue function and contributes to systemic glucose metabolism and constitutes a potential therapeutic target in insulin resistance.  相似文献   

8.
The prevalence of type 2 diabetes mellitus (T2DM) and obesity in the western world is steadily increasing. Bariatric surgery is an effective treatment of T2DM in obese patients. The mechanism by which weight loss surgery improves glucose metabolism and insulin resistance remains controversial. In this review, we propose that two mechanisms participate in the improvement of glucose metabolism and insulin resistance observed following weight loss and bariatric surgery: caloric restriction and weight loss. Nutrients modulate insulin secretion through the entero-insular axis. Fat mass participates in glucose metabolism through the release of adipocytokines. T2DM improves after restrictive and bypass procedures, and combinations of restrictive and bypass procedures in morbidly obese patients. Restrictive procedures decrease caloric and nutrient intake, decreasing the stimulation of the entero-insular axis. Gastric bypass (GBP) operations may also affect the entero-insular axis by diverting nutrients away from the proximal GI tract and delivering incompletely digested nutrients to the distal GI tract. GBP and biliopancreatic diversion combine both restrictive and bypass mechanisms. All procedures lead to weight loss and decrease in the fat mass. Decrease in fat mass significantly affects circulating levels of adipocytokines, which favorably impact insulin resistance. The data reviewed here suggest that all forms of weight loss surgery lead to caloric restriction, weight loss, decrease in fat mass and improvement in T2DM. This suggests that improvements in glucose metabolism and insulin resistance following bariatric surgery result in the short-term from decreased stimulation of the entero-insular axis by decreased caloric intake and in the long-term by decreased fat mass and resulting changes in release of adipocytokines. Observed changes in glucose metabolism and insulin resistance following bariatric surgery do not require the posit of novel regulatory mechanisms.  相似文献   

9.
Obesity is the most common metabolic disease whose prevalence is increasing worldwide. This condition is considered a serious public health problem due to associated comorbidities such as diabetes mellitus and hypertension. Perinatal morbidity related to obesity does not end with birth; this continues affecting the mother/infant binomial and could negatively impact on metabolism during early infant nutrition. Nutrition in early stages of growth may be essential in the development of obesity in adulthood, supporting the concept of “nutritional programming”. For this reason, breastfeeding may play an important role in this programming. Breast milk is the most recommended feeding for the newborn due to the provided benefits such as protection against obesity and diabetes. Health benefits are based on milk components such as bioactive molecules, specifically hormones involved in the regulation of food intake. Identification of these molecules has increased in recent years but its action has not been fully clarified. Hormones such as leptin, insulin, ghrelin, adiponectin, resistin, obestatin and insulin-like growth factor-1 copeptin, apelin, and nesfatin, among others, have been identified in the milk of normal-weight women and may influence the energy balance because they can activate orexigenic or anorexigenic pathways depending on energy requirements and body stores. It is important to emphasize that, although the number of biomolecules identified in milk involved in regulating food intake has increased considerably, there is a lack of studies aimed at elucidating the effect these hormones may have on metabolism and development of the newborn. Therefore, we present a state-of-the-art review regarding bioactive compounds such as hormones secreted in breast milk and their possible impact on nutritional programming in the infant, analyzing their functions in appetite regulation.  相似文献   

10.
Bruce CR  Mertz VA  Heigenhauser GJ  Dyck DJ 《Diabetes》2005,54(11):3154-3160
Adiponectin is an adipose-derived hormone that plays an important role in regulating insulin sensitivity in rodents. However, little is known regarding the effect of adiponectin on metabolism in human skeletal muscle. Therefore, we examined whether the globular head of adiponectin, gAcrp30, acutely activates fatty acid oxidation and glucose uptake in isolated human skeletal muscle. Furthermore, we aimed to determine whether these effects would differ in muscle from lean versus obese individuals. Treatment with gAcrp30 (2.5 microg/ml) increased fatty acid oxidation in lean muscle (70%, P < 0.0001) and to a lesser extent in obese muscle (30%, P < 0.01). In the absence of insulin, gAcrp30 increased glucose uptake 37% in lean (P < 0.05) and 33% in obese muscle (P < 0.05). Combined exposure of insulin and gAcrp30 demonstrated an additive effect on glucose uptake in lean and obese individuals, but this effect was reduced by 50% in obese muscle (P < 0.05). These metabolic effects were attributable to an increase in AMP-activated protein kinase-alpha1 (AMPKalpha1) and AMPKalpha2 activity. However, in obese muscle the activation of AMPKalpha2 by gAcrp30 was blunted. This study provides evidence that gAcrp30 plays a role in regulating fatty acid and glucose metabolism in human skeletal muscle. However, the effects are blunted in obesity, indicating the possible development of adiponectin resistance.  相似文献   

