首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The brain serotonin (5-hydroxytryptamine; 5-HT) system is a powerful modulator of emotional processes and a target of medications used in the treatment of psychiatric disorders. To evaluate the contribution of serotonin 5-HT1A receptors to the regulation of these processes, we have used gene-targeting technology to generate 5-HT1A receptor-mutant mice. These animals lack functional 5-HT1A receptors as indicated by receptor autoradiography and by resistance to the hypothermic effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Homozygous mutants display a consistent pattern of responses indicative of elevated anxiety levels in open-field, elevated-zero maze, and novel-object assays. Moreover, they exhibit antidepressant-like responses in a tail-suspension assay. These results indicate that the targeted disruption of the 5-HT1A receptor gene leads to heritable perturbations in the serotonergic regulation of emotional state. 5-HT1A receptor-null mutant mice have potential as a model for investigating mechanisms through which serotonergic systems modulate affective state and mediate the actions of psychiatric drugs.  相似文献   

2.
With data from recently available selective antagonists for the 5-HT(7) receptor, it has been hypothesized that 5-hydroxytryptamine (5-HT)-induced hypothermia is mediated by the 5-HT(7) receptor, an effect previously attributed to other receptor subtypes. It has been established that the biologically active lipid oleamide allosterically interacts with the 5-HT(7) receptor to regulate its transmission. The most well characterized effects of oleamide administration are induction of sleep and hypothermia. Here, we demonstrate, by using mice lacking the 5-HT(7) receptor, that 5-HT-induced hypothermia is mediated by the 5-HT(7) receptor. Both 5-HT and 5-carboxamidotryptamine, a 5-HT(1) and 5-HT(7) receptor agonist, in physiological doses fail to induce hypothermia in 5-HT(7) knockout mice. In contrast, oleamide was equally effective in inducing hypothermia in mice lacking the 5-HT(7) receptors as in wild-type mice. When administered together, 5-HT and oleamide showed additive or greater than additive effects in reducing body temperature. Taken together, the results show that 5-HT-induced hypothermia is mediated by the 5-HT(7) receptor, and that oleamide may act through an independent mechanism as well as at an allosteric 5-HT(7) receptor site to regulate body temperature.  相似文献   

3.
The role of 5-HT2A and 5-HT2C subtypes of serotonergic receptors in the control of sexual behavior and plasma testosterone regulation was studied in male CBA mice exposed to a sexually receptive female separated by a transparent partition. Introduction of the receptive female induced sexual motivation and arousal in males, as evidenced by a prolonged time spent at the partition, unsuccessful attempts to step across it and a significant increase in plasma testosterone levels. Administration of 5-HT2A receptor antagonists ketanserin (1.0 and 2.0 mg/kg i.p.) or cyproheptadine (1.0 and 2.0 mg/kg i.p.) diminished the behavioral components and prevented the hormonal components of male sexual arousal. Administration of the selective 5-HT2C antagonist RS 102221 (1.0 and 2.0 mg/kg) considerably increased the time spent by males at the partition (p < 0.001) and, at the dose of 2.0 mg/kg, increased plasma testosterone levels (p < 0.01). Administration of ritanserin - a nonselective 5-HT2A/2C antagonist and, to a smaller degree, 5-HT2B antagonist - at doses of 0.1 and 0.5 mg/kg did not significantly influence male behavior and the activating effect of the presence of a female on the hypothalamo-pituitary-testicular system, although it increased resting testosterone levels (p < 0.05). The present findings suggest that 5-HT2A/5-HT2C receptors may be involved in the neural control of male sexual motivation and arousal, presumably by exerting reciprocal facilitative (5-HT2A) or suppressive (5-HT2C) influences.  相似文献   

4.
Serotonin systems have been implicated in the regulation of hippocampal function. Serotonin 5-HT2C receptors are widely expressed throughout the hippocampal formation, and these receptors have been proposed to modulate synaptic plasticity in the visual cortex. To assess the contribution of 5-HT2C receptors to the serotonergic regulation of hippocampal function, mice with a targeted 5-HT2C-receptor gene mutation were examined. An examination of long-term potentiation at each of four principal regions of the hippocampal formation revealed a selective impairment restricted to medial perforant path–dentate gyrus synapses of mutant mice. This deficit was accompanied by abnormal performance in behavioral assays associated with dentate gyrus function. 5-HT2C receptor mutants exhibited abnormal performance in the Morris water maze assay of spatial learning and reduced aversion to a novel environment. These deficits were selective and were not associated with a generalized learning deficit or with an impairment in the discrimination of spatial context. These results indicate that a genetic perturbation of serotonin receptor function can modulate dentate gyrus plasticity and that plasticity in this structure may contribute to neural mechanisms underlying hippocampus-dependent behaviors.  相似文献   

