首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
5.
6.
Precision-cut human liver slices obtained from 11 donors were cultured for 72 h in a defined medium (serum free Williams' medium E) supplemented with 0.1 microM insulin and 0.1 microM dexamethasone (DEX). Liver slices were treated with 50 microM concentrations of beta -naphthoflavone (BNF), lansoprazole, rifampicin (RIF), DEX and methylclofenapate and 500 microM sodium phenobarbital (NaPB). The relative apoprotein levels of 12 cytochrome P450 (P450) enzymes were determined in liver slice microsomes using a panel of antipeptide antibodies. Treatment with BNF significantly induced mean levels of CYP1A2 apoprotein to 160% of levels in 72-h control (no test compound) human liver slice microsomes. NaPB significantly induced levels of CYP3A4 apoprotein to 255% of control and RIF significantly induced levels of CYP2C19 and CYP3A4 apoproteins to 265 and 330% of control, respectively. In addition, treatment with RIF increased levels of CYP2A6 apoprotein to 205% of control, and treatment with both NaPB and RIF increased levels of CYP2B6 apoprotein to 370 and 615% of control, respectively. However, these increases were not statistically significant, owing to a variable response between liver slice preparations from different subjects, this being apparent for all inducible P450s. In contrast, none of the compounds examined significantly increased levels of CYP2C8, CYP2C9, CYP2D6, CYP2E1, and CYP4A11 apoproteins. Levels of CYP1A1 apoprotein were not detected in any liver slice sample, either before or after treatment with the model inducers. Overall, these results demonstrate the utility of cultured human liver slices for assessing the effects of chemicals on P450 enzymes.  相似文献   

7.
Fluvastatin (Fluva), a synthetic inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, induces CYP2B1/2 in rat liver and primary cultured rat hepatocytes. However, the overall profile of CYP induction, which includes induction of CYP4A, suggests that Fluva is not a typical "phenobarbital (PB)-like" inducer. Several treatments affecting diverse cell signaling pathways have been reported to modify PB-inducible CYP2B expression in primary cultured rat hepatocytes. We examined the effects of selected treatments on the ability of Fluva to induce CYP2B1/2 mRNA. Only dexamethasone (Dex) produced effects on Fluva-inducible CYP2B1/2 mRNA expression that differed from those produced on PB-inducible CYP2B1/2 mRNA expression. Dex concentrations up to 10(-7) M of potentiated PB (10(-4) M)-mediated CYP2B1/2 mRNA induction, while higher Dex concentrations produced a progressive reduction in PB-induced CYP2B1/2 mRNA levels. By contrast, Dex concentrations up to 10(-8) M had no effect on Fluva (3 x 10(-5) M)-induced CYP2B1/2 mRNA levels, while Dex concentrations of 10(-7) M and higher markedly suppressed Fluva-mediated CYP2B1/2 mRNA induction. The concentrations of several glucocorticoids that produced suppression of Fluva-induced CYP2B1/2 mRNA levels were the same concentrations that induced CYP3A mRNA. Treatment with pregnenolone 16 alpha-carbonitrile also produced a concentration-dependent suppression of Fluva-induced CYP2B1/2 mRNA levels. Dex-mediated suppression of Fluva-induced CYP2B1/2 mRNA was concentration-dependently reversed when hepatocytes were cotreated with troleandomycin, a selective CYP3A inhibitor. The amounts of Fluva detected in culture medium and cells were reduced significantly when hepatocytes were incubated with Dex. However, Dex-mediated suppression of Fluva-induced CYP2B1/2 mRNA expression was not overcome when hepatocytes were incubated with Fluva concentrations greater than 3 x 10(-5) M, suggesting that mechanisms other than CYP3A-catalyzed metabolism may contribute to Dex-mediated suppression of Fluva-induced CYP2B1/2 expression.  相似文献   

