首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phasic changes in reciprocal inhibition of the soleus motoneurons upon initiation of active ankle dorsiflexion was investigated in normal man. H-reflex and reaction time methods were combined. Two phases of reciprocal inhibition were observed. The first inhibition appeared almost simultaneously with the activity of agonist EMG but was so weak as to be cancelled with a strong test stimulus or a slight stretch of the test muscle. The second inhibition developed 100 ms after EMG onset, in the early stage of dynamic contraction, and was strong. These inhibitions increased as the voluntary effort was strengthened. The neural mechanism of these inhibitions is discussed.  相似文献   

2.
All movements are accompanied by postural reactions which ensure that the balance of the body is maintained. It has not been resolved that to what extent the primary motor cortex and corticospinal tract are involved in the control of these reactions. Here, we investigated the contribution of the corticospinal tract to the activation of the soleus (SOL) muscle in standing human subjects (n = 10) in relation to voluntary heel raise, anticipatory postural activation of the soleus muscle when the subject pulled a handle and to reflex activation of the soleus muscle when the subject was suddenly pulled forward by an external perturbation. SOL motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) increased significantly in relation to rest −75 ms prior to the onset of EMG in the heel-raise and handle-pull tasks. The short-latency facilitation of the soleus H-reflex evoked by TMS increased similarly, suggesting that the increased MEP size prior to movement was caused at least partly by increased excitability of corticospinal tract cells with monosynaptic projections to SOL motoneurones. Changes in spinal motoneuronal excitability could be ruled out since there was no significant increase of the SOL H-reflex until immediately prior to EMG onset for any of the tasks. Tibialis anterior MEPs were unaltered prior to the onset of SOL EMG activity in the handle-pull task, suggesting that the MEP facilitation was specific for the SOL muscle. No significant increase of the MEPs was observed prior to EMG onset for the external perturbation. These data suggest that the primary motor cortex is involved in activating the SOL muscle as part of an anticipatory postural reaction.  相似文献   