5.
Neurons in rat central nervous system (CNS) that express 5-HT1c receptor mRNA have been localized by in situ hybridization histochemistry. The 5-HT1c receptor is expressed in a wide variety of cortical and subcortical neurons including hippocampal pyramidal neurons, neurons within most of the central monoaminergic cell groups, neurons in thalamic sensory relay nuclei, and neurons involved in the central processing and regulation of nociceptive transmission. Therefore, the 5-HT1c receptor is a prominent but poorly characterized central subclass of serotonin (5-HT) receptor. The distribution of the 5-HT1c receptor within the CNS is considerably more widespread than that of the structurally and functionally related 5-HT2 receptor.  相似文献   

6.
Nonogaki K  Nozue K  Oka Y 《Endocrinology》2006,147(12):5893-5900
The central melanocortin (MC) pathway is suggested to mediate satiety signaling downstream of serotonin (5-HT)2C receptors. 5-HT2C receptor mutant mice consume more food, which leads to late-onset obesity and impaired glucose tolerance. Ay mice with ectopic expression of the agouti peptide, which leads to a perturbation of the central MC pathway, develop obesity and diabetes, associated with low levels of plasma total ghrelin. Here, we report that 5-wk-old Ay mice consumed more food in association with decreases in levels of plasma des-acyl ghrelin, but not active ghrelin, and increases in hypothalamic 5-HT2C and 5-HT1B receptor gene expression compared with wild-type mice matched for age and body weight. These alterations were also observed in 8-wk-old obese Ay mice. Restricted feeding significantly decreased hypothalamic 5-HT2C and 5-HT1B receptor gene expression in association with a reversal of the decreases in plasma des-acyl ghrelin levels in 5-wk-old Ay mice. Moreover, restricted feeding reduced body weight, hyperinsulinemia, and hyperglycemia in association with increases in plasma des-acyl ghrelin levels in 8-wk-old obese Ay mice. Administration of m-chlorophenylpiperazine and fenfluramine, both of which induce anorexic effects via 5-HT2C receptors and/or 5-HT1B receptors, suppressed food intake in 5- and 8-wk-old Ay mice, whereas the anorexic effects were attenuated in food-restricted Ay mice. These findings suggest that the agouti peptide down-regulates hypothalamic 5-HT2C and 5-HT1B receptor gene expression under restricted feeding conditions, whereas chronic hyperphagia increases the expression of these genes and decreases plasma des-acyl ghrelin levels in Ay mice.  相似文献   

7.
AIM:To study the effects of 5-hydroxytryptamine(5-HT)receptor antagonists on normal colonic motor activity in conscious dogs.METHODS:Colonic motor activity was recorded using a strain gauge force transducer in 5 dogs before and after 5-HT2B,5-HT3 and 5-HT4 receptor antagonist administration.The force transducers were implanted on the serosal surfaces of the gastric antrum,terminal ileum,ileocecal sphincter and colon.Test materials or vehicle alone was administered as an intravenous bolus injection during a quiescent period of the whole colon in the interdigestive state.The effects of these receptor antagonists on normal gastrointestinal motor activity were analyzed.RESULTS:5-HT2B,5-HT3 and 5-HT4 receptor antagonists had no contractile effect on the fasting canine terminal ileum.The 5-HT3 and 5-HT4 receptor antagonists inhibited phaseⅢof the interdigestive motor complex of the antrum and significantly inhibited colonic motor activity.In the proximal colon,the inhibitory effect was dose dependent.Dose dependency,however,was not observed in the distal colon.The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity.CONCLUSION:The 5-HT3 and 5-HT4 receptor antagonists inhibited normal colonic motor activity.The5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity.  相似文献   

