首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cognitive deficits that are reported in heavy marijuana users (attention, memory, affect perception, decision-making) appear to be completely reversible after a prolonged abstinence period of about 28 days. However, it remains unclear whether the reversibility of these cognitive deficits indicates that (1) chronic marijuana use is not associated with long-lasting changes in cortical networks or (2) that such changes occur but the brain adapts to and compensates for the drug-induced changes. Therefore, we examined whether chronic marijuana smokers would demonstrate a differential pattern of response in comparison to healthy volunteers on a decision-making paradigm (Risk Task) while undergoing sham or active transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Twenty-five chronic marijuana users who were abstinent for at least 24 h were randomly assigned to receive left anodal/right cathodal tDCS of DLPFC (n = 8), right anodal/left cathodal tDCS of DLPFC (n = 9), or sham stimulation (n = 8); results on Risk Task during sham/active tDCS were compared to healthy volunteers from a previously published dataset. Chronic marijuana users demonstrated more conservative (i.e. less risky) decision-making during sham stimulation. While right anodal stimulation of the DLPFC enhanced conservative decision-making in healthy volunteers, both right anodal and left anodal DLPFC stimulation increased the propensity for risk-taking in marijuana users. These findings reveal alterations in the decision-making neural networks among chronic marijuana users. Finally, we also assessed the effects of tDCS on marijuana craving and observed that right anodal/left cathodal tDCS of DLPFC is significantly associated with a diminished craving for marijuana.  相似文献   

2.
The glutamate system is implicated in the pathophysiology of schizophrenia and mood disorders. Using functional magnetic resonance spectroscopy (1H-fMRS), it is possible to monitor glutamate dynamically in activated brain areas and may give a closer estimate of glutamatergic neurotransmission than standard magnetic resonance spectroscopy. 14 patients with schizophrenia, 15 patients with bipolar disorder II (BPII) and 14 healthy volunteers underwent a 15?min N-back task in a 48s block design during 1H-fMRS acquisition. Data from the first, second and third 16s group of 8 spectra for each block were analysed to measure levels of glutamate and Glx (glutamate?+?glutamine), scaled to total creatine (TCr), across averaged 0-back and 2-back conditions. A 6?×?3 repeated-measures analysis of variance (rmANOVA) demonstrated a significant main effect of time for Glx/TCr (P?=?0.022). There was a significant increase in Glu/TCr (P?=?0.004) and Glx/TCr (P?<?0.001) between the final spectra of the 0-back and first spectra of the 2-back condition in the healthy control group only. 2?×?2 rmANOVA revealed a significant time by group interaction for Glx/TCr (P?=?0.019) across the 0-back condition, with levels reducing in healthy controls and increasing in the schizophrenia group. While healthy volunteers showed significant increases in glutamatergic measures between task conditions, the lack of such a response in patients with schizophrenia and BPII may reflect deficits in glutamatergic neurotransmission. Abnormal increases during periods of relatively low executive load, without the same dynamic modulation as healthy volunteers with increasing task difficulty, further suggests underlying abnormalities of glutamatergic neurotransmission in schizophrenia.  相似文献   