11.
Fuel selection in human skeletal muscle in insulin resistance: a reexamination   总被引:29,自引:0,他引:29  
Kelley DE  Mandarino LJ 《Diabetes》2000,49(5):677-683
For many years, the Randle glucose fatty acid cycle has been invoked to explain insulin resistance in skeletal muscle of patients with type 2 diabetes or obesity. Increased fat oxidation was hypothesized to reduce glucose metabolism. The results of a number of investigations have shown that artificially increasing fat oxidation by provision of excess lipid does decrease glucose oxidation in the whole body. However, results obtained with rodent or human systems that more directly examined muscle fuel selection have found that skeletal muscle in insulin resistance is accompanied by increased, rather than decreased, muscle glucose oxidation under basal conditions and decreased glucose oxidation under insulin-stimulated circumstances, producing a state of "metabolic inflexibility." Such a situation could contribute to the accumulation of triglyceride within the myocyte, as has been observed in insulin resistance. Recent knowledge of insulin receptor signaling indicates that the accumulation of lipid products in muscle can interfere with insulin signaling and produce insulin resistance. Therefore, although the Randle cycle is a valid physiological principle, it may not explain insulin resistance in skeletal muscle.  相似文献   

12.
Adiponectin, also referred to as AdipoQ or ACRP30, is a plasma protein produced and secreted exclusively from adipose tissue. The protein contains a collagen-like domain and a C1q-like globular domain. A protease-generated globular segment enhances fatty acid oxidation in muscles, thereby modulating lipid and glucose metabolism. Plasma adiponectin levels are inversely correlated with the severity of insulin resistance. A recent genome-wide scan study mapped a susceptibility locus for type 2 diabetes and the metabolic syndrome to chromosome 3q27, where the adiponectin gene is located. Here, we screened Japanese patients with type 2 diabetes and age- and BMI-matched nondiabetic control subjects for mutations in adiponectin gene. We identified four missense mutations (R112C, I164T, R221S, and H241P) in the globular domain. Among these mutations, the frequency of I164T mutation was significantly higher in type 2 diabetic patients than in age- and BMI- matched control subjects (P < 0.01). Furthermore, plasma adiponectin concentrations of subjects carrying I164T mutation were lower than those of subjects without the mutation. All the subjects carrying I164T mutation showed some feature of metabolic syndrome, including hypertension, hyperlipidemia, diabetes, and atherosclerosis. Our findings suggest that I164T mutation is associated with low plasma adiponectin concentration and type 2 diabetes.  相似文献   

13.
The number of patients with osteoporosis and diabetes is rapidly increasing all over the world. Bone is recently recognized as an endocrine organ. Accumulating evidence has shown that osteocalcin, which is specifically expressed in osteoblasts and secreted into the circulation, regulates glucose homeostasis by stimulating insulin expression in pancreas and adiponectin expression in adipocytes, resulting in improving glucose intolerance. On the other hand, insulin and adiponectin stimulate osteocalcin expression in osteoblasts, suggesting that positive feedforward loops exist among bone, pancreas, and adipose tissue. In addition, recent studies have shown that osteocalcin enhances insulin sensitivity and the differentiation in muscle, while secreted factors from muscle, myokines, regulate bone metabolism. These findings suggest that bone metabolism and glucose metabolism are associated with each other through the action of osteocalcin. In this review, I describe the role of osteocalcin in the interaction among bone, pancreas, brain, adipose tissue, and muscle.  相似文献   