3.
In this study we present further evidence supporting the reciprocal nature of output effects on forearm flexor and extensor muscles from single corticomotoneuronal (CM) cells. Spike-triggered averaging of rectified EMG activity was used to test the output effects of 105 motor cortex cells in two rhesus monkeys (Macaca mulatta) trained to perform alternating wrist movements and power grip. The electromyographic (EMG) activity was recorded from six forearm flexor and six forearm extensor muscles through pairs of percutaneously inserted intramuscular stainless steel wires. CM cells were identified by their characteristic postspike facilitation (PSF) in spike-triggered averages of agonist muscle EMG activity. Agonist muscles are those which coactivate with the cortical cell during movement. Of 105 motor cortex cells tested, 56 (53%) had no effect on either agonist or antagonist muscles. Of 49 cells that produced PSF of the agonist muscles, 14 (29%) also produced clear postspike suppression (PSS) of the antagonist muscles. Reproducibility of postspike effects was demonstrated by comparing spike-triggered averages of full-wave rectified EMG with averages of the same EMG activity triggered from randomly generated pulses. Consecutive averages from random triggers never showed consistent postspike effects. As a further test that our postspike effects were real, we computed averages of simulated EMG activity from the spikes of CM cells with reciprocal output effects. None of these averages showed consistent postspike effects. The mean onset latency of PSF calculated from 14 reciprocal CM cells yielding 51 PSF effects was 6.3 ms compared with 10.1 ms for 28 PSS effects from the same cells. PSS effects from a particular CM cell were nearly always longer in latency than the cell's PSF effects; only 2 of 28 PSS onset latencies were shorter than the longest latency PSF onset from the same cell. Average peak latencies for PSF and PSS were 8.6 and 11.6 ms, respectively. The magnitude of postspike effects was expressed as the percent of peak facilitation above the base-line mean for PSF or peak suppression below the base-line mean for PSS. With this measure, the average magnitude of PSF was 7.0% compared with 4.1% for reciprocal PSS. There was no correlation between onset latency and magnitude of PSF or PSS, although strong PSFs tended to have shorter latencies. Concerning the distribution of postspike effects, the average reciprocal CM cell facilitated 3.8 agonist muscles and suppressed 2.1 antagonist muscles. EDC was facilitated by all extension-related reciprocal CM cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Patterns of excitatory and inhibitory effects were produced in antagonistic forelimb muscles by single intracortical microstimuli (S-ICMS) applied to motor cortex sites in macaque monkeys performing ramp-and-hold wrist movements. Stimulus-triggered averages (stimulus-TAs) of rectified electromyographic (EMG) activity revealed poststimulus facilitation and/or suppression in identified flexor and extensor muscles of the wrist and fingers. At 22 cortical sites the action potentials of single cells were also recorded and used to compute spike-triggered averages (spike-TAs) of covarying muscles. The set of muscles activated during the movement in which the cell was active are referred to here as "agonists"; those muscles active during wrist movement in the opposite direction are called "antagonists." (At sites where cells were not isolated the muscles showing poststimulus facilitation were called agonists.) Poststimulus effects in agonist muscles typically consisted of facilitation in a subset of the agonists. For 48 sites from which poststimulus effects were tested on both flexors and extensors, the following combinations of effects were observed: 1) pure facilitation of agonist muscles with no effect on antagonists; 2) facilitation of both agonists and antagonists; 3) facilitation of agonist muscles with reciprocal suppression of antagonists; 4) "mixed" facilitation and suppression of synergist muscles; and 5) pure suppression of some muscles with no effect on their antagonists. The suppression effects appeared most commonly in flexor muscles; conversely, facilitation was generally stronger in extensors. Cortical sites eliciting pure suppression of flexor muscles with no facilitation of extensor muscles were found in two monkeys. These purely suppressive effects were observed not only in stimulus-TAs but also in spike-TAs computed from single cells at these sites. Some of these cells increased their activity during wrist extension (but had no detectable effect on the extensor muscles); others discharged during flexion. Several observations suggest that the cortically evoked suppression is mediated by polysynaptic relays. The mean onset latency of the postspike suppression (7.4 ms) produced by inhibitory cells was longer than the mean onset latency of postspike facilitation (6.7 ms) produced by CM cells. Similarly, the mean onset latency of poststimulus suppression (8.9 ms) was longer than that of poststimulus facilitation (8.0 ms). Moreover, suppression was usually weaker than facilitation in the spike-TAs, as well as in stimulus-TAs compiled for the same stimulus intensity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Transmission in the corticospinal and Ia pathways to soleus motoneurons was investigated in healthy human subjects during bicycling. Soleus H reflexes and motor evoked potentials (MEPs) after transcranial magnetic stimulation (TMS) were modulated similarly during the crank cycle being large during downstroke [concomitant with soleus background electromyographic (EMG) activity] and small during upstroke. Tibialis anterior MEPs were in contrast large during upstroke and small during downstroke. The soleus H reflexes and MEPs were also recorded during tonic plantarflexion at a similar ankle joint position, corresponding ankle angle, and matched background EMG activity as during the different phases of bicycling. Relative to their size during tonic plantarflexion, the MEPs were found to be facilitated in the early part of downstroke during bicycling, whereas the H reflexes were depressed in the late part of downstroke. The intensity of TMS was decreased below MEP threshold and used to condition the soleus H reflex. At short intervals (conditioning-test intervals of -3 to -1 ms), TMS produced a facilitation of the H reflex that is in all likelihood caused by activation of the fast monosynaptic corticospinal pathway. This facilitation was significantly larger in the early part of downstroke during bicycling than during tonic plantarflexion. This suggests that the increased MEP during downstroke was caused by changes in transmission in the fast monosynaptic corticospinal pathway. To investigate whether the depression of H reflexes in the late part of downstroke was caused by increased presynaptic inhibition of Ia afferents, the soleus H reflex was conditioned by stimulation of the femoral nerve. At a short interval (conditioning-test interval: -7 to -5 ms), the femoral nerve stimulation produced a facilitation of the H reflex that is mediated by the heteronymous monosynaptic Ia pathway from the femoral nerve to soleus motoneurons. Within the initial 0.5 ms after its onset, the size of this facilitation depends on the level of presynaptic inhibition of the Ia afferents, which mediate the facilitation. The size of the facilitation was strongly depressed in the late part of downstroke, compared with the early part of downstroke, suggesting that increased presynaptic inhibition was indeed responsible for the depression of the H reflex. These findings suggest that there is a selectively increased transmission in the fast monosynaptic corticospinal pathway to soleus motoneurons in early downstroke during bicycling. It would seem likely that one cause of this is increased excitability of the involved cortical neurons. The increased presynaptic inhibition of Ia afferents in late downstroke may be of importance for depression of stretch reflex activity before and during upstroke.  相似文献   