3.
Cognitive impairment is prevalent in bipolar disorder (BD) but treatments with pro-cognitive effects are lacking. Insight concerning the neurocircuitry of cognitive improvement could provide a biomarker for pro-cognitive effects to advance treatment development. The dorsal prefrontal cortex (dPFC) is a promising region for such treatment target engagement. The aim of this functional magnetic resonance imaging (fMRI) study was to examine the effects of action-based cognitive remediation (ABCR) on early change in the dPFC blood-oxygen-level-dependent response in patients with BD in remission, and whether the observed neural change predicted improved executive functions following 10 weeks of treatment. Forty-five participants with remitted BD (ABCR: n = 26, control treatment: n = 19) completed a spatial n-back working memory task during fMRI and executive function tasks outside the scanner before and after two weeks of ABCR/control treatment, and an additional assessment of executive function at treatment completion. Thirty-four healthy controls underwent a single fMRI and executive function assessment for baseline comparisons. We found an early reversal of pretreatment hypo-activity in the dorsolateral prefrontal cortex (dlPFC) following ABCR vs. control during both high-load (2-back > 1-back) working memory (WM) (F(1,43) = 5.69, p = 0.02, η2 = 0.12) and general WM (2-back > 0-back) (F(1,43) = 5.61, p = 0.02, η2 = 0.12). This dlPFC activity increase predicted improved executive functions at treatment completion (high-load WM: B = −0.45, p = 0.01, general WM: B = −0.41, p < 0.01), independent of changes in subsyndromal symptoms. In conclusion, early dPFC increase may provide a neurocircuitry-based biomarker for pro-cognitive effects. Future cognition trials should include fMRI assessments to confirm the validity of this putative biomarker model across disorders with cognitive impairment.Subject terms: Cognitive neuroscience, Predictive markers  相似文献   

4.

Background:

Brain-derived neurotrophic factor (BDNF) has been shown to be a moderator of neuroplasticity. A frequent BDNF-polymorphism (Val66Met) is associated with impairments of cortical plasticity. In patients with schizophrenia, reduced neuroplastic responses following non-invasive brain stimulation have been reported consistently. Various studies have indicated a relationship between the BDNF-Val66Met-polymorphism and motor-cortical plasticity in healthy individuals, but schizophrenia patients have yet to be investigated. The aim of this proof-of-concept study was, therefore, to test the impact of the BDNF-Val66Met-polymorphism on inhibitory and facilitatory cortical plasticity in schizophrenia patients.

Methods:

Cortical plasticity was investigated in 22 schizophrenia patients and 35 healthy controls using anodal and cathodal transcranial direct-current stimulation (tDCS) applied to the left primary motor cortex. Animal and human research indicates that excitability shifts following anodal and cathodal tDCS are related to molecular long-term potentiation and long-term depression. To test motor-cortical excitability before and after tDCS, well-established single- and paired-pulse transcranial magnetic stimulation protocols were applied.

Results:

Our analysis revealed increased glutamate-mediated intracortical facilitation in met-heterozygotes compared to val-homozygotes at baseline. Following cathodal tDCS, schizophrenia met-heterozygotes had reduced gamma-amino-butyric-acid-mediated short-interval intracortical inhibition, whereas healthy met-heterozygotes displayed the opposite effect. The BDNF-Val66Met-polymorphism did not influence single-pulse motor-evoked potential amplitudes after tDCS.

Conclusions:

These preliminary findings support the notion of an association of the BDNF-Val66Met-polymorphism with observable alterations in plasticity following cathodal tDCS in schizophrenia patients. This indicates a complex interaction between inhibitory intracortical interneuron-networks, cortical plasticity, and the BDNF-Val66Met-polymorphism. Further replication and validation need to be dedicated to this question to confirm this relationship.  相似文献   