14.
Fatty acids (FAs) and other lipid molecules are important for many cellular functions, including vesicle exocytosis. For the pancreatic beta-cell, while the presence of some FAs is essential for glucose-stimulated insulin secretion, FAs have enormous capacity to amplify glucose-stimulated insulin secretion, which is particularly operative in situations of beta-cell compensation for insulin resistance. In this review, we propose that FAs do this via three interdependent processes, which we have assigned to a "trident model" of beta-cell lipid signaling. The first two arms of the model implicate intracellular metabolism of FAs, whereas the third is related to membrane free fatty acid receptor (FFAR) activation. The first arm involves the AMP-activated protein kinase/malonyl-CoA/long-chain acyl-CoA (LC-CoA) signaling network in which glucose, together with other anaplerotic fuels, increases cytosolic malonyl-CoA, which inhibits FA partitioning into oxidation, thus increasing the availability of LC-CoA for signaling purposes. The second involves glucose-responsive triglyceride (TG)/free fatty acid (FFA) cycling. In this pathway, glucose promotes LC-CoA esterification to complex lipids such as TG and diacylglycerol, concomitant with glucose stimulation of lipolysis of the esterification products, with renewal of the intracellular FFA pool for reactivation to LC-CoA. The third arm involves FFA stimulation of the G-protein-coupled receptor GPR40/FFAR1, which results in enhancement of glucose-stimulated accumulation of cytosolic Ca2+ and consequently insulin secretion. It is possible that FFA released by the lipolysis arm of TG/FFA cycling is partly "secreted" and, via an autocrine/paracrine mechanism, is additive to exogenous FFAs in activating the FFAR1 pathway. Glucose-stimulated release of arachidonic acid from phospholipids by calcium-independent phospholipase A2 and/or from TG/FFA cycling may also be involved. Improved knowledge of lipid signaling in the beta-cell will allow a better understanding of the mechanisms of beta-cell compensation and failure in diabetes.  相似文献   

15.
Central obesity and the accumulation of visceral fat are risk factors for the development of type 2 diabetes and cardiovascular disease. Omentin is a protein expressed and secreted from visceral but not subcutaneous adipose tissue that increases insulin sensitivity in human adipocytes. To determine the impact of obesity-dependent insulin resistance on the regulation of two omentin isoforms, gene expression and plasma levels were measured in lean, overweight, and obese subjects. Omentin 1 was shown to be the major circulating isoform in human plasma. Lean subjects had significantly higher plasma omentin 1 levels than obese and overweight subjects. In addition, higher plasma omentin 1 levels were detected in women compared with men. Plasma omentin 1 levels were inversely correlated with BMI, waist circumference, leptin levels, and insulin resistance as measured by homeostasis model assessment and positively correlated with adiponectin and HDL levels. Both omentin 1 and omentin 2 gene expression were decreased with obesity and were highly correlated with each other in visceral adipose tissue. In summary, decreased omentin levels are associated with increasing obesity and insulin resistance. Therefore, omentin levels may be predictive of the metabolic consequences or co-morbidities associated with obesity.  相似文献   

16.
Bogardus C  Tataranni PA 《Diabetes》2002,51(Z1):S262-S264
We report the results of cross-sectional, prospective, and longitudinal studies identifying etiologic metabolic factors in the susceptibility to type 2 diabetes mellitus of the Pima Indians of Arizona, whose prevalence and incidence rates of the disease are the highest in the world. Diabetic Pima Indians are metabolically prototypic, with obesity, insulin resistance, a reduced acute insulin response to glucose, and increased endogenous glucose production. Cross-sectional studies show that the acute insulin response is absent in diabetic subjects and lower in impaired than in normal glucose-tolerant subjects. Prospective studies using proportional hazards analyses indicate that insulin resistance and a relatively low acute insulin response predict diabetes independently of age, gender, and each other, with obesity increasing susceptibility by worsening one or both predictors. Longitudinal studies show that glucose tolerance deteriorates as the degree of obesity increases due to worsening insulin resistance and decreases in early insulin secretion. Furthermore, since the children of diabetic pregnancies are at much greater risk of developing diabetes at a young age than those of nondiabetic pregnancies, the diabetic uterine environment may induce insulin resistance and/or reduced insulin secretion: early evidence confirms that adult normal glucose-tolerant offspring show a substantially decreased acute insulin response--the clearest demonstration yet of an environmental condition increasing susceptibility to type 2 diabetes mellitus. However, the genetic determinants require elucidation: correlation of the acute insulin response with the age of parental diabetes onset in fathers as well as mothers indicates a mechanism independent of the diabetic uterine environment.  相似文献   

