首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We investigated the role of the parabrachial complex in cutaneous nociceptor-induced respiratory stimulation in chloralose-urethane anesthetized, vagotomized rats. Noxious stimulation (mustard oil, MO) applied topically to a forelimb or hindlimb enhanced the peak amplitude of the integrated phrenic nerve discharge and, with forelimb application, increased phrenic nerve burst frequency. Bilateral inactivation of neural activity in the parabrachial complex with injection of the GABA agonist muscimol (3nl) markedly attenuated the response to MO application. Injection of the retrograde tracer FluoroGold within the medullary ventral respiratory column labeled neurons in dorsolateral pontine regions known to receive nociceptive inputs (i.e., Kolliker-Fuse, lateral crescent, and superior lateral subnuclei of the parabrachial complex). Extracellular recordings of 65 dorsolateral parabrachial neurons revealed about 15% responded to a noxious cutaneous pinch with either an increase or a decrease in discharge and approximately 40% of these exhibited a phasic respiratory-related component to their discharge. In conclusion, parabrachial pontine neurons contribute to cutaneous nociceptor-induced increases in breathing.  相似文献   

2.
We have analyzed the behavior of neurons of the lateral reticular nucleus (LRN) during fictive respiration and locomotion and found that some LRN neurons have both central respiratory and locomotor rhythms. Experiments were conducted on decrebrate, decerebellate, immobilized, and artificially ventilated cats, with the spinal cord transected at the lower thoracic cord. Fictive respiration and fictive forelimb locomotion were ascertained by monitoring activities from the phrenic nerve and forelimb extensor and flexor nerves, respectively. Fictive locomotion was evoked by electrical stimulation of the mesencephalic locomotor region (MRL) or sometimes occurred spontaneously. During fictive locomotion many LRN neurons fired in certain phases of the locomotion cycle; i.e., with respect to the nerve discharge of the ipsilateral forelimb they fired in either the extensor, flexor, extensor-flexor, or flexor-extensor phase. Firing of some LRN neurons was modulated synchronously with central respiratory rhythm. Neurons with inspiratory activity and those with expiratory activity were both found. More than half of these respiration-related LRN neurons had locomotor rhythm as well. The majority of the three types of LRN neurons, i.e., neurons with only locomotor rhythm, those with only respiratory rhythm, and those with both respiratory and locomotor rhythm, were antidromically activated by electrical stimulation of the ipsilateral inferior cerebellar peduncle. Electrical stimulation of the upper cervical cord showed that these LRN neurons, not only locomotion-related but also respiration-related neurons, received short latency inputs from the spinal cord. The LRN neurons studied were distributed widely in the LRN, relatively densely in the caudal two-thirds of the nucleus. No particular differences were detected between the three types of LRN neurons with respect to their location in the nucleus. These results indicate that the information about central respiratory and locomotor rhythms that is necessary for cerebellar control of the coordination between respiration and locomotion converges, at least partly, at the level of the LRN.  相似文献   

3.
Experiments were performed on neonatal mice to analyze why, in vitro, the respiratory rhythm generator (RRG) was silent and how it could be activated. We demonstrated that in vitro the RRG in intact brain stems is silenced by a powerful inhibition arising from the pontine A5 neurons through medullary alpha(2) adrenoceptors and that in vivo nasal trigeminal inputs facilitate the RRG as nasal continuous positive airway pressure increases the breathing frequency, whereas nasal occlusion and nasal afferent anesthesia depress it. Because nasal trigeminal afferents project to the A5 nuclei, we applied single trains of negative electric shocks to the trigeminal nerve in inactive ponto-medullary preparations. They induced rhythmic phrenic bursts during the stimulation and for 2-3 min afterward, whereas repetitive trains produced on-going rhythmic activity up to the end of the experiments. Electrolytic lesion or pharmacological inactivation of the ipsilateral A5 neurons altered both the phrenic burst frequency and occurrence after the stimulation. Extracellular unitary recordings and trans-neuronal tracing experiments with the rabies virus show that the medullary lateral reticular area contains respiratory-modulated neurons, not necessary for respiratory rhythmogenesis, but that may provide an excitatory pathway from the trigeminal inputs to the RRG as their electrolytic lesion suppresses any phrenic activity induced by the trigeminal nerve stimulation. The results lead to the hypothesis that the trigeminal afferents in the mouse neonate involve at least two pathways to activate the RRG, one that may act through the medullary lateral reticular area and one that releases the A5 inhibition received by the RRG.  相似文献   