8.
9.
Serotonin (5-HT) appears to be involved in the central control of the prolactin (PRL) response to suckling and estrogen. Furthermore, 5-HT may participate in the mediation of stress-induced PRL release. In order further to elucidate the role of 5-HT and the type of 5-HT receptor(s) involved in the PRL response to stress, we investigated the effect of blockade of 5-HT1, 5-HT2 or 5-HT3 receptors on the restraint or ether stress-induced release of PRL in male rats. Pretreatment with the 5-HT1 + 2 receptor antagonist methysergide (0.5 or 2.5 mg/kg i.p.) inhibited or prevented the PRL response to restraint or ether stress. Pretreatment with the 5-HT2 receptor antagonists ketanserin or LY 53857 (0.5 or 2.5 mg/kg i.p.) inhibited the response to restraint or ether stress approximately 30 or 60%, respectively. Higher doses of both 5-HT2 receptor antagonists (10 mg/kg i.p.) had a minor inhibitory effect (5-30% for ketanserin and 50% for LY 53857). Prior intraperitoneal administration of the 5-HT3 receptor antagonists ICS 205-930 or GR 38032F (0.05-2.5 mg/kg i.p.) inhibited the restraint stress-induced PRL release dose-dependently. Both compounds inhibited the PRL response to ether stress, but only the effect of GR was dose-related. The maximal inhibitory effect (70% inhibition of the PRL response to restraint or ether stress) was obtained for both compounds at a dose of 0.1 mg/kg. We conclude that serotonergic neurons are involved in the mediation of the stress-induced PRL release by activation of 5-HT1, 5-HT2 as well as 5-HT3 receptors.  相似文献   

10.
The mechanisms of diarrhea in Asiatic cholera have been studied extensively. Cyclic adenosine monophosphate, 5-hydroxytryptamine (5-HT), prostaglandins, and the function of neuronal structures have been implicated in the pathogenesis of cholera. To elucidate the action of 5-HT in mediating cholera secretion, in vivo experiments were performed in the rat jejunum. The inhibitory effects of the 5-HT2 receptor antagonist ketanserin and the 5-HT3 receptor antagonist ICS 205-930 were studied in cholera toxin- and 5-HT-induced fluid secretion. Both ketanserin and ICS 205-930 dose-dependently but only partially reduced the secretory effect of cholera toxin. The combination of the two blockers totally abolished cholera toxin-induced secretion without any influence on cholera toxin-induced increase in cyclic adenosine monophosphate. Prostaglandin E2- and bisacodyl-induced secretion was not affected by the combined administration of 5-HT2 and 5-HT3 antagonists. The present results provide evidence for an important role of 5-HT in cholera toxin-induced secretion. The data suggest a model in which cholera toxin may initiate the release of 5-HT from enterochromaffin cells. 5-Hydroxytryptamine may then cause prostaglandin E2 formation via 5-HT2 receptors and activation of neuronal structures via 5-HT3 receptors. These two effects may finally lead to the profuse fluid secretion which can be totally blocked by the combination of a 5-HT2 blocker and a 5-HT3 blocker.  相似文献   

11.
12.
We established previously that 5-HT(2B) receptors are involved in cardiac hypertrophy through the regulation of hypertrophic cytokines in cardiac fibroblasts. Moreover, the generation of reactive oxygen species and tumor necrosis factor-alpha through the activation of reduced nicotinamide-adenine dinucleotide phosphate [NAD(P)H] oxidase has been implicated in cardiac hypertrophy. In this study, we investigated whether 5-HT(2B) receptors could be involved in the development of cardiac hypertrophy associated with superoxide anion production. Therefore, we measured the effects of serotonergic 5-HT(2B) receptor blockade on left-ventricular superoxide anion generation in 2 established pharmacological models of cardiac hypertrophy, ie, angiotensin II and isoproterenol infusions in mice. Angiotensin II infusion for 14 days increased superoxide anion concentration (+32%), NAD(P)H oxidase maximal activity (+84%), and p47(phox) NAD(P)H oxidase subunit expression in the left ventricle together with hypertension (+37 mm Hg) and cardiac hypertrophy (+17% for heart weight:body weight). The 5-HT(2B) receptor blockade by a selective antagonist (SB215505) prevented the increase in cardiac superoxide generation and hypertrophy. Similarly, infusion for 5 days of isoproterenol increased left-ventricular NAD(P)H oxidase activity (+48%) and cardiac hypertrophy (+31%) that were prevented by the 5-HT(2B) receptor blockade. Finally, in the primary culture of left-ventricular cardiac fibroblasts, angiotensin II and isoproterenol stimulated NAD(P)H oxidase activity. This activation was prevented by SB215505. These findings suggest that the 5-HT(2B) receptor may represent a new target to reduce cardiac hypertrophy and oxidative stress. Its blockade affects both angiotensin II and beta-adrenergic trophic responses without significant hemodynamic alteration.  相似文献   