5.
Nitric oxide (NO), a gaseous neurotransmitter, has been implicated in the pathogenesis of schizophrenia. Accordingly, several polymorphisms of the gene that codes for the main NO-producing enzyme, the nitric oxide synthase 1 (NOS1), have been found to convey a risk for schizophrenia. This study examined the role of NOS1 gene polymorphisms in cognitive functions and related neural mechanism. First, with a sample of 580 schizophrenia patients and 720 healthy controls, we found that rs3782206 genotype had main effects on the 1-back task (P=0.005), the 2-back task (P=0.049), the AY condition of the dot-pattern expectancy (DPX) task (P=0.001), and the conflict effect of the attention network (ANT) test (P<0.001 for RT differences and P=0.002 for RT ratio) and interaction effects with diagnosis on the BX condition of the DPX (P=0.009), the AY condition of the DPX (P<0.001), and the Stroop conflict effect (P=0.003 for RT differences and P=0.038 for RT ratio). Simple effect analyses further showed that the schizophrenia risk allele (T) of rs3782206 was associated with poorer performance in five measures for the patients (1-back, P=0.025; BX, P=0.017; AY, P<0.001; ANT conflict effect (RT differences), P=0.005; Stroop conflict effect (RT differences), P=0.019) and three measures for the controls ( for the 2-back task, P=0.042; for the ANT conlict effect (RT differences), P=0.013; for the ANT conflict effect (RT ratios), P=0.028). Then, with a separate sample of 78 healthy controls, we examined the association between rs3782206 and brain activation patterns during the N-back task and the Stroop task. Whole brain analyses found that the risk allele carriers showed reduced activation at the right inferior frontal gyrus (IFG) during both tasks. Finally, we examined functional connectivity seeded from the right IFG to the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex under three conditions (the N-back task, the Stroop task, and the resting state). Results showed reduced connectivity with the DLPFC for the risk allele carriers mainly in the Stroop task and the resting state. Taken together, results of this study strongly suggested a link between NOS1 gene polymorphism at rs3782206 and cognitive functions and their neural underpinnings at the IFG. These results have important implications for our understanding of the neural mechanism underlying the association between NOS1 gene polymorphism and schizophrenia.  相似文献   

6.
Dysfunctional activation of the dorsolateral prefrontal cortex (DLPFC) during working memory (WM) in schizophrenia patients has repeatedly been observed, however little is known about specific medication effects on the modulation of DLPFC activation. We measured activation of DLPFC during a WM task in a longitudinal fMRI study in ten schizophrenia patients first when they received conventional antipsychotics (T1) and a second time after they had been switched to olanzapine (T2). A healthy control group matched for age, handedness and gender was investigated at two corresponding time points. We analyzed the fMRI data with SPM5 in a 2 x 2 x 2 design (group x session x task). Schizophrenia patients showed fewer correct responses compared to healthy controls at both time points. The fMRI data revealed a significant group by task interaction in the bilateral DLPFC and the right parietal cortex, indicating a reduced BOLD response in the patient group. After switching to olanzapine, schizophrenia patients displayed a significant increase in the BOLD response during the 0-back condition in the DLPFC. This study showed that switching patients from conventional neuroleptics to olanzapine did not significantly alter the frontal or parietal BOLD response during working memory task. However, medication status had influences on the activation during attentional task (0-back), emphasizing the importance of baseline selection in pharmacological fMRI studies.  相似文献   

7.

Rationale

Schizotypal personality disorder (SPD) is associated with working memory (WM) impairments that are similar to those observed in schizophrenia. Imaging studies have suggested that schizophrenia is associated with alterations in dopamine D1 receptor availability in the prefrontal cortex (PFC) that may be related to the WM impairments that characterize this disorder.

Objectives

The aim of this study was to characterize prefrontal D1 receptor availability and its relation to WM performance in SPD.

Methods

We used positron emission tomography (PET) and the radiotracer [11C]NNC112 with 18 unmedicated SPD and 21 healthy control participants; as an index of D1 receptor availability, binding potential (BP) measures (BPF, BPND, and BPP) were calculated for prefrontal and striatal subregions. To assess WM, SPD participants completed the 2-back and Paced Auditory Serial Addition Test (PASAT).

Results

There were no significant group differences in PFC BP. BPF and BPP in the medial PFC were significantly negatively related to PASAT performance (r s ?=??0.551, p?=?.022 and r s ?=??0.488, p?=?.047, respectively), but BP was not related to 2-back performance.