8.
Models of inflammation and infection, such as bacterial lipopolysaccharide (LPS), cause suppression of cytochrome P450 expression in various species, although the mechanisms involved are poorly understood. The effects of LPS on expression of phenobarbital (PB)-induced CYP2B1/2 in rats have been well characterized, but less is known about the effects of LPS on PB-induced CYP2B in mice. Since genetically manipulated mice represent an attractive model to study the mechanisms involved in the down-regulation of CYP2B expression by LPS, we investigated the effects of LPS on PB-induced CYP2B expression in mouse liver. Female C57BL/6 mice were injected with 100 mg/kg PB once daily for 4 days to induce CYP2B10 expression, and 1 mg/kg LPS was injected i.p. with the last PB dose. LPS inhibited the mRNA expression of CYP2B10 and CYP2B9 at 6 and 12 h of treatment, with the inhibitory effect more profound at 12 h. LPS also suppressed the CYP2B9 mRNA level at 24 h. However, CYP2B10 mRNA levels in mice treated with PB alone had declined markedly by 24 h after the last PB injection; therefore, no effect of LPS could be discerned. Further experiments showed that injections of 33 mg/kg PB every 8 h produced more stable CYP2B10 mRNA and enzymatic activity. Suppression of CYP2B protein level was found in LPS-treated animals at 24 h of treatment, although no significant effects were noticed at 6 and 12 h of treatment. This study suggests that LPS suppresses the expression of phenobarbital-induced CYP2B expression in mice, which resembles its effects in rats.  相似文献   

9.
Effects of inhibiting protein kinases and phosphatases on induction of CYP2B by triphenyldioxane (TPD) and phenobarbital (PB) were investigated. Male Wistar rats were treated with test inhibitors before TPD or PB administration. Inhibitors of phosphatidylinositol-3-kinase (Wortmannin) and protein kinase C (bisindolylmaleimide I) did not have appreciable effects on TPD- or PB-induced pentoxyresorufin O-dealkylase (PROD) activity specific for CYP2B, although bisindolylmaleimide I did give substantial induction alone. W-7, an inhibitor of Ca2+/calmodulin-dependent kinase II, produced a 6-fold increase in the TPD-induced PROD activity and did not lead to a significant increase in basal PROD activity. Treatment of rats with okadaic acid (OA), an inhibitor of protein phosphatases PP1 and PP2A, caused considerable decreases in PROD activity during the induction by TPD and PB (8- and 2.5-fold, respectively). Results of multiplex RT-PCR showed that the increase in enzymatic activity from W7 and OA treatment reflected at least in part increased mRNA levels. CYP2B mRNA level in the liver of rats treated with W-7 and TPD was 1.5 times higher than in the liver of TPD-treated rats. This effect was not observed for PB-induction. OA treatment caused a decrease of the CYP2B mRNA levels of 44% and 33% respectively, for TPD- and PB-induction. Thus, our results are consistent with the hypothesis that phosphorylation/dephosphorylation signaling pathways are involved in regulation of CYP2B induction in rat liver.  相似文献   

10.
Many drugs and endogenous substances undergo biotransformation by cytochrome P450s (CYPs), and some drugs are also capable of modulating the expression of various CYPs. Knowledge of the potential of a drug to modulate CYPs is useful to help predict potential drug interactions. This study utilized precision-cut rat liver slices in dynamic organ culture to assess the effects of various media on the viability of rat liver slices and the expression of CYP2B and CYP2E1 when the slices are exposed to phenobarbital and isoniazid, which are drugs capable of inducing these respective CYPs. Liver slices were maintained in serum supplemented Waymouths medium and two different serum-free media, Hepatozyme (Life Technologies) and a new defined medium, which is named BPM. While Hepatozyme is considered a suitable medium to support primary hepatocyte cultures, this product did not maintain viable liver slices, even for 24 h. The serum containing and new defined media maintained viable liver slices for up to 96 h in culture. Phenobarbital (0.5 mM) and isoniazid (0.1 or 0.6 mM) did not affect viability in this model. In the absence of phenobarbital or isoniazid, liver slices maintained for 96 h in the new BPM medium maintained the respective levels of CYP2B and 2E1 protein at 1.8 and 1.9-fold higher than in slices maintained in the serum-containing medium. Phenobarbital exposure (0.5 mM) for 96 h induced CYP2B protein 5.2-fold in the BPM medium and 2.5-fold in the serum-containing medium. Isoniazid exposure (0.1 and 0.5 mM) for 96 h induced CYP2E1 protein 1.9 and 2.1-fold (respectively) in the BPM medium and 2.1 and 2.0-fold in the serum-containing medium. The respective CYP enzymatic activities were also increased by these drugs in a similar manner. Thus, the new defined BPM medium provides suitable conditions for maintaining CYP2B and 2E1 in liver slices and supports the investigation of drug-induced modulation of these enzymes.  相似文献   