13.
OBJECTIVE: Excitatory amino acids and serotonin are involved in the control of gonadotropin secretion. The actions of these neurotransmitters are interconnected and recently we have reported that 5-HT(1) and 5-HT(2) receptor agonists blunted (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-stimulated GH secretion in prepubertal rats. The present experiments were carried out to analyze the effects of activation of different 5-hydroxytryptamine (5-HT) receptor subtypes on gonadotropin secretion and their role in the N-methyl-d-aspartate (NMDA)-stimulated LH release. DESIGN AND METHODS: We analyzed the gonadotropin secretion after manipulation of serotoninergic and aminoacidergic systems and their interactions in 5-, 16- and 23-day-old male and female rats. To this end, serum LH and FSH concentrations were measured in rats treated with 5-hydroxytryptophan methyl ester (5-HTP) (a precursor of 5-HT synthesis) plus Fluoxetine (Fx, a blocker of 5-HT reuptake), d,l-p-chlorophenyl-alanine methyl ester (PCPA, a blocker of 5-HT synthesis), R-(+)-8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT, an agonist of 5-HT(1A) receptors), (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) and alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT, agonists of 5-HT(2) receptors), and 1-Phenylbiguanide (1-PHE an agonist of 5-HT(3) receptors). In addition, the effects of 8-OH-DPAT and DOI on NMDA-stimulated LH secretion were analyzed. RESULTS: Neither the activation nor blockade of the serotoninergic system modified LH secretion. Basal gonadotropin secretion remained unchanged in 23-day-old male and female rats after activation of 5-HT(1A), 5-HT(2) and 5-HT(3) receptors. The stimulatory effect of NMDA on LH secretion was blocked in both sexes after activation of the serotoninergic system, through specific 5-HT(1) and 5-HT(2) receptor agonists. CONCLUSIONS: Activation of serotoninergic receptors decreased the stimulatory effect of NMDA on LH secretion in prepubertal male and female rats.  相似文献   

14.
Serotonin (5-HT) is involved in the neuroendocrine regulation of prolactin (PRL) secretion as a stimulator. Within the last decade several 5-HT receptor types have been identified, but their individual role in the mediation of the PRL response to 5-HT is only partly understood. We investigated in conscious male rats the effect of different 5-HT1, 5-HT2, and 5-HT3 receptor antagonists on the PRL response to 5-HT or to the 5-HT precursor 5-hydroxytrytophan (5-HTP) which was administered in combination with the 5-HT reuptake inhibitor fluoxetine. 5-HT (0.5-5.0 mg/kg BW i.v.) or 5-HTP (25-100 mg/kg i.p.) in combination with saline or fluoxetine (10 mg/kg i.p.) increased the plasma PRL concentration dose-dependently. Pretreatment with the 5-HT1+2 receptor antagonist methysergide (2.5 mg/kg i.p.) prevented the stimulatory effect of 5-HT or 5-HTP + fluoxetine. Pretreatment with the 5-HT2 receptor antagonists ketanserin or LY 53857 (2.5 mg/kg i.p.) inhibited the PRL response to 5-HT by approximately 80% and to 5-HTP + fluoxetine approximately 100%. A higher dose (10 mg/kg) of the 5-HT2 receptor antagonists possessed only 50% inhibitory effect. Pretreatment with the 5-HT3 receptor antagonists ICS 205-930 or GR 38032F (0.05-2.5 mg/kg i.p.) inhibited the PRL response induced by 5-HT or by 5-HTP + fluoxetine. The maximal inhibitory effect (approximately 80%) was obtained by a dose of 0.1 mg/kg of both compounds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Transgenic mice bearing a transgene coding for a glucocorticoid receptor antisense mRNA that partially blocks glucocorticoid receptor expression were used to investigate the long-term effect of hypothalamic-pituitary-adrenal dysfunction on brain 5-hydroxytryptamine-2A (5-HT2A) receptor expression. The brain 5-HT2A receptor mRNA levels in transgenic mice were measured by in situ hybridization and compared to those in control mice. We also studied the effect of a 3-week treatment with fluoxetine on brain 5-HT2A receptor expression in the transgenic mice. No difference in 5-HT2A mRNA levels was observed between transgenic and control mice in cortical or striatal regions, and fluoxetine treatment was without effect. No difference in hypothalamic 5-HT2A mRNA levels was observed between transgenic and control mice, while fluoxetine treatment increased these levels in both transgenic as well as in the hypothalamic ventromedial and paraventricular nuclei of control mice. 5-HT2A receptor mRNA levels were similar in hippocampal CA1 and CA2 subregions of control and transgenic, but were lower in the CA3 and CA4 subregions of transgenic mice. Fluoxetine had no effect on 5-HT2A mRNA levels of transgenic mice but reduced control mouse 5-HT2A receptor mRNA levels in the CA3 subregion. These results suggest that impaired glucocorticoid receptor function can affect hippocampal 5-HT2A receptor expression in transgenic mice and that this is not corrected by fluoxetine treatment.  相似文献   