Conclusions

In contrast to what has been found in schizophrenia, SPD was not associated with significant alterations in prefrontal D1 receptor availability. Similar to previous schizophrenia findings, however, higher prefrontal D1 receptor availability was associated with poorer WM performance (as measured by the PASAT) in SPD. These findings suggest that schizophrenia and SPD may share a common pathophysiological feature related to prefrontal dopamine functioning that contributes to WM dysfunction, but that in SPD, alterations in D1 may occur only in a subset of individuals and/or to an extent that is minor relative to what occurs in schizophrenia.  相似文献   

8.
9.
BackgroundWe previously showed the efficacy of bi-anodal transcranial direct current stimulation (tDCS) over the prefrontal cortex (PFC) regions with extracephalic reference placement in improving negative symptoms in schizophrenia. In this ancillary investigation, the effects of this intervention on insight levels, other clinical outcomes, and cardio-respiratory and autonomic functions were examined and the potential of biomarkers for treatment response was explored.MethodsSchizophrenia patients were randomly allocated to receive 10 sessions of bi-anodal tDCS over the PFC regions with extracephalic reference placement (2 mA, 20 minutes, twice daily for 5 weeks) or sham stimulation. We examined, in 60 patients at baseline, immediately after stimulation and at follow-up visits, the insight levels, other clinical outcomes, blood pressure, respiratory rate, heart rate, and heart rate variability.ResultsInsight levels as assessed by the abbreviated version of the Scale to Assess Unawareness in Mental Disorder in schizophrenia awareness of the disease, positive and negative symptoms dimensions, and beliefs about medication compliance as assessed by Medication Adherence Rating Scale were significantly enhanced by active stimulation relative to sham. No effects were observed on cognitive insight, other clinical outcomes, or cardio-respiratory and autonomic functions. Heart rate variability indices as biomarkers were not associated with the clinical response to the intervention.ConclusionsOur results provide evidence for bi-anodal tDCS over the PFC regions with extracephalic reference placement in heightening the levels of insight into the disease and symptoms, as well as beliefs about medication compliance in schizophrenia, without impacting other clinical outcomes and cardio-respiratory/autonomic functions.  相似文献   

10.
ABSTRACT: Cognitive abnormalities represent an important therapeutic target in the treatment of schizophrenia. Working memory deficits are among the core abnormalities and affect social functioning.We used functional magnetic resonance imaging to examine cortical systems supporting working memory in patients with schizophrenia treated with risperidone long-acting injections (RLAIs) versus those on conventional depot medication (CONV). Sixteen patients on RLAI, 16 patients on CONV matched for clinical symptoms and other illness variables, and 8 HCs performed an n-back task (1-, 2-, 3-back) in the scanner.The level of performance decreased with increasing memory load, which was particularly evident in the CONV group. Patients on RLAI and controls demonstrated task-dependent decreases in activation in medial PFC, whereas the CONV group overactivated that region. The CONV group also showed underactivation of VLPFC compared with controls under conditions of increasing memory load, with the RLAI group showing an activation pattern not significantly different from either group.We conclude that RLAI may contribute to normalization of brain activation in regions involved in working memory functioning in people with chronic schizophrenia.  相似文献   

11.
We describe the interim analysis of a double-blind sham controlled quasi-randomized study on the acute effects of transcranial direct current stimulation (tDCS) for individuals with obsessive-compulsive disorder (OCD). Twenty OCD patients were assigned to receive a single session of sham (n=10) or active (2mA) tDCS (n=10) for 30 minutes, with the cathode placed over the central supplementary motor area (SMA) and the anode on the supraorbital region. Assessments of outcome were made at baseline and one hour following tDCS using: a dot-probe task comprising images illustrating different OCD-related scenarios, the Positive and Negative Affect Schedule (PANAS), and the Yale-Brown Obsessive-Compulsive Challenge Scale (YBOCCS; a measure of symptoms in the preceding hour). Active and sham tDCS groups did not differ in terms of age, gender, medication use and baseline severity of OCD, depression and anxiety symptoms. Though a significant time-effect (before vs. after tDCS) was observed on YBOCCS, PANAS and dot-probe scores, there was no interaction between groups. However, exploratory analyses revealed that sham tDCS led to a significant decrease in OCD symptoms in the past hour, while active tDCS failed to do so. Although we did not observe acute effects of tDCS on OCD symptoms, this interim analysis suggests that inhibition of the SMA may interfere with sham response in OCD, probably through increasing vigilance towards OCD-related environmental stimuli.  相似文献   