11.
With the exception of cytochrome P450 (CYP) 1A1 and its mRNA, in vitro induction of other CYP forms has not been demonstrated in cryopreserved liver slices until now. Therefore precision-cut rat liver slices were cultured after cryopreservation and thawing in William's medium E for up to 24 h in the presence of inducers to demonstrate CYP2B1- and CYP3A1-mRNA induction. CYP-mRNA expression was determined by competitive RT-PCR. Exposure to 100 microM phenobarbital caused a more than 20-fold increase in CYP2B1-mRNA expression within 24 h, reaching concentrations comparable with those of PB-exposed fresh rat liver slices. Exposure to 1 microM pregnenolone 16 alpha-carbonitrile enhanced CYP3A1-mRNA expression by more than 30-fold within 24 h. This is in the same range, although with higher variability, as detected with fresh liver slices. In spite of considerable variability among the thawed slices, the induction factors are high enough for a sensitive detection of an induction at mRNA level. Additionally, immunostaining of respective CYP-forms was performed in sections of few samples, indicating CYP increase in viable cells of cryopreserved slices.  相似文献   

12.
13.
High doses of Metofluthrin (MTF) have been shown to produce liver tumours in rats by a mode of action (MOA) involving activation of the constitutive androstane receptor leading to liver hypertrophy, induction of cytochrome P450 (CYP) forms and increased cell proliferation. The aim of this study was to compare the effects of MTF with those of the known rodent liver tumour promoter phenobarbital (PB) on the induction CYP2B forms and replicative DNA synthesis in cultured rat and human hepatocytes. Treatment with 50 μM MTF and 50 μM PB for 72 h increased CYP2B1 mRNA levels in male Wistar rat hepatocytes and CYP2B6 mRNA levels in human hepatocytes. Replicative DNA synthesis was determined by incorporation of 5-bromo-2′-deoxyuridine over the last 24 h of a 48 h treatment period. Treatment with 10–1000 μM MTF and 100–500 μM PB resulted in significant increases in replicative DNA synthesis in rat hepatocytes. While replicative DNA synthesis was increased in human hepatocytes treated with 5–50 ng/ml epidermal growth factor or 5–100 ng/ml hepatocyte growth factor, treatment with MTF and PB had no effect. These results demonstrate that while both MTF and PB induce CYP2B forms in both species, MTF and PB only induced replicative DNA synthesis in rat and not in human hepatocytes. These results provide further evidence that the MOA for MTF-induced rat liver tumour formation is similar to that of PB and some other non-genotoxic CYP2B form inducers and that the key event of increased cell proliferation would not occur in human liver.  相似文献   

14.
The effects of treatment with the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) inhibitors lovastatin, simvastatin, pravastatin, fluvastatin, and atorvastatin on the contents of cytochrome p450 mRNAs were examined in primary cultures of human hepatocytes prepared from three different livers. Treatment of 2- to 3-day-old human hepatocyte cultures with 3 x 10(-5) M lovastatin, simvastatin, fluvastatin, or atorvastatin for 24 h increased the amounts of CYP2B6 and CYP3A mRNA by an average of 3.8- to 9.2-fold and 24- to 36-fold, respectively. In contrast, pravastatin treatment had no effect on the mRNA level of either CYP2B6 or CYP3A, although treatment with pravastatin did produce the expected compensatory increase in HMG-CoA reductase mRNA content, indicating effective inhibition of cholesterol biosynthesis. Although treatment with the active (+), but not the inactive (-), enantiomer of atorvastatin increased the amount of HMG-CoA reductase mRNA, treatment with each enantiomer significantly induced both CYP2B6 and CYP3A mRNA levels. Treatment of primary cultured rat hepatocytes with the atorvastatin enantiomers effectively increased the amount of CYP3A mRNA, but had no effect on CYP2B or CYP4A mRNA levels, in contrast to fluvastatin, which increased both. Findings for p450 proteins by Western blotting were consistent with the mRNA results. These findings indicate that the ability of a drug to inhibit HMG-CoA reductase activity does not predict its ability to produce p450 induction in primary cultured human hepatocytes, and demonstrate that some, but not all, of the effects of these drugs that occur in primary cultured rat hepatocytes are conserved in human hepatocyte cultures.  相似文献   

