首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocellular cancer (HCC) represents one of the most rapidly spreading cancers in the world. Most HCC develops in cirrhotic livers after prolonged inflammation, supporting the hypothesis that inflammation contributes to cancer development. Increasing evidence suggests that inflammatory cell recruitment and activation is an important contributor to promoting cancerous malformation in hepatocytes. Intracellular signaling pathways involved in classical inflammatory pathway activation can be altered in parenchymal cells, hepatocytes, in the liver to promote HCC development. Inflammation is triggered by pathogen-derived or endogenous danger-associated molecular patterns via pattern recognition receptors. Activation of the pattern recognition receptors triggers downstream signaling cascades to induce proinflammatory cytokine production, release of reactive oxygen species and modulate cellular responses. Many of these inflammatory mediators have adverse effects on DNA repair and induce DNA methylation, both of which are important elements in HCC development. This review summarizes the key points and discusses recent findings related to the role of inflammation in cancer and HCC development.  相似文献   

2.
Hepatocellular carcinoma (HCC) is naturally resistant to radiotherapy and cytotoxic chemotherapy, leaving surgery as the mainstream therapeutic approach. However, the 5-year recurrence rate after curative resection is as high as 61.5%. The background hepatitis B- or C-induced cirrhosis and the presence of micrometastases at the time of surgery have been regarded as two main causes of recurrence. Recently, accumulating evidence suggests that growth factors and cytokines released during the physiological process of post-surgical liver regeneration could induce the activation of dormant micrometastatic lesions. The establishment of neovasculature to support either liver regeneration or HCC growth involves multiple cell types including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and circulating endothelial progenitors. The crosstalks among these cells are driven by multiple molecules and signaling pathways, including vascular endothelial growth factors and their receptors, platelet-derived growth factor, the angiopoietin/Tie family, hepatocyte growth factor/c-Met signaling, and others. Anti-angiogenic agent targeting liver cancer vasculature has been reported to be able to generate limited survival benefit of the patients. In this review, discussions are focused on various angiogenic mechanisms of HCC and liver regeneration, as well as the prevailing anti-angiogenic strategies.  相似文献   

3.
Hepatocellular carcinoma(HCC)is the most common form of liver cancer worldwide.It is caused by a variety of risk factors,most common ones being infection with hepatitis viruses,alcohol,and obesity.HCC often develops in the background of underlying cirrhosis,and even though a number of interventional treatment methods are currently in use,recurrence is fairly common among patients who have had a resection.Therefore,whole liver transplantation remains the most practical treatment option for HCC.Due to the growing incidence of HCC,intense research efforts are being made to understand cellular and molecular mechanisms of the disease so that novel therapeutic strategies can be developed to combat liver cancer.In recent years,it has become clear that innate immunity plays a critical role in the development of a number of liver diseases,including HCC.In particular,the activation of Toll-like receptor signaling results in the generation of immune responses that often results in the production of proinflammatory cytokines and chemokines,and could cause acute inflammation in the liver.In this review,the current knowledge on the role of innate immune responses in the development and progression of HCC is examined,and emerging therapeutic strategies based on molecular mechanisms of HCC are discussed.  相似文献   

4.
In the last years, several studies have been focused on elucidate the role of tumor microenvironment(TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma(HCC) and intrahepatic cholangiocarcinoma(iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.  相似文献   

5.
Qu Z  Zhang Y  Liao M  Chen Y  Zhao J  Pan Y 《Hepatology research》2012,42(9):922-933
Aims: Metformin is a biguanide that has been widely used to treat type 2 diabetes. Several studies have shown that metformin is also effective in treating cancer, including hepatocellular carcinoma (HCC). The objective of this study was to evaluate the antitumor effects of metformin in HCC, and to investigate the potential molecular target(s) of metformin-mediated antitumor activity. Methods: The antiproliferative effects of metformin were assessed in human HCC cell lines and normal human liver cells at various concentrations. Orthotopic xenograft tumors were established in athymic nude mice, and tumor growth was monitored after metformin treatment. Western blot analysis and cell cycle regulation were performed to determine the involvement of various mediators of apoptosis. Results: Metformin specifically inhibited the growth of HCC cells without affecting the growth of normal liver cells both in vitro and in vivo. Metformin caused cell cycle arrest in HCC cells, which resulted in caspase-3 activation. Livin levels decreased in a dose-dependent manner upon metformin treatment. Metformin activated 5'-adenosine monophosphate-activated protein kinase, inhibited the mammalian target of rapamycin pathway and downregulated Livin protein expression. Conclusion: Our findings indicate that metformin is effective at initiating apoptosis and inhibiting key survival signaling pathways in HCC cells. These data provide a foundation for further studies to evaluate metformin in the clinic either as a single agent or in combination with other first-line agents as a treatment option for HCC.  相似文献   