17.
The relationship between insulin action and control of the adipocyte-derived factor adiponectin was studied in age- and weight-matched obese individuals with type 2 diabetes failing sulfonylurea therapy. After initial metabolic characterization, subjects were randomized to troglitazone or metformin treatment groups; all subjects received glyburide (10 mg BID) as well. Treatment was continued for 3 months. The extent of glycemic control after treatment was similar in both groups. However, the increase in maximal insulin-stimulated glucose disposal rate was greater following troglitazone therapy (+44%) compared with metformin treatment (+20%). Troglitazone treatment increased serum adiponectin levels nearly threefold. There was no change in serum adiponectin with metformin treatment. A positive correlation was found between increases in whole-body glucose disposal rates and serum adiponectin levels after troglitazone; no such relationship was seen with metformin. The adiponectin protein content of subcutaneous abdominal adipocytes was increased following troglitazone treatment and unchanged after metformin. Adiponectin release from adipocytes was also augmented with troglitazone treatment. Adiponectin was present in adipocytes and plasma in several multimeric forms; a trimer was the major form secreted from adipocytes. These results indicate that increases in adiponectin content and secretion are associated with improved insulin action but are not directly related to glycemic control. Modulation of adipocyte function, including upregulation of adiponectin synthesis and secretion, may be an important mechanism by which thiazolidinediones influence insulin action.  相似文献   

18.

Background  

Bariatric surgery is a common procedure often used to ameliorate comorbidities associated with obesity, including type 2 diabetes. Substantial weight loss leads to alterations in inflammation and insulin sensitivity as well as numerous metabolic and physiologic pathways. Several inflammatory markers have been evaluated, yet adiponectin, an anti-inflammatory adipokine, has not been fully investigated. Adiponectin may play a key role as a mediator between obesity and inflammation, as lower blood levels are more commonly associated with obesity and type 2 diabetes and because adiponectin lessens insulin resistance. This review evaluates outcome variables from patients who underwent Roux-en-Y gastric bypass (RYGB) or restrictive bariatric surgery to compare and contrast any differential surgical impacts on weight loss, adiponectin, and insulin.  相似文献   

19.
The increasing prevalence of obesity and diabetes mellitus in most industrialized countries, including China and India, is reaching epidemic proportions and requires intense studies and interventions. Insulin resistance appears to be the most relevant feature of the metabolic syndrome and is often the precursor of diabetes mellitus. Insulin resistance has been associated with endothelial dysfunction, which is considered the initial step in the process of atherosclerosis. In this brief review, we analyze the relationship between insulin resistance, endothelial function and cardiovascular events.  相似文献   

20.
Recent studies have shown that genetic deficiency of the adipocyte fatty acid-binding protein (aP2) results in minor alterations of plasma lipids and adipocyte development but provides significant protection from dietary obesity-induced hyperinsulinemia and insulin resistance. To identify potential mechanisms responsible for this phenotype, we examined lipolysis and insulin secretion in aP2-/- mice. Beta-adrenergic stimulation resulted in a blunted rise of blood glycerol levels in aP2-/- compared with aP2+/+ mice, suggesting diminished lipolysis in aP2-/- adipocytes. Confirming this, primary adipocytes isolated from aP2-/- mice showed attenuated glycerol and free fatty acid (FFA) release in response to dibutyryl cAMP. The decreased lipolytic response seen in the aP2-/- mice was not associated with altered expression levels of hormone-sensitive lipase or perilipin. The acute insulin secretory response to beta-adrenergic stimulation was also profoundly suppressed in aP2-/- mice despite comparable total concentrations and only minor changes in the composition of systemic FFAs. To address whether levels of specific fatty acids are different in aP2-/- mice, the plasma FFA profile after beta-adrenergic stimulation was determined. Significant reduction in both stearic and cis-11-eicoseneic acids and an increase in palmitoleic acid were observed. The response of aP2-/- mice to other insulin secretagogues such as arginine and glyburide was similar to that of aP2+/+ mice, arguing against generally impaired function of pancreatic beta-cells. Finally, no aP2 expression was detected in isolated pancreatic islet cells. These results provide support for the existence of an adipo-pancreatic axis, the proper action of which relies on the presence of aP2. Consequently, aP2's role in the pathogenesis of type 2 diabetes might involve regulation of both hyperinsulinemia and insulin resistance through its impact on both lipolysis and insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号