6.
Repetitive transcranial magnetic stimulation (rTMS) has been shown to induce adaptations in cortical neuronal circuitries. In the present study we investigated whether rTMS, through its effect on corticospinal pathways, also produces adaptations at the spinal level, and what the neuronal mechanisms involved in such changes are. rTMS (15 trains of 20 pulses at 5 Hz) was applied over the leg motor cortical area in ten healthy human subjects. At rest motor evoked potentials (MEPs) in the soleus and tibialis anterior muscles were facilitated by rTMS (at 1.2×MEP threshold). In contrast, the soleus H-reflex was depressed for 1 s at stimulus intensities from 0.92 to 1.2×MEP threshold. rTMS increased the size of the long-latency depression of the soleus H-reflex evoked by common peroneal nerve stimulation and decreased the femoral nerve facilitation of the soleus H-reflex. These observations suggest that the depression of the H-reflex by rTMS can be explained, at least partly, by an increased presynaptic inhibition of soleus Ia afferents. In contrast, rTMS had no effect on disynaptic reciprocal Ia inhibition from ankle dorsiflexors to plantarflexors. We conclude that a train of rTMS may modulate transmission in specific spinal circuitries through changes in corticospinal drive. This may be of relevance for future therapeutic strategies in patients with spasticity.  相似文献   

7.
The present study was designed to examine the effects of median nerve stimulation on motoneurones of remote muscles in healthy subjects using H-reflex, averaged EMG and PSTH methods. Stimulation of the median nerve induced facilitation of soleus H-reflex from about 50 ms and it reached a peak at about 100 ms of conditioning-test interval. Afferents that induced the facilitation consisted of at least two types of fibres, the high-threshold cutaneous fibres and the low-threshold fibres. When the effects were examined by the averaged surface EMG and PSTH, no facilitation but rather inhibition or inhibition-facilitation was induced in all tested muscles except for the upper limb muscles on the stimulated side. The inhibition latency was shortest in masseter muscle and longest in leg muscles, while values for the contralateral upper limb muscles were in the middle, indicating that the onset of inhibition was delayed from rostral to caudal muscles. Inputs from the median nerve converged to inhibitory interneurones, which mediate the masseter inhibitory reflex. Our findings suggested that inputs from the median nerve initially ascend to the brain, at least to the brainstem, and then descend to the spinal cord. Therefore, inhibition induced by median nerve stimulation was not considered as an interlimb reflex mediated by a propriospinal pathway, but long-loop reflex, at least via the pons. The discrepancy between the results of reflex and motor units suggests that facilitation of soleus H-reflex following median nerve stimulation was mainly due to reduced presynaptic inhibition.  相似文献   