6.
Hepatocellular carcinoma(HCC) is the fifth most common cancer, and hepatitis C virus(HCV) infection plays a major role in HCC development. The molecular mechanisms by which HCV infection leads to HCC are varied. HCV core protein is an important risk factor in HCV-associated liver pathogenesis and can modulate several signaling pathways involved in cell cycle regulation, cell growth promotion, cell proliferation, apoptosis, oxidative stress and lipid metabolism. The dysregulation of signaling pathways such as transforming growth factor β(TGF-β), vascular endothelial growth factor(VEGF), Wnt/β-catenin(WNT), cyclooxygenase-2(COX-2) and peroxisome proliferator-activated receptor α(PPARα) by HCV core protein is implicated in the development of HCC. Therefore, it has been suggested that this protein be considered a favorable target for further studies in the development of HCC. In addition, considering the axial role of these signaling pathways in HCC, they are considered druggable targets for cancer therapy. Therefore, using strategies to limit the dysregulation effects of core protein on these signaling pathways seems necessary to prevent HCV-related HCC.  相似文献   

7.
8.
Obesity has been recognized as a key component of the metabolic syndrome, a cluster of risk factors associated with diabetes and cardiovascular morbidity. In addition, obesity has been linked to higher frequency of cancers in a variety of tissues including the liver. Liver cancer most often occurs as hepatocellular carcinoma (HCC) complicating cirrhosis due to chronic viral infection or toxic injury and remains the third leading cause of cancer death in the world. However, HCC is increasingly diagnosed among individuals with obesity and related disorders. As these metabolic conditions have become globally prevalent, they coexist with well-established risk factors of HCC and create a unique challenge for the liver as a chronically diseased organ. Obesity-associated HCC has recently been attributed to molecular mechanisms such as chronic inflammation due to adipose tissue remodeling and pro-inflammatory adipokine secretion, ectopic lipid accumulation and lipotoxicity, altered gut microbiota, and disrupted senescence in stellate cells, as well as insulin resistance leading to increased levels of insulin and insulin-like growth factors. These mechanisms synergize with those occurring in chronic liver disease resulting from other etiologies and accelerate the development of HCC before or after the onset of cirrhosis. Increasingly common interactions between oncogenic pathways linked to obesity and chronic liver disease may explain why HCC is one of the few malignancies with rising incidence in developed countries. Better understanding of this complex process will improve our strategies of cancer prevention, prediction, and surveillance.  相似文献   

9.
Hepatocellular carcinoma (HCC) is one of the most frequent and fatal human cancers worldwide and its development and prognosis are intimately associated with chronic infection with hepatitis B virus (HBV). The identification of genetic mutations and molecular mechanisms that mediate HBV-induced tumorigenesis therefore holds promise for the development of potential biomarkers and targets for HCC prevention and therapy. The presence of HBV pre-S gene deletions in the blood and the expression of pre-S deleted proteins in the liver tissues of patients with chronic hepatitis B and HBV-related HCC have emerged as valuable biomarkers for higher incidence rates of HCC development and a higher risk of HCC recurrence after curative surgical resection, respectively. Moreover, pre-S deleted proteins are regarded as important oncoproteins that activate multiple signaling pathways to induce DNA damage and promote growth and proliferation in hepatocytes, leading to HCC development. The signaling molecules dysregulated by pre-S deleted proteins have also been validated as potential targets for the prevention of HCC development. In this review, we summarize the clinical and molecular implications of HBV pre-S gene deletions and pre-S deleted proteins in HCC development and recurrence and highlight their potential applications in HCC prevention and therapy.  相似文献   