15.
16.
Procarcinogen-activating cytochrome P450 (CYP) enzymes such as CYP1B1, CYP1A1, and CYP1A2 are considered to play an important role in chemical carcinogenesis. However, conflicting data exist with respect to CYP1B1 expression in human liver. In the present study, we measured CYP1B1 mRNA and protein expression in liver samples from 12 individuals (7 nonsmokers, 4 smokers, and 1 ex-smoker) and compared the levels to those of CYP1A1 and CYP1A2. As analyzed by real-time polymerase chain reaction, CYP1B1 mRNA was present in all samples and the inter-individual variability was 16-fold. The group mean level was 5-fold greater in smokers than nonsmokers (121 +/- 46 vs. 26 +/- 5 molecules/ng double-stranded DNA, p < 0.05). By comparison, CYP1A1 mRNA was detectable in samples from 4 of 7 nonsmokers, 3 of 4 smokers, and one ex-smoker, whereas CYP1A2 mRNA was detectable in samples from 5 nonsmokers, 4 smokers, and the ex-smoker. The mean levels of CYP1A1 and CYP1A2 mRNA were 4-fold and 9-fold greater, respectively, in smokers than nonsmokers, but the differences were not statistically significant. The inter-individual variability in CYP1A1 and CYP1A2 mRNA expression was 26-fold and 500-fold, respectively. Immunoblot analysis using several antibodies and with a larger panel (n = 27) of liver microsomes showed that CYP1A1 and CYP1B1 proteins were undetectable, whereas CYP1A2 was detectable in all samples and quantifiable in 24 of 27 samples. In summary, our novel finding indicates that CYP1B1 mRNA is expressed in human liver and the levels are increased in smokers, but the protein is undetectable.  相似文献   

17.
In a previous 24-h study, precision-cut rat liver slices were validated as a useful in vitro model for assessing the dose-related induction of CYP1A1 and CYP1A2 in rat liver following exposure to 2, 3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further assessment of the utility of this model was accomplished by initially exposing rat liver slices to medium containing TCDD (0.01 nM) for 24 h and incubating the slices up to an additional 72 h in TCDD-free medium. The slices remained viable throughout the incubation period with an intracellular potassium content varying from 45.2 +/- 2.3 micromol/g at 48 h to 50.0 +/- 1.6 micromol/g at 72 h. In TCDD-exposed slices, CYP1A1 protein and its respective enzymatic activity, the O-deethylation of ethoxyresorufin (EROD), significantly increased with time over the 96-h incubation period, with EROD activity increasing from 63.6 +/- 14.2 at 24 h to 905 +/- 291 pmol/mg/min at 96 h. Under identical incubation conditions, but in the absence of TCDD, the EROD activity for the control liver slices ranged from 14. 3 +/- 4.3 to 44.9 +/- 11.9 pmol/min/mg. Conversely, the level of CYP1A2 protein and its respective activity (acetanilide hydroxylation) transiently decreased from 24 to 96 h with no significant differences observed between the control (0 nM TCDD) and treatment group (0.01 nM TCDD). The concentration-effect relationship at 96 h was characterized by incubating rat liver slices for the initial 24 h in medium containing TCDD at concentrations ranging from 0.1 pM to 10 nM. Induction of CYP1A1 protein and EROD activity was observed for all treatment groups with the 10 nM TCDD treatment group displaying greater than 100-fold induction compared to control (0 nM TCDD). Immunohistochemical localization of CYP1A1 protein within liver slices supported the time- and concentration-dependent induction of EROD activity by TCDD. The induction of CYP1A1 was initially observed to be centrilobular, with increased expression due to both elevated CYP1A1 within cells and the recruitment of additional cells expressing CYP1A1 throughout the entire liver slice. Additionally, the immunohistochemical analysis of the liver slices demonstrated the conservation of tissue architecture following up to 96 h of incubation in dynamic organ culture and provided further evidence for maintenance of tissue viability. In comparison to CYP1A1, the induction of CYP1A2 at 96 h was a less sensitive response, with significant induction of CYP1A2 protein and its respective activity occurring at a medium concentration of 0.1 nM TCDD (686 pg/g liver). In general, increasing the incubation period from 24 to 96 h markedly increased TCDD-induced expression of CYP1A1 and minimally enhanced CYP1A2 expression. Moreover, extending the incubation period to 96 h resulted in in vitro induction profiles for CYP1A1 and CYP1A2 that were qualitatively and quantitatively similar to that previously observed following in vivo exposure to TCDD (Drahushuk et al., Toxicol. Appl. Pharmacol. 140, 393-403, 1996).  相似文献   