8.
Summary Reciprocal inhibition of the voluntarily contracting wrist extensor (extensor carpi radialis, ECR) evoked by proprioceptive afferent input from the flexor (flexor carpi radialis, FCR), was studied in healthy human subjects. Vibration of the FCR tendon was used to elicit Ia-dominated afferent discharge whilst inhibition of ECR was assessed as the reduction in asynchronous, on-going EMG. A small early phase of inhibition (I1) was evident in 25% of trials. The latency (ca. 25 ms) of this component suggested that it was mediated by an Ia oligosynaptic, possibly classical disynaptic, inhibitory pathway. A later and apparently separate phase of reduced activity (12, ca. 40 ms) was, however, far more consistently observed (96% of trials) and of greater magnitude. The 12 component was usually followed, some 20 ms later, by a phase of elevated activity (El, 72% trials). Reductions in simultaneously recorded net extensor torque commenced at about 60 ms following the onset of flexor tendon vibration, i.e. some 20 ms after the main I2 EMG component. These mechanical responses must have almost exclusively resulted from reciprocal inhibition of extensor EMG since vibration of the relaxed FCR evoked minimal excitatory flexor activity. The reflex pattern, in any individual subject, was relatively unaffected by altering the duration of the vibration train between one and nineteen cycles (125 Hz). This suggests that the entire response complex resulted largely from the initial afferent volley. The sizes of both the I1 and I2 reductions in ECR activity increased with increasing voluntary extensor contraction so that their depths remained constant proportions of background EMG. Very similar results were obtained when reciprocal inhibition of FCR was produced by vibration of the belly of ECR. Thus, reciprocal inhibition between wrist muscles is mainly expressed as a rather stereotyped, short duration reduction in EMG whose depth is determined by the pre-existing level of motor activity. Some functional implications of this form of reflex behaviour are discussed.  相似文献   

9.
Summary Variations of presynaptic inhibition in heteronymous Ia fibres projecting to soleus motoneurones were studied during the first 250 ms of phasic voluntary isometric contractions of the antagonist tibialis anterior muscle in human subjects. During the first 60–80 ms of TA e.m.g activity, presynaptic inhibition was often more marked than at rest, but not in all experimental sessions. After 60–80 ms, presynaptic inhibition was always increased compared to rest and to the onset of TA e.m.g. activity. A rebound in femoral nerve induced Ia facilitation was often observed between 90–150 ms. The early increase in presynaptic inhibition was widespread and non specific since it was observed at the onset of extensor carpi radialis contractions of maximal strength. The rebound in heteronymous Ia facilitation was interpreted as a relative decrease in presynaptic inhibition to which nonspecific suprasegmental and cutaneous effects contributed. The late increase in presynaptic inhibition in Ia fibers to soleus motoneurones was considered as reciprocally inhibiting the Sol H-reflex, thus counteracting the phasic stretch of the antagonist muscle during TA contraction.  相似文献   

10.
1. Reflex responses were elicited in muscles that act at the ankle by electrical stimulation of low-threshold afferents from the foot in human subjects who were reclining supine. During steady voluntary contractions, stimulus trains (5 pulses at 300 Hz) were delivered at two intensities to the sural nerve (1.2-4.0 times sensory threshold) or to the posterior tibial nerve (1.1-3.0 times motor threshold for the intrinsic muscles of the foot). Electromyographic (EMG) recordings were made from tibialis anterior (TA), peroneus longus (PL), soleus (SOL), medial gastrocnemius (MG), and lateral gastrocnemius (LG) muscles by the use of intramuscular wire electrodes. 2. As assessed by averages of rectified EMG, stimulation of the sural or posterior tibial nerves at nonpainful levels evoked a complex oscillation with onset latencies as early as 40 ms and lasting up to 200 ms in each muscle. The most common initial responses in TA were a decrease in EMG activity at an onset latency of 54 ms for sural stimuli, and an increase at an onset latency of 49 ms for posterior tibial stimuli. The response of PL to stimulation of the two nerves began with a strong facilitation of 44 ms (sural) and 49 ms (posterior tibial). With SOL, stimulation of both nerves produced early inhibition beginning at 45 and 50 ms, respectively. With both LG and MG, sural stimuli produced an early facilitation at 52-53 ms. However, posterior tibial stimuli produced different initial responses in these two muscles: facilitation in LG at 50 ms and inhibition in MG at 51 ms. 3. Perstimulus time histograms of the discharge of 61 single motor units revealed generally similar reflex responses as in multiunit EMG. However, different reflex components were not equally apparent in the responses of different single motor units: an individual motor unit could respond slightly differently with a change in stimulus intensity or background contraction level. The multiunit EMG record represents a global average that does not necessarily depict the precise pattern of all motor units contributing to the average. 4. When subjects stood erect without support and with eyes closed, reflex patterns were seen only in active muscles, and the patterns were similar to those in the reclining posture. 5. It is concluded that afferents from mechanoreceptors in the sole of the foot have multisynaptic reflex connections with the motoneuron pools innervating the muscles that act at the ankle. When the muscles are active in standing or walking, cutaneous feedback may play a role in modulating motoneuron output and thereby contribute to stabilization of stance and gait.  相似文献   