10.
Yoon SK 《Gut and liver》2012,6(1):29-40
Hepatocellular carcinoma (HCC) is a highly malignant tumor with limited treatment options in its advanced state. The molecular mechanisms underlying HCC remain unclear because of the complexity of its multi-step development process. Cancer stem cells (CSCs) are defined as a small population of cells within a tumor that possess the capability for self-renewal and the generation of heterogeneous lineages of cancer cells. To date, there have been two theories concerning the mechanism of carcinogenesis, i.e., the stochastic (clonal evolution) model and the hierarchical (cancer stem cell-driven) model. The concept of the CSC has been established over the past decade, and the roles of CSCs in the carcinogenic processes of various cancers, including HCC, have been emphasized. Previous experimental and clinical evidence indicated the existence of liver CSCs; however, the potential mechanistic links between liver CSCs and the development of HCC in humans are not fully understood. Although definitive cell surface markers for liver CSCs have not yet been found, several putative markers have been identified, which allow the prospective isolation of CSCs from HCC. The identification and characterization of CSCs in HCC is essential for a better understanding of tumor initiation or progression in relation to signaling pathways. These markers could be used along with clinical parameters for the prediction of chemoresistance, radioresistance, metastasis and survival and may represent potential targets for the development of new molecular therapies against HCC. This review describes the current evidence for the existence and function of liver CSCs and discuss the clinical implications of CSCs in patients demonstrating resistance to conventional anti-cancer therapies, as well as clinical outcomes. Such data may provide a future perspective for targeted therapy in HCC.  相似文献   

11.
肝癌是常见的恶性肿瘤之一,其病程快且预后很差.其发生是一个多因素多步骤协同的复杂过程.近来的研究报道,肝癌发生分子机制与类胰岛素生长因子体系信号通路异常相关,类胰岛素生长因子是一种多功能细胞增殖调控因子,他在胚胎发育、中枢神经系统发育及肿瘤细胞增殖等方面具有重要的生物学功能.类胰岛素生长因子的生物学活性受到包括类胰岛素...  相似文献   

12.
Hepatocellular carcinoma(HCC) is one of the most common and deadly cancers worldwide. In ninety percent of the cases it develops as a result of chronic liver damage and it is thus a typical inflammationrelated cancer characterized by the close relation between the tumor microenvironment and tumor cells. The stromal environment consists out of several cell types, including hepatic stellate cells, macrophages and endothelial cells. They are not just active bystanders in the pathogenesis of HCC, but play an important and active role in tumor initiation, progression and metastasis. Furthermore, the tumor itself influences these cells to create a background that is beneficial for sustaining tumor growth. One of the key players is the hepatic stellate cell, which is activated during liver damage and differentiates towards a myofibroblast-like cell. Activated stellate cells are responsible for the deposition of extracellular matrix, increase the production of angiogenic factors and stimulate the recruitment of macrophages. The increase of angiogenic factors(which are secreted by macrophages, tumor cells and activated stellate cells) will induce the formation of new blood vessels, thereby supplying the tumor with more oxygen and nutrients, thus supporting tumor growth and offering a passageway in the circulatory system. In addition, the secretion of chemokines by the tumor cells leads to the recruitment of tumor associated macrophages. These tumor associated macrophages are key actors of cancer-related inflammation, being the main type of inflammatory cells infiltrating the tumor environment and exerting a tumor promoting effect by secreting growth factors, stimulating angiogenesis and influ-encing the activation of stellate cells. This complex interplay between the several cell types involved in liver cancer emphasizes the need for targeting the tumor stroma in HCC patients.  相似文献   

13.
According to the International Agency for Research on Cancer, approximately 670,000 new cases of hepatocellular carcinoma (HCC) developed in 2005, making it the fifth most common cancer and third most common cause of cancer-related death worldwide. HCC is a complex and heterogeneous tumor with several genomic alterations. There is evidence of aberrant activation of several signaling cascades such as EGFR, Ras/Raf/MEK, PI3K/mTOR, HGF/MET, Wnt, Hedgehog and apoptotic signaling pathway. Recently a multikinase inhibitor, sorafenib, has shown survival benefits in patients with advanced HCC. It has been proposed that signaling pathway disruption in cancer can be grouped in six function capabilities, some of which need to be altered for cancer development: self-sufficiency in growth signals, insensitivity to anti-growth signals, evading apoptosis, limitless replicative potential, sustained angiogenesis and tumor invasion and metastases. The aim is to integrate these concepts into the molecular pathogenesis of HCC. It has also been proposed that there are common disturbances universal to all liver cancers on top of the more specific mechanisms. Based on this basic research, a molecular targeted agent has recently been developed. There have been no effective chemotherapeutic agents for advanced HCC. Sorafenib, an oral multikinase inhibitor, has set a milestone in the management of HCC in that it is the first agent to significantly improve the overall survival in patients with advanced HCC in a double-blind, placebo-controlled, phase III study. Clinical trials testing new agents for first- and second-line agents, as well as in combination with existing treatment options such as transarterial chemoembolization or arterial infusion chemotherapy, are ongoing. The results of these trials are therefore eagerly awaited.  相似文献   