16.
BACKGROUND: Prenatal ethanol exposure alters the development of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA hyper-responsiveness to stressors in adulthood. Prenatal ethanol exposure also alters the development and activity of the serotoninergic (5-HT) system. We have previously shown that 5-HT(1A) and 5-HT(2A/C) receptor-mediated behavioral and physiological function are altered in fetal ethanol-exposed offspring. As there are extensive interactions between the HPA axis and the 5-HT system, the present study tested the hypothesis that prenatal ethanol exposure would alter 5-HT(1A) and 5-HT(2A/C) receptor-mediated HPA function. METHODS: The 5-HT(1A) agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.2 mg/kg), and the 5-HT(2A/C) agonist, (+)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.3 mg/kg), or vehicle (1 mL/kg) were administered to adult female and male offspring from prenatal ethanol-exposed (E), pair-fed control (PF), and ad libitum-fed control (C) dams. The plasma concentration of adrenocorticotropin (ACTH) and corticosterone (CORT) were determined at 0, 15, 30, 60, and 120 minutes postinjection. In addition, corticotropin releasing hormone (CRH) mRNA expression in the paraventricular nucleus of the hypothalamus, and 5-HT(1A) and 5-HT(2A/C) receptor mRNA expression in the hippocampus and prefrontal cortex, respectively, were determined by in situ hybridization. RESULTS: Ethanol-exposed females showed a blunted ACTH response to 8-OH-DPAT at 15 and 30 minutes, and conversely, an increased ACTH response to DOI at all time points postinjection, compared with PF and C females. Differences among E, PF, and C males failed to reach significance. Centrally, however, DOI resulted in a trend toward lower CRH mRNA levels in E and PF compared with C females, but higher CRH mRNA levels in E compared with control males. There were no differences among prenatal groups in 5-HT(2A) receptor expression in the prefrontal cortex following either 8-OH-DPAT or DOI treatment. However, following 8-OH-DPAT, hippocampal 5-HT(1A) receptor expression was higher in E than in PF females in CA1, with a trend toward higher expression in E than in C females in CA2, whereas following DOI, a prenatal group by subfield interaction suggests lower 5-HT(1A) mRNA levels in E and PF compared with C females in CA1 and the dentate gyrus. CONCLUSIONS: These data are the first to demonstrate that prenatal ethanol exposure has differential long-term effects on 5-HT(1A)-mediated and 5-HT(2A)-mediated neuroendocrine function in females and males, and suggest a sex-specific ethanol-induced alteration in the interaction between the HPA axis and the serotonin system.  相似文献   

17.
18.
19.
20.
Melatonin, a neurohormone that binds to two G protein-coupled receptors MT1 and MT2, is involved in pain regulation, but the distinct role of each receptor has yet to be defined. We characterized the nociceptive responses of mice with genetic inactivation of melatonin MT1 (MT1−/−), or MT2 (MT2−/−), or both MT1/MT2 (MT1−/−/MT2−/−) receptors in the hot plate test (HPT), and the formalin test (FT). In HPT and FT, MT1−/− display no differences compared to their wild-type littermates (CTL), whereas both MT2−/− and MT1−/−/MT2−/− mice showed a reduced thermal sensitivity and a decreased tonic nocifensive behavior during phase 2 of the FT in the light phase. The MT2 partial agonist UCM924 induced an antinociceptive effect in MT1−/− but not in MT2−/− and MT1−/−/MT2−/− mice. Also, the competitive opioid antagonist naloxone had no effects in CTL, whereas it induced a decrease of nociceptive thresholds in MT2−/− mice. Our results show that the genetic inactivation of melatonin MT2, but not MT1 receptors, produces a distinct effect on nociceptive threshold, suggesting that the melatonin MT2 receptor subtype is selectively involved in the regulation of pain responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号