11.
Summary Recent studies have reported that no increase of the disynaptic reciprocal inhibition can be observed during tonic voluntary dorsiflexion of the foot as compared to rest, when the size of the control H-reflex is kept constant. Other studies have, however, shown that a voluntary contraction evokes a strong and long-lasting depression of the synaptic transmission from Ia afferents to motoneurones, most likely secondary to activation of these afferents during the contraction (post-activation depression). It was thought that this effect could also interfere with the demonstration of a central facilitation of the reciprocal inhibition during movement. The amount of disynaptic Ia reciprocal inhibition from the pretibial flexors to the soleus H-reflex was therefore estimated in normal human subjects at rest and during voluntary tonic dorsiflexion before, during and after blocking the peripheral feedback from the investigated muscles. It was observed that the reciprocal inhibition measured during dorsiflexion increased during occlusion of the blood supply to the leg, reaching a maximum of inhibition after 30 min of ischaemia. After release of the ischaemia the inhibition gradually decreased to its pre-ischaemic level. It is therefore suggested that the brain facilitates transmission in the Ia disynaptic reciprocal pathway during tonic voluntary dorsiflexion of the foot, but that this facilitation is normally not observed due to a post-activation depression following the peripheral feedback activation during the movement.  相似文献   

12.
Pathological expression of movement and muscle tone in human upper motor neuron disorders has been partly associated with impaired modulation of spinal inhibitory mechanisms, such as reciprocal or presynaptic inhibition. In addition, input from specific afferent systems contributes significantly to spinal reflex circuits coupled with posture or locomotion. Accordingly, the objectives of this study were to identify the involved afferents and their relative contribution to soleus H-reflex modulation induced by changes in hip position, and to relate these effects with activity of spinal interneuronal circuits. Specifically, we investigated the actions of group I synergistic and antagonistic muscle afferents (e.g. common peroneal nerve, CPN; medial gastrocnemius, MG) and tactile plantar cutaneous afferents on the soleus H-reflex during controlled hip angle variations in 11 motor incomplete spinal cord injured (SCI) subjects. It has been postulated in healthy subjects that CPN stimulation evokes an inhibition on the soleus H-reflex at a conditioning test (C-T) interval of 2–4 ms. This short latency reflex depression is caused mainly by activation of the reciprocal Ia inhibitory pathway. At longer C-T intervals (beyond 30 ms) the soleus H-reflex is again depressed, and is generally accepted to be caused by presynaptic inhibition of soleus Ia afferents. Similarly, MG nerve stimulation depresses soleus H-reflex excitability at the C-T interval of 6 ms, involving the pathway of non-reciprocal group I inhibition, while excitation of plantar cutaneous afferents affects the activity of spinal reflex pathways in the extensors. In this study, soleus H-reflexes recorded alone or during CPN stimulation at either short (2, 3, 4 ms) or long (80, 100, 120 ms) C-T intervals, and MG nerve stimulation delivered at 6 ms were elicited via conventional methods and similar to those adopted in studies conducted in healthy subjects. Plantar skin conditioning stimulation was delivered through two surface electrodes placed on the metatarsals at different C-T intervals ranging from 3 to 90 ms. CPN stimulation at either short or long C-T intervals and MG nerve stimulation resulted in a significant facilitation of the soleus H-reflex, regardless of the hip angle tested. Plantar skin stimulation delivered with hip extended at 10° induced a bimodal facilitation reflex pattern, while with hip flexed (10°, 30°) the reflex facilitation increased with increments in the C-T interval. This study provides evidence that in human chronic SCI, classically key inhibitory reflex actions are switched to facilitatory, and that spinal processing of plantar cutaneous sensory input and actions of synergistic/antagonistic muscle afferents interact with hip proprioceptive input to facilitate soleus H-reflex excitability. These actions might be associated with the pathological expression of neural control of movement in individuals with SCI, and potentially could be considered in rehabilitation programs geared to restore sensorimotor function in these patients.  相似文献   