4.
To elucidate neuronal mechanisms underlying phase-switching from expiration to inspiration, or inspiratory on-switching (IonS), postsynaptic potentials (PSPs) of bulbar respiratory neurons together with phrenic nerve discharges were recorded during IonS evoked by vagal stimulation in decerebrate and vagotomized cats. A single shock stimulation of the vagus nerve applied at late-expiration developed an inspiratory discharge in the phrenic neurogram after a latency of 79+/-11 ms (n = 11). Preceding this evoked inspiratory discharge, a triphasic response was induced, consisting of an early silence (phase 1 silence), a transient burst discharge (phase 2 discharge) and a late pause (phase 3 pause). During phase 1 silence, IPSPs occurred in augmenting inspiratory (aug-I) and expiratory (E2) neurons, and EPSPs in postinspiratory (PI) neurons. During phase 2 discharge, EPSPs arose in aug-I neurons and IPSPs in PI and E2 neurons. These initial biphasic PSPs were comparable with those during inspiratory off-switching evoked by the same stimulation applied at late-inspiration. In both on- and off-switching, phase-transition in respiratory neuronal activities started to arise concomitantly with the phrenic phase 3 pause. These results suggest that vagal inputs initially produce a non-specific, biphasic response in bulbar respiratory neurons, which consecutively activates a more specific process connected to IonS.  相似文献   

5.
Ezure K  Tanaka I 《Neuroscience》2006,141(2):1011-1023
The dorsolateral pons around the parabrachial nucleus including the Kölliker-Fuse nucleus is closely linked with the medullary respiratory center and plays an important role in respiratory control. We aimed to elucidate the firing properties, detailed distributions, and medullary projections of pontine respiratory neurons in pentobarbitone-anesthetized, paralyzed, and artificially ventilated rats with intact vagi.  相似文献   

6.
The distribution and discharge pattern of respiratory neurons in the ‘pneumotaxic center’ of the rostral pons in the rat has remained unknown. We performed optical recordings and whole-cell patch clamp recordings to clarify respiratory neuron activity in the rostral pons of a brainstem-spinal cord preparation from a newborn rat. Inspiratory nerve activity was recorded in the 4th cervical nerve and used as a trigger signal for optical recordings. Respiratory neuron activity was detected in the limited region of the rostral-lateral pons. The main active region was presumed to be primarily the Kölliker-Fuse nucleus. The location of respiratory neurons was further confirmed by Lucifer Yellow staining after conducting whole-cell recordings. From a membrane potential analysis of the respiratory neurons in the rostral pons, the respiratory neurons were divided into four types: inspiratory neuron (71.9%), pre-inspiratory neuron (5.3%), post-inspiratory neuron (19.3%), and expiratory neuron (3.5%). A noticeable difference between pontine and medullary respiratory neurons was that post-inspiratory neurons were more frequently encountered in the pons. Application of a μ-opioid agonist, [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin, transformed the burst pattern of post-inspiratory neurons into that of pre-inspiratory neurons. The electrical stimulation of the sensory root of the trigeminal nerve induced three types of responses in 85% of pontine respiratory neurons: inhibitory postsynaptic potentials (42.7%), excitatory postsynaptic potentials (37.7%) and no response (15.1%). Our findings provide the first evidence in the rat for the presence of respiratory neurons in the rostral pons, with localization in the lateral region approximately overlapping with the Kölliker-Fuse nucleus.  相似文献   

