首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.  相似文献   

2.
Association of DISC1 with autism and Asperger syndrome   总被引:1,自引:0,他引:1  
The DISC1 gene at 1q42 has generated considerable interest in various psychiatric diseases, since a balanced translocation interrupting the gene was found to cosegregate with schizophrenia and related mental illnesses in a large Scottish pedigree. To date, linkage and association findings to this locus have been replicated in several study samples ascertained for psychotic disorders. However, the biological function of DISC1 in neuronal development would suggest a potential role for this gene also in other, early onset neuropsychiatric disorders. Here we have addressed the allelic diversity of the DISC1, DISC2 and TRAX genes, clustered in 1q42, in Finnish families ascertained for infantile autism (97 families, n(affected)=138) and Asperger syndrome (29 families, n(affected)=143). We established association between autism and a DISC1 intragenic microsatellite (D1S2709; P=0.004). In addition, evidence for association to Asperger syndrome was observed with an intragenic single nucleotide polymorphism (SNP) of DISC1 (rs1322784; P=0.0058), as well as with a three-SNP haplotype (P=0.0013) overlapping the HEP3 haplotype, that was previously observed to associate with schizophrenia in Finnish families. The strongest associations were obtained with broad diagnostic categories for both disorders and with affected males only, in agreement with the previous sex-dependent effects reported for DISC1. These results would further support the involvement of DISC1 gene also in the etiopathogenesis of early onset neuropsychiatric disorders.  相似文献   

3.
Disrupted-in-Schizophrenia-1 (DISC1), identified by cytogenetic approaches in a pedigree with familial psychosis, is considered a candidate susceptibility gene for schizophrenia in some populations. In the pedigree, the TRAX gene, located adjacent to DISC1 on the disrupted chromosome 1, may also contribute to the pathophysiology of the familial schizophrenia. We studied association of the DISC1 and TRAX genes with schizophrenia in 338 Japanese by analyzing 15 single nucleotide polymorphisms (SNPs), including 12 SNPs in DISC1 and three in TRAX, respectively. No significant difference was observed between the patients and controls in allelic frequencies or genotypic distributions of 15 SNPs. A weak trend for the association in genotypic distribution of one SNP in TRAX (major homo/hetero/minor homo: 0.324/0.431/0.245 vs. 0.293/0.526/0.181 for patients vs controls, p = 0.039 in the 2 x 3 comparison) turned out to be insignificant after Bonferroni correction. Haplotype analysis did not support the association between the patients and controls. The present study suggests that the DISC1/TRAX locus may not have a major role in Japanese schizophrenia.  相似文献   

4.
We have previously reported evidence of linkage and association between markers on 1q42 and schizophrenia in a study sample of 498 multiply affected Finnish nuclear families, leading to the recent identification of four significantly associated haplotypes that specifically implicate the Translin-Associated Factor X (TRAX) and Disrupted in Schizophrenia 1 and 2 (DISC1 and DISC2) genes in the genetic etiology of schizophrenia. Previously, the DISC genes were found to be disrupted by a balanced translocation (1;11)(q42.1;q14.3) that cosegregated with schizophrenia and related disorders in a large Scottish pedigree. Interestingly, we also reported earlier suggestive linkage between endophenotypic quantitative traits of visual and verbal memory and microsatellite markers in close proximity to TRAX/DISC, on 1q41. Here, we tested if the identified allelic haplotypes of TRAX/DISC would be associated with visual and/or verbal memory function impairments that are known to aggregate with schizophrenia in families. One haplotype of DISC1, HEP3, displayed association with poorer performance on tests assessing short-term visual memory and attention. Analysis of affected and unaffected offspring separately revealed that both samples contribute to the observed association to visual working memory. These results provide genetic support to the view that the DISC1 gene contributes to sensitivity to schizophrenia and associated disturbances and affects short-term visual memory functions. This finding should stimulate studies aiming at the molecular characterization of how the specific alleles of DISC1 affect the visual memory functions and eventually participates in the development of schizophrenia.  相似文献   

5.
Disrupted in schizophrenia 1 (DISC1) has been associated with risk of schizophrenia, schizoaffective disorder, bipolar disorder, major depression, autism and Asperger syndrome, but apart from in the original translocation family, true causal variants have yet to be confirmed. Here we report a harmonized association study for DISC1 in European cohorts of schizophrenia and bipolar disorder. We identify regions of significant association, demonstrate allele frequency heterogeneity and provide preliminary evidence for modifying interplay between variants. Whereas no associations survived permutation analysis in the combined data set, significant corrected associations were observed for bipolar disorder at rs1538979 in the Finnish cohorts (uncorrected P=0.00020; corrected P=0.016; odds ratio=2.73+/-95% confidence interval (CI) 1.42-5.27) and at rs821577 in the London cohort (uncorrected P=0.00070; corrected P=0.040; odds ratio=1.64+/-95% CI 1.23-2.19). The rs821577 single nucleotide polymorphism (SNP) showed evidence for increased risk within the combined European cohorts (odds ratio=1.27+/-95% CI 1.07-1.51), even though significant corrected association was not detected (uncorrected P=0.0058; corrected P=0.28). After conditioning the European data set on the two risk alleles, reanalysis revealed a third significant SNP association (uncorrected P=0.00050; corrected P=0.025). This SNP showed evidence for interplay, either increasing or decreasing risk, dependent upon the presence or absence of rs1538979 or rs821577. These findings provide further support for the role of DISC1 in psychiatric illness and demonstrate the presence of locus heterogeneity, with the effect that clinically relevant genetic variants may go undetected by standard analysis of combined cohorts.  相似文献   