18.
The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca(2+)/calmodulin-dependent kinase II (W7) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes.  相似文献   

19.
The principal objective was to ascertain whether precision-cut tissue slices can be used to evaluate the potential of chemicals to induce CYP1, epoxide hydrolase and glutathione S-transferase activities, all being important enzymes involved in the metabolism of polycyclic aromatic hydrocarbons. Precision-cut rat liver and lung slices were incubated with a range of benzo[a]pyrene concentrations for various time periods. A rise in the O-deethylation of ethoxyresorufin was seen in both liver and lung slices exposed to benzo[a]pyrene, which was accompanied by increased CYP1A apoprotein levels. Pulmonary CYP1B1 apoprotein levels and hepatic mRNA levels were similarly enhanced. Elevated epoxide hydrolase and glutathione S-transferase activities were also observed in liver slices following incubation for 24h; similarly, a rise in apoprotein levels of both enzymes was evident, peak levels occurring at the same time point. When mRNA levels were monitored, a rise in the levels of both enzymes was seen as early as 4h after incubation, but maximum levels were attained at 24 h. In lung slices, induction of epoxide hydrolase by benzo[a]pyrene was observed after a 24-h incubation, and at a concentration of 1 microM; a rise in apoprotein levels was seen at this time point. Glutathione S-transferase activity was not inducible in lung slices by benzo[a]pyrene but a modest increase was observed in hepatic slices. Collectively, these studies confirmed CYP1A induction in rat liver slices and established that CYP1B1 expression, and epoxide hydrolase and glutathione S-transferase activities are inducible in precision-cut tissue slices.  相似文献   

20.
1. In this study, 7-benzyloxy-4-trifluoromethylcoumarin (BFC) was evaluated as a substrate to assess the induction of cytochrome P450 (CYP) isoform enzyme activities in rat hepatocytes using a 96-well plate format. 2. BFC was metabolized by both untreated and sodium phenobarbitone (NaPB)-treated rat hepatocytes in a time- and concentration-dependent manner to the highly fluorescent product 7-hydroxy-4-trifluoromethylcoumarin (HFC). 3. HFC was extensively conjugated with D-glucuronic acid and/or sulphate in both untreated and NaPB-treated rat hepatocytes, thus necessitating the inclusion of an enzymatic deconjugation step in the assay procedure. 4. The time-course of induction of 7-ethoxyresorufin metabolism by the CYP1A inducer beta-naphthoflavone (BNF), 7-benzyloxyresorufin metabolism by the CYP2B inducer NaPB and BFC metabolism b both BNF and NaPB was studied in rat hepatocytes treated for 24-96 h. The optimal time for induction of metabolism of all three substrates was 72 h, with no medium changes being necessary during this period. 5. The effect of treatment with 0.5-20 microM BNF, 50-2000 microM NaPB, 2-20 microM dexamethasone (DEX), 20-100 microM methylclofenapate (MCP), and 50 and 200 microM isoniazid (ISN) for 72 h on BFC metabolism in cultured rat hepatocytes was studied. BFC metabolism was induced by treatment with BNF, NaPB and MCP, but not with either DEX or ISN. 6. The metabolism of BFC in liver microsomes from the control rat and rat treated with CYP isoform inducers was also studied. BFC metabolism was induced by treatment with NaPB, BNF and DEX. 7. The metabolism of BFC was also studied using microsomes from baculovirus-infected insect cells containing rat cDNA-expressed CYP1A, CYP2B, CYP2C and CYP3A isoforms. Whereas BFC was metabolized to some extent by all the rat cDNA-expressed CYP isoforms examined, at a substrate concentration of 2.5 microM the greatest rates of BFC metabolism were observed with the CYP1A1, CYP1A2 and CYP2B1 preparations. 8. In summary, the results demonstrate that BFC is a good substrate for assessing the induction of CYP1A and CYP2B isoforms in rat hepatocytes in a 96-well plate format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号