7.
The effects of electrical stimulation of both cervical branches (C5 and C6) of the right phrenic nerve on medullary respiratory neuron activity were studied in anesthetized, spontaneously breathing cats. In 14 cats, the stimulation of the thin phrenic afferents had no effect on the inspiratory duration and evoked excitatory or inhibitory responses in only 3/86 inspiratory neurons tested. In 3 cats, the stimulation decreased the inspiratory duration and 26/26 inspiratory neurons showed a shortened discharge without modification of their discharge frequency. Although the effects of the stimulation were not analysed by averaging techniques, it is concluded that phrenic afferents do not exert an important control on the medullary respiratory neuron discharge.  相似文献   

8.
The dorsolateral pons around the parabrachial nucleus is an important participant in respiratory control. This area involves various respiration-related neurons, and their respiratory modulation is thought to arise from afferents from medullary respiratory neurons. Today, however, only a limited number of afferent sources have been identified. First, relatively well-characterized afferents to the pons are those originating from two types of the lung stretch receptors, slowly adapting and rapidly adapting receptors. That is, the majority of the second-order relay neurons of these receptors in the nucleus tractus solitarii project to the pons. Second, certain types of respiratory neurons of the medullary respiratory groups are either known to or presumed to project to the pons. For instance, major inhibitory neurons of the Botzinger complex, augmenting and decrementing expiratory neurons, send afferents to the pons. This article overviews such afferents and discusses their connectivity with pontine neurons.  相似文献   

9.
In urethane-anaesthetized, paralyzed and artificially ventilated rabbits, medullary respiration-related neurons (RRU) were classified according to the phase relation of their burst discharge to phrenic nerve activity. Phase-bound inspiratory (I) or expiratory (E) neurons were discriminated from phase-spanning expiratory-inspiratory (EI) or inspiratory-expiratory (IE) units. Mechanisms of termination of inspiration by electrical stimulation of rostral pontine nuclei (Nc. parabrachialis medialis; Lc. coeruleus) were examined firstly to demonstrate whether RRU receive descending excitatory and inhibitory afferents as well as ascending efferents and secondly to analyse the time course of the neuronal pathways involved. Of 120 RRU, 38 neurons were demonstrated to receive pontine afferents. About 33% of all E neurons became orthodromically excited during rostral pons stimulation whereas 18.2% of all I cells became orthodromically inhibited. Some RRU were shown to project up to the rostral pons. 50% of these were of the phase-spanning IE type. The onset of inspiratory inhibition induced by rostral pons stimulation occurred 3.4 ms after the onset of single electrical pulse stimulation. Based on these results a neuronal model for a pontine mechanism terminating inspiration is proposed.  相似文献   

10.
Pontine parabrachial neurons have been suggested to play a regulatory role in both respiratory and sleep cycle control. Encouraged by the finding that microinjections of the cholinergic agonist carbachol into the medial pontine reticular formation (mPRF) of the cat produced respiratory changes paralleling those observed during rapid eye movement (REM) sleep (Neurosci. Lett., 102 (1989) 211–216), this study tested the hypothesis that cholinergic mechanisms in the mPRF can also cause state-dependent changes in the discharge of parabrachial neurons. This paper describes extracellular recordings of parabrachial neurons during REM sleep and during the carbachol-induced REM sleep-like state (DCarb). Cells which were activated (REM-on) or inactivated (REM-off) during REM maintained these same state-dependent firing patterns during the DCarb state. These results support the hypothesis that cholinergic mechanisms in the mPRF can cause state-dependent changes in the discharge of parabrachial neurons.  相似文献   