13.
Summary The effects of electrically stimulating the Flexor Reflex Afferent (FRA) on the soleus H reflexes were investigated in 34 paraplegic patients having a clinically complete spinal cord lesion. Conditioning stimuli (5–50 mA) were applied to the ipsilateral or contralateral sural nerve. The conditioning-test interval ranged from 20 to 1000 ms. A late ipsilateral flexor reflex (EMG) was found in all patients. A late contralateral extension reflex was sporadically observed in only 3 patients. The excitability curves usually showed two phases of ipsilateral H reflex inhibition and contralateral H reflex facilitation, one between 50 and 130 ms and the other after over 200 ms. These intervals correspond to early and late flexion reflexes. With high intensity stimulation the early and late ipsilateral inhibition fused. An early low threshold ipsilateral facilitation occured in 9 patients. The contralateral late facilitation was followed by prolonged inhibition in 10 patients. Changes in presynaptic inhibition were assessed by measuring the heteronymous monosynaptic Ia facilitation from quadriceps to soleus. For methodological reasons, it was only possible to investigate the effect of contralateral conditioning volleys which was performed in 5 patients. A significant and regular reduction of the heteronymous Ia facilitation was found in 4 patients. This reduction is taken to indicate that the FRA evokes presynaptic inhibition of Ia transmission to alpha motoneurones. Presynaptic inhibition was also indicated by the enhancement of a vibratory stimulus induced inhibition in 2 subjects. These results are consistent with the hypothesis that the reflex organization in patients with a spinal cord section is similar to that of the acute spinal cat injected with DOPA.  相似文献   

14.
 When conditioning-testing (C-T) stimuli are applied to Ia afferents to elicit H-reflexes, the test reflex is abolished immediately following the conditioning reflex. As the C-T interval is increased, the test response slowly begins to recover, taking several hundred milliseconds to attain control values. The time course of this recovery is known as the H-reflex recovery curve. H- reflex recovery curves were compared using surface EMG and single motor unit activities in lower limb soleus and upper limb flexor carpi radialis (FCR) muscles in seven healthy human subjects. Under rest conditions, the recovery of H-reflexes and single motor unit activity was slow for soleus; the recovery was not complete even in 1 s. In comparison, the recovery was very fast for FCR motor units, occurring in 200–300 ms. The effects of rate of stimulation (0.1–10.0 imp/s) were also examined on the magnitude of H-reflex responses. The reflex response declined with increasing rate of stimulation, the decline being slightly greater in soleus than in FCR. When these phenomena were examined with voluntary facilitation of the spinal cord, the time of recovery shortened and the effect of stimulus rate also diminished. Changes with background facilitation were greater in FCR than in soleus. The differences between the two muscles are attributed mainly to differences in presynaptic inhibition in the two spinal segments, and/or to the differences in dynamics of the transmitter release in terminals of Ia afferents synapsing with slow soleus motoneurons and those synapsing with the fast FCR motoneurons. Received: 23 April 1998 / Accepted: 6 November 1998  相似文献   

15.
Changes in excitability of the spinal motoneuron pool during the foreperiod, which was fixed at 0.8 s, in simple and choice reaction time experiments using ankle dorsiflexion and plantar flexion were studied in fourteen healthy normal subjects by combining the visually guided tracking and H-reflex testing methods. Almost all cases showed a significant facilitation in the soleus H-reflex within the time interval between 100 and 300 ms after a warning signal (Phase I), irrespective of movement direction and task modality. The pretibial H-reflex was also facilitated. On the other hand, variable effects were noted in the later half of the foreperiod, particularly within the 200 ms prior to the response signal (Phase II). Using a simple reaction task with dorsiflexion, six cases showed no changes in the soleus H-reflex, while four others showed statistically significant inhibitory changes and the remaining four showed facilitation. The inhibition and facilitation were often accompanied with very weak and unintended EMG activities in the pretibial and So1 muscles respectively. A similar finding was obtained in the simple plantar flexion task and the choice reaction task with dorsiflexion or plantar flexion. We suggest that the facilitation at Phase I represents a perceptual orienting response to a warning signal and the effects seen in Phase II represent the difference in the waiting attitude of each subject anticipating initiation of the coming task, or the preparatory "set" which primed the spinal motor structure in a biased position.  相似文献   