12.
Diverse pathological changes occur in the white matter (WM) of patients with schizophrenia. Various microstructural alterations including a reduction in axonal number or diameter, reduced myelination, or poor coherence of fibers could account for these changes. Abnormal integrity of macromolecules such as myelin (‘dysmyelination'') can be studied by applying multiple modalities of WM imaging such as diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) in parallel. Using ultra-high field (7 Tesla) MTI in 17 clinically stable patients with schizophrenia and 20 controls, we evaluated the voxelwise distribution of macromolecular WM abnormalities. Patients had a significant reduction in magnetization transfer ratio (MTR) in WM adjacent to visual processing regions and inferior temporal cortex (Cohen''s d=1.54). Among the regions showing MTR reduction, a concurrent reduction in fractional anisotropy (FA) occurs proximal to the lingual gyrus. Multiple regression analysis revealed that the degree of FA reduction in the putatively ‘dysmyelinated'' regions in patients predicted impaired processing speed (PS; β=0.74; P=0.003), a core cognitive dysfunction in schizophrenia. In controls, MTR/FA in the occipito-temporal regions were not associated with PS. Our findings suggest that dysmyelination in visual processing regions is present in patients with schizophrenia with greatest cognitive and functional impairment. Combined DTI/MTI deficits in the occipito-temporal region may be an important variable when considering potential treatment targets for improving cognitive function in schizophrenia.  相似文献   

13.
BackgroundThe serotonergic system has an important impact on basic physiological and higher brain functions. Acute and chronic enhancement of serotonin levels via selective serotonin reuptake inhibitor administration impacts neuroplasticity in humans, as shown by its effects on cortical excitability alterations induced by non-invasive brain stimulation, including transcranial direct current stimulation (tDCS). Nevertheless, the interaction between serotonin activation and neuroplasticity is not fully understood, particularly considering dose-dependent effects. Our goal was to explore dosage-dependent effects of acute serotonin enhancement on stimulation-induced plasticity in healthy individuals.MethodsTwelve healthy adults participated in 7 sessions conducted in a crossover, partially double-blinded, randomized, and sham-controlled study design. Anodal and cathodal tDCS was applied to the motor cortex under selective serotonin reuptake inhibitor (20 mg/40 mg citalopram) or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation.ResultsUnder placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for approximately 60–120 minutes after the intervention. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS regardless of the dosage while turning cathodal tDCS-induced excitability diminution into facilitation. For the latter, prolonged effects were observed when 40 mg was administrated.ConclusionsAcute serotonin enhancement modulates tDCS after-effects and has largely similar modulatory effects on motor cortex neuroplasticity regardless of the specific dosage. A minor dosage-dependent effect was observed only for cathodal tDCS. The present findings support the concept of boosting the neuroplastic effects of anodal tDCS by serotonergic enhancement, a potential clinical approach for the treatment of neurological and psychiatric disorders.  相似文献   

14.
Consolidation of human motor cortical neuroplasticity by D-cycloserine.   总被引:1,自引:0,他引:1  
D-Cycloserine (CYC), a partial N-methyl-D-aspartate (NMDA) agonist, has been shown to improve cognitive functions in humans. However, the neurophysiological basis of this effect is unclear so far. We studied the impact of this drug on long-lasting after-effects of transcranial direct current (tDCS)-generated motor cortical excitability shifts, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials. While anodal tDCS enhances motor cortical excitability, cathodal tDCS diminishes it. Both effects seem to be NMDA receptor dependent. D-CYC selectively potentiated the duration of motor cortical excitability enhancements induced by anodal tDCS. D-CYC alone did not modulate excitability. The potency of this drug to consolidate neuronal excitability enhancements, most probably by stabilizing the strengthening of NMDA receptors, which is a probable neurophysiological derivate of learning processes, makes it an interesting substance to improve cognitive functions.  相似文献   