11.
Summary Axonal projections and synaptic connectivity of upper cervical inspiratory neurons (UCINs) were investigated in anaesthetised cats to clarify their role as propriospinal respiratory interneurons. Antidromic mapping showed axonal collaterals near phrenic and intercostal motonuclei. Of the UCINs tested, 37% had collaterals at T3-4; 55% had ipsilateral projections and 45% had contralateral projections. Ipsilateral or contralateral cross-correlations of the activity of pairs of UCINs (one on each side of the spinal cord) with the discharge of internal intercostal, external intercostal (T3-4) or phrenic nerves revealed similar features. Those with the internal intercostal and phrenic nerves were interpreted as evidence for shared or oligosynaptic excitation, those with the external intercostal nerve as shared excitation and inhibition. No evidence for monosynaptic connections was found. Monosynaptic connections could also not be demonstrated between inspiratory intercostal neurons located near (< 0.5 mm) the UCINs collateral arborizations in T3-4, examined by cross-correlation. Afferent feedback from internal intercostal nerves (T3-4) was investigated by cross-correlating nerve stimulation with UCINs activity. Ipsilateral and contralateral cross-correlograms had similar features, providing evidence for excitation in some cases and inhibition in others. Finally, cross-correlations between ipsilateral UCINs and cervical sympathetic nerves were featureless. The results suggest that the role of UCINs as part of a respiratory propriospinal control system analagous to forelimb motor control is untenable, although they may be part of an intercostal afferent feedback loop.  相似文献   

12.
1. The role of upper cervical inspiratory (UCI)-modulated neurons in respiratory muscle control during vomiting was examined by recording the impulse activity of these neurons during fictive vomiting in decerebrate, paralyzed cats. Fictive vomiting was identified by a characteristic series of bursts of coactivation of phrenic and abdominal muscle nerves, elicited either by electrical stimulation of supradiaphragmatic vagal nerve afferents or by emetic drugs, which would be expected to produce expulsion of gastric contents in nonparalyzed animals. 2. Data were recorded from 43 propriospinal UCI neurons, located in the C1-C3 spinal segments near the border of the intermediate gray matter and lateral funiculus, which were antidromically activated with floating pin electrodes placed in the ipsilateral lateral funiculus, usually at T1-T3. Some cells (9/21 tested) were also activated from the upper lumbar cord (L1). During respiration, most neurons (n = 40) had an augmenting discharge pattern during inspiration. In addition, more than one-half (55%) fired tonically during the remainder of the respiratory cycle. About 40% of UCI neurons showed variations in their firing pattern during the noninspiratory portion of respiration. These latter two properties of UCI neurons were not observed in dorsal and ventral respiratory group (DRG and VRG-, respectively) bulbospinal inspiratory (I) neurons previously recorded under similar conditions. 3. During fictive vomiting, the firing pattern of most UCI neurons fell into one of three main categories. More than one-half (53%) were active in phase with bursts of phrenic discharge and were thus classified as Active-type cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The specific role of the Delta opioid receptor (DOR), in opioid-induced respiratory depression in the ventral respiratory group (VRG) is largely unknown. Here, we sought to determine (1) the relationship between DOR-immunoreactive (ir) boutons, bulbospinal and functionally identified respiratory neurons in the VRG and (2) the effects of microinjection of the selective DOR agonist, D-Pen 2,5-enkephalin (DPDPE), into different subdivisions of the VRG, on phrenic nerve discharge and mean arterial pressure. Following injections of retrograde tracer into the spinal cord or intracellular labelling of respiratory neurons, in Sprague-Dawley rats, brainstem sections were processed for retrograde or intracellular labelling and DOR-ir. Bulbospinal neurons were apposed by DOR-ir boutons regardless of whether they projected to single (cervical or thoracic ventral horn) or multiple (cervical and thoracic ventral horn) targets in the spinal cord. In the VRG, a total of 24 +/- 5% (67 +/- 13/223 +/- 49) of neurons projecting to the cervical ventral horn, and 37 +/- 3% (96 +/- 22/255 +/- 37) of neurons projecting to the thoracic ventral horn, received close appositions from DOR-ir boutons. Furthermore, DOR-ir boutons closely apposed six of seven intracellularly labelled neurons, whilst the remaining neuron itself possessed boutons that were DOR-ir. DPDPE was microinjected (10 mM, 60 nl, unilateral) into regions of respiratory field activity in the VRG of anaesthetised, vagotomised rats, and the effects on phrenic nerve discharge and mean arterial pressure were recorded. DPDPE depressed phrenic nerve amplitude, with little effect on phrenic nerve frequency in the B?tzinger complex, pre-B?tzinger complex and rVRG, the greatest effects occurring in the B?tzinger complex. The results indicate that the DOR is located on afferent inputs to respiratory neurons in the VRG. Activation of the DOR in the VRG is likely to inhibit the release of neurotransmitters from afferent inputs that modulate the pattern of activity of VRG neurons.  相似文献   