14.
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer death. Recent epidemiological data indicate that the mortality rate of HCC will double over the next decades in the USA and Europe. Liver cancer progresses in a large percentage of cases during the clinical course of chronic fibro‐inflammatory liver diseases leading to cirrhosis. Therefore, HCC development is regarded as the result of different environmental risk factors each involving different genetic, epigenetic‐ and chromosomal alterations and gene mutations. During tumour progression, the malignant hepatocytes and the activated hepatic stellate cells are accompanied by cancer‐associated fibroblasts, myofibroblasts and immune cells generally called tumour stromal cells. This new and dynamic milieu further enhances the responsiveness of tumour cells towards soluble mediators secreted by tumour stromal cells, thus directly affecting the malignant hepatocytes. This results in altered molecular pathways with cell proliferation as the most important mechanism of liver cancer progression. Given this contextual complexity, it is of utmost importance to characterize the molecular pathogenesis of HCC, and to identify the dominant pathways/drivers and aberrant signalling pathways. This will allow an effective therapy for HCC that should combine strategies affecting both cancer and the tumour stromal cells. This review provides an overview of the recent challenges and issues regarding hepatic stellate cells, extracellular matrix dynamics, liver fibrosis/cirrhosis and therapy, tumour microenvironment and HCC.  相似文献   

15.
Hepatocellular carcinoma (HCC) is one of most common malignancies in the world. Systemic treatments for HCC, particularly for advanced stages, are limited by the drug resistance phenomenon which ultimately leads to therapy failure. Recent studies have indicated an association between drug resistance and the existence of the cancer stem cells (CSCs) as tumor initiating cells. The CSCs are resistant to conventional chemotherapies and might be related to the mechanisms of the ATP Binding Cassette (ABC) transporters and alterations in the CSCs signaling pathways. Therefore, to contribute to the development of new HCC treatments, further information on the characterization of CSCs, the modulation of the ABC transporters expression and function and the signaling pathway involved in the self renewal, initiation and maintenance of the cancer are required. The combination of transporters modulators/inhibitors with molecular targeted therapies may be a potent strategy to block the tumoral progression. This review summarizes the association of CSCs, drug resistance, ABC transporters activities and changes in signaling pathways as a guide for future molecular therapy for HCC.  相似文献   

16.
Peroxisome proliferator-activated receptor gamma (PPARgamma) has been implicated in the differentiation and growth inhibition of cancer cells. We examined the effects of PPARgamma activation by troglitazone on hepatocellular carcinoma (HCC) cell growth, proliferation, and apoptosis in vitro and in vivo. We also studied relationships between PPARgamma activation and cyclooxygenase-2 (COX-2) expression. Human HCC cell lines Huh7 and Hep3B were cultured in the presence or absence of troglitazone. Cell growth was determined via WST-1 assay, proliferation by cell cycle analysis and proliferating cell nuclear antigen (PCNA) Western blotting, and apoptosis by flow cytometry and TUNEL. Tumor growth after subcutaneous implantation of Huh7 cells in nude mice was monitored, and the effects of treatment with troglitazone were determined. In resected HCCs, PPARgamma expression was less compared with the histologically normal surrounding liver. In cultures of Hep3B and Huh7 cells, basal expression of PPARgamma was relatively low, but troglitazone caused dose-dependent induction of PPARgamma expression. Cell cycle analysis revealed a decreased proportion of cells in S phase, with arrest at G0/G1. Concomitant downregulation of PCNA and an increase in TUNEL staining, cells were consistent with decreased proliferation and induction of apoptosis by troglitazaone. Troglitazone-mediated PPARgamma activation also suppressed COX-2 expression and induced p27 in HCC cells. Administration of troglitazone to Huh7 tumor-bearing mice significantly reduced tumor growth and caused tumor regression. In conclusion, collectively, these results indicate that PPARgamma could be a regulator of cell survival and growth in HCC. PPARgamma therefore represents a putative molecular target for chemopreventive therapy or inhibition of liver cancer growth.  相似文献   