16.
Summary The monosynaptic reflex (H reflex) is facilitated before movement onset in human subjects who are performing a conditioned plantar flexion of the ankle in a reaction time task. The aim of this study was to investigate how tightly this gating of Ia spindle input is coupled with the conditioned muscle contraction. Test H reflexes were elicited at various times during the reaction time (RT) in order to test the efficacy of Ia volleys on the soleus motoneurons. Tactile, auditory and visual go stimuli were used. The RT to a tactile stimulus was about the same as the RT to an auditory stimulus although distance and therefore conduction time from the site of stimulation to the cerebral cortex was much larger for the tactile than for the auditory modality. The RT to visual stimulation was about 20 ms longer than to the other two modalities. Although central latencies depended clearly on the stimulus modality the duration of the H reflex facilitation, i.e. the interval between the onset of the facilitation and the onset of the voluntary muscle contraction, was always the same. Similarly, the reflex facilitation was insensitive to the succeeding contrast of a visual go stimulus. The subjects were also examined in visual RT tasks in which different advance information about the laterality and the execution of the contraction was given. By combination the following four RT situations were realized: (1) simple, go, (2) choice, go, (3) simple, go — no go and (4) choice, go — no go. RT was shortest in the simple go and increased by about 65 ms in the choice, go and the simple, go — no go situation. It lengthened, however, less than 130 ms in the choice, go — no go situation indicating an interaction between the factors laterality and execution of the contraction. As with various stimulus modalities and succeeding contrasts, the premovement H reflex facilitation remained constant irrespective of the complexity of the RT task. This property was however not observed if data obtained within one RT task (constant modality, simple, go) were processed. There was a highly significant positive correlation between the duration of the facilitation and RT. The duration of the EMG burst of the conditioned contraction was, however, independent of RT. These results were interpreted as indicating that RT depended on attention which affects most central components of RT and that the interval between the onset of the gating process and the onset of the contraction (duration of the H reflex facilitation) might depend on several supraspinal motor centers whereas the duration of the EMG burst might be computed locally. Several studies including the present one provide a possible explanation for the lag between the onset of the H reflex facilitation and the movement onset. The relatively slow speed at which presynaptic inhibition at Ia afferents can be removed necessitates an early onset such that a fully operative spinal reflex for assistance of muscle contractions and correction of perturbances is assured at movement onset.  相似文献   

17.
Although sensory inputs from the contralateral limb strongly modify the amplitude of the Hoffmann (H-) reflex in a static posture, it remains unknown how these inputs affect the excitability of the monosynaptic H-reflex during walking. Here, we investigated the effect of the electrical stimulation of a cutaneous (CUT) nerve innervating the skin on the dorsum of the contralateral foot on the excitability of the soleus H-reflex during standing and walking. The soleus H-reflex was conditioned by non-noxious electrical stimulation of the superficial peroneal nerve in the contralateral foot. Significant crossed facilitation of the soleus H-reflex was observed at conditioning-to-test intervals in a range of 100–130 ms while standing, without any change in the background soleus electromyographic (EMG) activity. In contrast, the amplitude of the soleus H-reflex was significantly suppressed by the contralateral CUT stimulation in the early-stance phase of walking. The background EMG activity of the soleus muscle was equivalent between standing and walking tasks and was unaffected by CUT stimulation alone. These findings suggest that the crossed CUT volleys can affect the presynaptic inhibition of the soleus Ia afferents and differentially modulate the excitability of the soleus H-reflex in a task-dependent manner during standing and walking.  相似文献   