14.
Summary The role of respiratory neurons located within and adjacent to the region of the ventrolateral nucleus of the tractus solitarius (vlNTS) in processing respiratory related afferent input from the vagus and superior laryngeal nerves was examined. Responses in phrenic neural discharge to electrical stimulation of the cervical vagus or superior laryngeal nerve afferents were determined before and after lesioning the vlNTS region. Studies were conducted on anesthetized, vagotomized, paralyzed and artificially ventilated cats. Arrays of 2 to 4 tungsten microelectrodes were used to record neuronal activity and for lesioning. Constant current lesions were made in the vlNTS region where respiratory neuronal discharges were recorded. The region of the vlNTS was probed with the microelectrodes and lesions made until no further respiratory related neuronal discharge could be recorded. The size and placement of lesions was determined in subsequent microscopic examination of 50 m thick sections. Prior to making lesions, electrical stimulation of the superior laryngeal nerve (4–100 A, 10 Hz, 0.1 ms pulse duration) elicited a short latency increase in discharge of phrenic motoneurons, primarily contralateral to the stimulated nerve. This was followed by a bilateral decrease in phrenic nerve discharge and, at higher currents, a longer latency increase in discharge. Stimulation of the vagus nerve at intensities chosen to selectively activate pulmonary stretch receptor afferent fibers produced a stimulus (current) dependent shortening of inspiratory duration. Responses were compared between measurements made immediately before and immediately after each lesion so that changes in response efficacy due to lesions per se could be distinguished from other factors, such as slight changes in the level of anesthesia over the several hours necessary in some cases to complete the lesions. Neither uni- nor bi-lateral lesions altered the efficacy with which stimulation of the vagus nerve shortened inspiratory duration. The short latency excitation of the phrenic motoneurons due to stimulation of the superior laryngeal nerve was severely attenuated by unilateral lesions of the vlNTS region ipsilateral to the stimulated nerve. Neither the bilateral inhibition nor the longer latency excitation due to superior laryngeal nerve stimulation was reduced by uni- or bi-lateral lesions of the vlNTS region. These results demonstrate that extensive destruction of the region of the vlNTS: a) does not markedly affect the inspiratory terminating reflex associated with electrical stimulation of the vagus nerve in a current range selective for activation of pulmonary stretch receptor afferents, and b) abolishes the short-latency increase, but not the bilateral decrease or longer latency increase in phrenic motoneuronal discharge which follows stimulation of the superior laryngeal nerve. We conclude that respiratory neurons in the region of the vlNTS do not play an obligatory role in the respiratory phase transitions in this experimental preparation. Neurons in the vlNTS region may participate in other reflexes, such as the generation of augmented phrenic motoneuronal discharge in response to activation of certain superior laryngeal or vagus nerve afferents.  相似文献   

15.
A network of neurons in the rostral dorsal lateral pons and pons/mescencephalic junction constitute the pontine respiratory group (PRG) and is essential for reflex cough. As a next step in understanding the role of the PRG in the expression of the cough reflex, we examined neuron firing rates during fictive cough in cats. Decerebrated, thoracotomized, paralyzed, cycle-triggered ventilated adult cats were used. Extracellular activity of many single neurons and phrenic and lumbar neurograms were monitored during fictive cough produced by mechanical stimulation of the intrathoracic trachea. Neurons were tested during control periods for respiratory modulation of firing rate by cycle-triggered histograms and statistical tests. Most respiratory modulated cells were continuously active with various superimposed respiratory patterns; major categories included inspiratory decrementing (I-Dec), expiratory decrementing (E-Dec) and expiratory augmenting (E-Aug). There were alterations in the discharge patterns of respiratory, as well as, non-respiratory modulated neurons during cough. The results suggest an involvement of the PRG in the configuration of the cough motor pattern.  相似文献   