15.
Effect of acute tryptophan depletion on pre-frontal engagement   总被引:5,自引:3,他引:2  
Background Serotonin is known to modulate cognitive functioning and has been implicated in the cognitive deficits associated with affective disorders. The present study examined regional brain activation during two tasks that are known to engage the pre-frontal cortex and are performed poorly by patients with depression and bipolar disorder. We tested the hypothesis that acute tryptophan depletion (ATD) would attenuate pre-frontal activation during both tasks.Materials and methods Ten healthy right-handed volunteers were studied using functional MRI whilst performing a 2-back verbal working memory task and a phonological verbal fluency task. Subjects were studied in two separate sessions, after either a tryptophan-free or a balanced amino acid drink, in a double-blind design. Task performance and mood were measured online.Results Relative to sham depletion, ATD attenuated activation in the right superior frontal gyrus during the 2-back task and in the medial frontal gyrus and precuneus during the verbal fluency task. ATD lowered total plasma tryptophan by 79% but had no significant effect on either task performance or mood.Conclusions The engagement of pre-frontal cortex during verbal working memory and verbal fluency tasks is significantly modulated by central serotonergic activity. The different location of these modulatory effects within the frontal cortex may reflect the engagement of distinct cognitive processes by the respective tasks.  相似文献   

16.
There is an increasing interest in the putative role of glucagon-like peptide 1 receptor (GLP-1R) agonists as novel therapeutic agents for mental disorders. Herein, we investigated the expressions of GLP-1R and GLP-2R genes, and its relationship with body mass index (BMI), in the post-mortem brain tissue of patients with mood (MD) and psychotic disorders. Brain samples were localized to the dorsolateral prefrontal cortex (dlPFC) (n?=?459) and hippocampus (n?=?378). After adjustment for age, sex, ethnicity, post-mortem interval (PMI) and BMI, we observed significant differences, between healthy controls and MD subjects, in GLP-1R and GLP-2R gene expression in the dlPFC (β?=?1.504, p?=?0.004; and β?=?1.305, p?=?0.011, respectively); whereas in the hippocampus, only GLP-1R expression was significantly associated with MD (β?=??1.28, p?=?0.029). No significant differences were found in relation to schizophrenia. In addition, we observed a moderating effect of MD diagnosis on the associations between BMI, GLP-1R and GLP-2R expression values in the dlPFC (β?=??0.05, p?=?0.003; and β?=??0.04, p?=?0.004, respectively). There was a similar moderating effect for GLP-1R in the hippocampus (β?=?0.043, 95% CI 0.003; 0.08 p?=?0.03), but in an opposite direction than observed in the dlPFC. This is the first evidence of abnormal gene expression of GLP-1R and GLP-2R in postmortem brain of individuals with MD, providing a rationale for further inquiry and proof of principle interventional studies.  相似文献   

17.

Rationale

Cognitive symptoms have increasingly been recognized as an important target in the development of future treatment strategies in schizophrenia. The nicotinergic neurotransmission system has been suggested as a potentially interesting treatment target for these cognitive deficits. However, previous research yielded conflicting results, which may be explained by several methodological limitations, such as the failure to include both a group of smoking and non-smoking schizophrenic patients, the use of only a single nicotine dose, and the inclusion of a very limited cognitive battery.

Objectives

The present study aims at investigating the cognitive effects of nicotine in schizophrenia while addressing these methodological issues.

Methods

In a double-blind placebo-controlled randomized crossover design, cognitive effects are assessed in smoking (n?=?16) and non-smoking (n?=?16) schizophrenic patients after receiving active (1 or 2 mg) or placebo oromucosal nicotine spray.

Results

A modest improving effect of nicotine on attention in the smoking but not the non-smoking group was found. No enhancing effects were found on measures of visual memory, working memory, processing speed, psychomotor speed, or social cognitive functioning in either patient group.