18.
A previous study has demonstrated that the soleus H reflex is facilitated in association with voluntary teeth clenching in proportion with biting force in humans. The present study tried to elucidate the functional significance of this facilitation of the soleus H reflex, by examining 1) whether the facilitation of the H reflex is reciprocal or nonreciprocal between the ankle extensors and flexors and 2) whether the reciprocal Ia inhibition of crural muscles is facilitated or depressed in association with voluntary teeth clenching. The H reflex of the pretibial muscles was evoked by stimulation of the common peroneal nerve in seven healthy subjects with no oral dysfunction. The pretibial H reflex was facilitated in association with voluntary teeth clenching in a force-dependent manner. The facilitation started preceding the onset of electromyographic activity of the masseter muscle. Stimulation of the common peroneal nerve at low intensities subthreshold for evoking the M wave of the pretibial muscles inhibited the soleus H reflex after a short latency corresponding with a disynaptic inhibition, indicating that the reciprocal Ia inhibition was depressed in association with voluntary teeth clenching. Thus, the present study has shown that voluntary teeth clenching evokes a nonreciprocal facilitation of ankle extensor and flexor muscles and attenuated reciprocal Ia inhibition from the pretibial muscles to the soleus muscle. It is concluded that voluntary teeth clenching contributes to improve stability of stance rather than smoothness of movements.  相似文献   

19.
The purpose of this study was to investigate the role of reciprocal inhibition in the regulation of antagonistic ankle muscles during bicycling. A total of 20 subjects participated in the study. Reciprocal inhibition was induced by stimulation of the peroneal nerve (PN) at 1.2 times threshold for the M-response in the tibialis anterior muscle (TA) and recorded as a depression of the rectified soleus (SOL) EMG. Recordings were made during tonic plantar flexion and during bicycling on an ergometer bicycle. During tonic contraction, the amount of inhibition in the SOL EMG was linearly correlated to the amount of background EMG. This linear relation was used to calculate the expected amount of reciprocal inhibition at corresponding EMG levels during bicycling. During the early phase of down-stroke of bicycling at 60 revolutions per minute (RPM) and an external load of 1.0 kg, the amount of recorded reciprocal inhibition was significantly smaller than that calculated from the linear relation during tonic contraction. In nine subjects, the SOL H-reflex was used to evaluate the amount of inhibition. At a short conditioning test interval (2-3 ms), the PN stimulation depressed the SOL H-reflex when the subjects were at rest. This short latency inhibition was absent during downstroke, but appeared during upstroke just prior to and during TA activation. A positive linear relation was found between the level of SOL background EMG in early downstroke and the external load (0.5-2.5 kg) as well as the rate of pedaling (30-90 RPM at 1.0 kg external load). The amount of inhibition in the SOL EMG when expressed as a percentage of the background EMG activity decreased significantly with increasing load. During increased pedaling rate, a similar decrease was seen, but it did not reach a statistically significant level. The data illustrate that reciprocal inhibition of the soleus muscle is modulated during bicycling being small in downstroke when the SOL muscle is active and large in upstroke where the muscle is inactive and its antagonist becomes active. The depression of the inhibition in relation to increased load and pedaling rate likely reflects the need of reducing inhibition of the SOL motoneurons to ensure a sufficient activation of the muscle.  相似文献   

20.
Summary Measurements were made from electromyograms, evoked in human soleus and tibialis anterior muscles by tendon taps. Evidence is presented to suggest that in certain motor disorders it is possible to stimulate the stretch reflex afferents from a single muscle and elicit activity both in that muscle and its antagonist at comparable latencies and levels. Responses in both muscles occur at the short latencies of an oligosynaptic or even possibly a monosynaptic pathway.We discuss the proposition that the traditional concept of spinal reciprocal innervation as an inhibitory linking of muscle antagonists must be expanded to include both inhibitory and excitatory connections. Such reciprocal excitatory connections appear pronounced in spastic patients who have suffered perinatal injuries to the immature nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号