16.
During L-DOPA-induced fictive spinal locomotion rhythmic activities in nerves to internal intercostal and external oblique abdominal muscles and in phrenic and sympathetic nerves were observed which were always coordinated with locomotor activity in forelimb and hindlimb muscle nerves. A periodicity with longer lasting tonic phases could be induced by cutaneous nerve stimulation or asphyxia. This activity was observed in limb motor nerves as well as in respiratory motor and sympathetic nerves. A slow independent activity of the phrenic and intercostal nerves or the sympathetic nerves, which could be related to a normal respiratory rhythm or independent sympathetic rhythms was not observed. The findings indicate that during fictive spinal locomotion the activity of spinal rhythm generators for locomotion also projects onto respiratory and sympathetic spinal neurones.  相似文献   

17.
1. In midcollicular-decerebrate, gallamine-paralysed, vagotomized cats, efferent phrenic discharge was recorded as an indicator of the central respiratory cycle. Electrical stimulation (50-250/sec) delivered in the rostral lateral pontine ;pneumotaxic centre' region (in and near nucleus parabrachialis), and set to occur at specified times in the cycle, produced powerful respiratory effects: (a) at dorsolateral points, inspiratory-facilitatory effects (increase of phrenic discharge, shortening of the expiratory phase); (b) at ventrolateral points, expiratory-facilitatory effects (decrease of phrenic discharge, shortening of the inspiratory phase, lengthening of the expiratory phase).2. At both inspiratory-facilitatory and expiratory-facilitatory points, a single stimulus delivered during the inspiratory phase produced a short-latency (4-7 msec) reduction of phrenic discharge, followed by a wave of increased activity. The short latency of the response indicates the existence of paucisynaptic descending inhibitory pathways. Succeeding stimuli in a high-frequency train produced alternating waves of evoked activity and depression; the form of the responses depended on stimulus frequency and on locus of stimulation.3. At inspiratory-facilitatory points, short stimulus trains (10-30 stimuli) of adequate strength delivered in the middle and late expiratory phase caused early termination of the phase (latency 100-300 msec) and switching to a complete inspiratory phase, in which the phrenic discharge pattern resembled that in a normal inspiratory phase. Similarly, adequate stimulus trains applied at expiratory-facilitatory points during the middle and late inspiratory phase caused early termination of the phase and switching to a complete expiratory phase.4. The threshold for occurrence of each type of phase-switching response depended on stimulus current, frequency, number of stimuli, and time of stimulus delivery. As stimulus trains were delivered later in the phase, the threshold for switching to the succeeding phase was progressively reduced. Moreover, the nature of the evoked effects was a non-linear function of stimulus characteristics: a small increase of stimulus efficacy changed the system's response from (a) moderate shortening of the phase or transient change in phrenic discharge, to (b) complete termination of the phase.5. These results indicate that, as each respiratory phase progresses, there is a steady increase of excitability in systems which promote the onset of the succeeding phase. Further, the existence of a relatively sharp threshold for switching of the respiratory phases suggests that the phase transitions occur when critical levels of excitation and inhibition are reached synchronously in populations of respiratory neurones.  相似文献   

18.
We have reported that the phrenic neurogram (PN) is modulated by stimulation of the fastigial nucleus (FN) of the cerebellum. The present study was undertaken to search for brainstem site(s) involved in the FN efferent pathway to modulate phrenic nerve activities. Experiments were performed on 35 anesthetized, paralyzed, and ventilated cats, using the PN as the index of the respiratory motor output. Results showed that bilateral electrolytic lesions of the red nucleus (RN), the paramedian reticular nucleus (PRN), or the pontine respiratory group (PRG) had little effect on the ability of FN stimulation to modulate the respiratory output. However, the modulation was abolished by bilateral electrolytic lesions of the B?tzinger complex (B?tC). Further studies showed that bilateral chemical inactivation of B?tC neurons produced by topical microinjection of kainic acid or cobalt chloride failed to abolish the modulation. We concluded that fibers of passage, not synapses or cell bodies in the B?tC, were involved in the modulatory effect of FN stimulation on the PN. The RN, PRN, and PRG appear not to be important in the neural circuitry responsible for the FN modulation of the phrenic activity.  相似文献   