Conclusions

These findings suggest that the nicotinic receptor only has limited value as a cognitive treatment target in schizophrenia.  相似文献   

18.
Caffeine is commonly consumed in an effort to enhance cognitive performance. However, little is known about the usefulness of caffeine with regard to memory enhancement, with previous studies showing inconsistent effects on memory performance. We aimed to determine the effect of caffeine on working memory (WM) load-related activation during encoding, maintenance and retrieval phases of a WM maintenance task using functional magnetic resonance imaging (fMRI). 20 healthy, male, habitual caffeine consumers aged 40-61 years were administered 100?mg of caffeine in a double-blind placebo-controlled crossover design. Participants were scanned in a non-withdrawn state following a workday during which caffeinated products were consumed according to individual normal use (range?=?145-595?mg). Acute caffeine administration was associated with increased load-related activation compared to placebo in the left and right dorsolateral prefrontal cortex during WM encoding, but decreased load-related activation in the left thalamus during WM maintenance. These findings are indicative of an effect of caffeine on the fronto-parietal network involved in the top-down cognitive control of WM processes during encoding and an effect on the prefrontal cortico-thalamic loop involved in the interaction between arousal and the top-down control of attention during maintenance. Therefore, the effects of caffeine on WM may be attributed to both a direct effect of caffeine on WM processes, as well as an indirect effect on WM via arousal modulation. Behavioural and fMRI results were more consistent with a detrimental effect of caffeine on WM at higher levels of WM load, than caffeine-related WM enhancement. This article is part of a Special Issue entitled 'Cognitive Enhancers'.  相似文献   

19.
Preclinical research suggests that N-methyl-D-aspartate glutamate receptors (NMDA-Rs) have a crucial role in working memory (WM). In this study, we investigated the role of NMDA-Rs in the brain activation and connectivity that subserve WM. Because of its importance in WM, the lateral prefrontal cortex, particularly the dorsolateral prefrontal cortex and its connections, were the focus of analyses. Healthy participants (n=22) participated in a single functional magnetic resonance imaging session. They received saline and then the NMDA-R antagonist ketamine while performing a spatial WM task. Time-course analysis was used to compare lateral prefrontal activation during saline and ketamine administration. Seed-based functional connectivity analysis was used to compare dorsolateral prefrontal connectivity during the two conditions and global-based connectivity was used to test for laterality in these effects. Ketamine reduced accuracy on the spatial WM task and brain activation during the encoding and early maintenance (EEM) period of task trials. Decrements in task-related activation during EEM were related to performance deficits. Ketamine reduced connectivity in the DPFC network bilaterally, and region-specific reductions in connectivity were related to performance. These results support the hypothesis that NMDA-Rs are critical for WM. The knowledge gained may be helpful in understanding disorders that might involve glutamatergic deficits such as schizophrenia and developing better treatments.  相似文献   

20.
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention that modifies cortical excitability according to the stimulation parameters. Preclinical and clinical studies in healthy volunteers suggest that tDCS induces neuroplastic alterations of cortical excitability, which might explain its clinical effects in major depressive disorder (MDD). We therefore examined whether tDCS, as compared to the antidepressant sertraline, increases plasma brain-derived neurotrophic factor (BDNF) levels, a neurotrophin associated with neuroplasticity. Patients (n=73) with major depressive disorder were randomized to active/sham tDCS and sertraline/placebo (four groups) in this 6-week, double-blind, placebo-controlled trial. We measured BDNF plasma levels at baseline and endpoint, observing no significant changes of BDNF levels after treatment. In addition, no significant changes were observed in responders and non-responders as well as no relationships between BDNF levels and clinical and psychopathological variables related to depression. Thus, in one of the few placebo-controlled trials evaluating BDNF changes over an antidepressant treatment course, we did not observe BDNF increase regardless of clinical improvement in depressed patients. Regarding tDCS, BDNF plasma levels might not be a good candidate biomarker to evaluate depression improvement or be a predictor of response in patients treated with tDCS, as our results showed that BDNF increase was not necessary to induce clinical response. Finally, our findings do not support a relationship between BDNF and improvement of depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号