17.
The liver displays an outstanding wound healing and regenerative capacity unmatched by any other organ. This reparative response is governed by a complex network of inflammatory mediators, growth factors and metabolites that are set in motion in response to hepatocellular injury. However, when liver injury is chronic, these regenerative mechanisms become dysregulated, facilitating the accumulation of genetic alterations leading to unrestrained cell proliferation and the development of hepatocellular carcinoma (HCC). The epidermal growth factor receptor (EGFR or ErbB1) signaling system has been identified as a key player in all stages of the liver response to injury, from early inflammation and hepatocellular proliferation to fibrogenesis and neoplastic transformation. The EGFR system engages in extensive crosstalk with other signaling pathways, acting as a true signaling hub for other growth factors, cytokines and inflammatory mediators. Here, we briefly review essential aspects of the biology of the EGFR, the other ErbB receptors, and their ligands in liver injury, regeneration and HCC development. Some aspects of the preclinical and clinical experience with EGFR therapeutic targeting in HCC are also discussed.  相似文献   

18.
肝细胞癌是一种原发于肝脏的恶性肿瘤,占原发性肝癌的85%~90%。随着高通量检测下一代测序(NGS)检测技术的不断发展,了解肝癌的分子分型和不同信号通路的调控机制,并针对靶点进行分子靶向治疗和免疫治疗,是目前肝癌领域的一大研究热点。该文综述其研究现状,归纳了肝癌发病中主要作用的信号通路,以期为肝癌的精准治疗与研究带来新的思路。  相似文献   

19.
Chronic infection with viral hepatitis affects half a billion individuals worldwide and can lead to cirrhosis, cancer, and liver failure. Liver cancer is the third leading cause of cancer-associated mortality, of which hepatocellular carcinoma (HCC)represents 90%of all primary liver cancers. Solid tumors like HCC are complex and have heterogeneous tumor genomic profiles contributing to complexity in diagnosis and management. Chronic infection with hepatitis B virus (HBV),hepatitis delta virus (HDV), and hepatitis C virus (HCV) are the greatest etiological risk factors for HCC. Due to the significant role of chronic viral infection in HCC development, it is important to investigate direct (viral associated) and indirect (immune-associated) mechanisms involved in the pathogenesis of HCC. Common mechanisms used by HBV, HCV, and HDV that drive hepatocarcinogenesis include persistent liver inflammation with an impaired antiviral immune response, immune and viral protein-mediated oxidative stress, and deregulation of cellular signaling pathways by viral proteins.DNA integration to promote genome instability is a feature of HBV infection, and metabolic reprogramming leading to steatosis is driven by HCV infection. The current review aims to provide a brief overview of HBV, HCV and HDV molecular biology, and highlight specific viral-associated oncogenic mechanisms and common molecular pathways deregulated in HCC, and current as well as emerging treatments for HCC.  相似文献   

20.
Cyclooxygenase-2 (COX-2)-controlled prostaglandin (PG) metabolism recently has been implicated in the pathogenesis of hepatocellular carcinoma (HCC). However, the biologic role and molecular mechanism of COX-2-mediated PGs in the control of liver cancer growth have not been established. This study was designed to examine the direct effect of COX-2 and its inhibitor celecoxib on the growth control of liver cancer cells. Human HCC cell lines Hep3B and HepG2 transfected with COX-2 expression vector showed increased cell growth and enhanced phosphorylation of serine/threonine protein kinase B (Akt). The level of COX-2 expression and Akt phosphorylation is correlated positively in cultured HCC cells and human liver cancer tissues. Inhibition of Akt activation by phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 significantly decreased the viability of Hep3B and HepG2 cells (P <.01). These results reveal a novel role of Akt activation in COX-2-induced HCC cell survival. Furthermore, HCC cells treated with the COX-2 inhibitor celecoxib showed significant reduction of Akt phosphorylation and marked morphologic and biochemical characteristics of apoptosis. Overexpression of COX-2 or addition of exogenous PGE(2) partially prevented celecoxib-induced apoptosis (P <.01). In conclusion, our results suggest the involvement of COX-2-dependent and -independent mechanisms in celecoxib-mediated HCC cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号