19.
The activity of axons located mainly in the ventral part of the lateral funiculi of the cervical segments C2-C3 were recorded in precollicular decerebrate cats and their responses to lateral tilt of the whole animal studied. Units were identified according to their antidromic and/or transynaptic responses to stimulation of the ipsilateral lateral reticular nucleus (NRL) as well as their responses to ipsilateral and/or contralateral forelimb nerve stimulation. In most respects, those units which could be antidromically identified as cervical ascending tract axons showed properties similar to those described for neurons of the spinoreticular pathway, the bVFRT. Among the 106 recorded units, 42 responded to 15 degrees tilts in the median plane. Steady changes in unit discharge frequency were evoked by tilting, which lasted as long as the position of the cat was maintained. The response of the units to tilting consisted of increased in discharge rate during tilt in one direction, while tilt in the opposite direction resulted in a decrease in discharge rate. The magnitude of the responses was clearly related to the degree of tilt. All the units affected by tilt, except one, received inputs from both ipsilateral and contralateral forelimb nerves and some of them also from high-threshold neck muscle afferents. Furthermore, 12 of these units could be orthodromically excited at short latency from the ipsilateral brain stem, suggesting a possible monosynaptic input perhaps transmitted via the lateral vestibulospinal tract. The responses of the cervical ascending spinal tract units to tilt did not appear to depend on peripheral proprioceptive or cutaneous feedback since a number of precautions were taken to eliminate such influences, while control experiments in animals submitted to partial or complete bilateral VIIth nerve section showed the number of neurons responsive to tilt to be profoundly reduced or eliminated. It appeared also that the average spontaneous discharge rate of the ascending units was much lower following bilateral VIIth nerve section than that obtained from the corresponding units recorded in preparations with the VIIth nerves intact. These findings suggested that the responses of the cervical ascending neurons to tilt as well as their spontaneous background activity depended on influences arising from the macular labyrinthine receptors. The observation that the responses of these ascending neurons to peripheral nerve stimulation are modified by tilt further suggested that the macular system may interact with the somatosensory system originating from the forelimb and the neck musculature, thus being able to produce the fine adjustments that cerebellar and brain stem structures exert in the control of posture and movements.  相似文献   

20.
Cardio-respiratory coupling is reciprocal; it is expressed as respiratory-modulated sympathetic nerve activity and pulse-modulated respiratory motor activity. In the brainstem, the neuraxis controlling cardio-respiratory functions forms a ventrolateral cell column which extends to the dorsolateral (dl) pons. Our general working hypothesis is that these control systems converge at points with the common purpose of gas exchange and that neural activity along this axis coordinates both arterial pulse pressure and breathing. Here, we review the data showing that pontine nuclei modulate heart rate, blood pressure and breathing, and present new results demonstrating a vagal influence on pontine activity modulated with both arterial pulse pressure and phrenic nerve activity in the decerebrate cat. Generally with the vagi intact, dl pontine activity was weakly modulated by both arterial pulse pressure and respiratory pattern. After bilateral vagotomy, the strength and consistency of respiratory modulation increased significantly, although the strength and consistency of arterial pulse pressure modulation did not change significantly for the group; a decrease in some (62%) was offset by an increase in others (36%) neurons. Thus, the vagus shapes the envelope of the cycle-triggered averages of neural activity for both the respiratory and cardiac cycles. These data provide insight into the neural substrate for the prominent vagal effect on the cardio-respiratory coupling pattern, in particular respiratory sinus arrhythmia. While these results support convergence of inputs to neural populations controlling breathing and cardiovascular functions, the physiologic role of balancing ventilation, vascular resistance, heart rate and blood flow for the benefit of tissue oxygenation, remains hypothetical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号