6.
Neuregulin 1 (NRG1) is a strong candidate for involvement in the aetiology of schizophrenia. A haplotype, initially identified as showing association in the Icelandic and Scottish populations, has shown a consistent effect size in multiple European populations. Additionally, NRG1 has been implicated in susceptibility to bipolar disorder. In this first study to select markers systematically on the basis of linkage disequilibrium across the entire NRG1 gene, we used haplotype-tagging single-nucleotide polymorphisms to identify single markers and haplotypes associated with schizophrenia and bipolar disorder in an independently ascertained Scottish population. Haplotypes in two regions met an experiment-wide significance threshold of P=0.0016 (Nyholt's SpD) and were permuted to correct for multiple testing. Region A overlaps with the Icelandic haplotype and shows nominal association with schizophrenia (P=0.00032), bipolar disorder (P=0.0011), and the combined case group (P=0.0017). This region includes the 5' exon of the NRG1 GGF2 isoform and overlaps the expressed sequence tag (EST) cluster Hs.97362. However, no haplotype in Region A remains significant after permutation analysis (P>0.05). Region B contains a haplotype associated with both schizophrenia (P=0.00014), and the combined case group (P=0.000062), although it does not meet Nyholt's threshold in bipolar disorder alone (P=0.0022). This haplotype remained significant after permutation analysis in both the schizophrenia and combined case groups (P=0.024 and P=0.016, respectively). It spans a approximately 136 kb region that includes the coding sequence of the sensory and motor neuron derived factor (SMDF) isoform and 3' exons of all other known NRG1 isoforms. Our study identifies a new of NRG1 region involved in schizophrenia and bipolar disorder in the Scottish population.  相似文献   

7.
CONTEXT: Chromosome 1q42 is among several genomic regions showing replicated evidence of linkage with schizophrenia, but the specific susceptibility mechanisms underlying this relationship remain to be identified. OBJECTIVE: To examine a series of haplotype blocks of single-nucleotide polymorphic markers from a segment of 1q42 spanning the disrupted-in-schizophrenia 1 (DISC1) and translin-associated factor X (TRAX) genes for association with schizophrenia and several endophenotypic traits thought to be involved in disease pathogenesis. DESIGN: Population-based twin cohort study. SETTING: Finland. PARTICIPANTS: Two hundred thirty-six subjects, consisting of 7 twin pairs concordant for schizophrenia (6 monozygotic [MZ] and 1 dizygotic [DZ]), 52 pairs discordant for schizophrenia (20 MZ and 32 DZ), and 59 demographically balanced normal pairs (28 MZ and 31 DZ), were drawn from a twin cohort consisting of all of the same-sex twins born in Finland from 1940 through 1957. MAIN OUTCOME MEASURES: Psychiatric diagnosis, performance on neurocognitive tests of short- and long-term memory, and gray matter volume measurements taken from high-resolution magnetic resonance images. RESULTS: A common haplotype incorporating 3 single-nucleotide polymorphic markers near the translocation break point of DISC1 (odds ratio, 2.6 [P = .02]) and a rare haplotype incorporating 4 markers from the DISC1 and TRAX genes (odds ratio, 13.0 [P = .001]) were significantly overrepresented among individuals with schizophrenia. These haplotypes were also associated with several quantitative endophenotypic traits previously observed to covary with schizophrenia and genetic liability to schizophrenia, including impairments in short- and long-term memory functioning and reduced gray matter density in the prefrontal cortex, as demonstrated using a population-based brain atlas method, with a trend toward association with reduced hippocampal volume. CONCLUSIONS: Specific alleles of the DISC1 and TRAX genes on 1q42 appear to contribute to genetic risk for schizophrenia through disruptive effects on the structure and function of the prefrontal cortex, medial temporal lobe, and other brain regions. These effects are consistent with their production of proteins that play roles in neuritic outgrowth, neuronal migration, synaptogenesis, and glutamatergic neurotransmission.  相似文献   

8.
Disrupted-in-Schizophrenia-1 (DISC1) has first been identified as a candidate gene for schizophrenia through study of a Scottish family with a balanced (1; 11) (q42.1; q14.3) translocation. Lots of linkage and association studies supported DISC1 as a risk factor for schizophrenia. In this study, we genotyped three SNPs in DISC1 using a set of Han Chinese samples of 560 schizophrenics and 576 controls. No positive association was detected in the whole samples but analysis of allele frequencies in female samples showed weak association between SNP rs2295959 and the disease (chi(2)=6.188, P=0.0135, OR=0.728, 95% CI=0.567-0.935). Our results provide further evidence for sex difference for the effect of the gene on the aetiology of schizophrenia. Our findings also would encourage further studies, particularly family-based association studies with larger samples, to analyze the association between DISC1 and schizophrenia.  相似文献   

9.
10.
In this study, we report a genome scan for psychiatric disease susceptibility loci in 13 Scottish families. We follow up one of the linkage peaks on chromosome 1q in a substantially larger sample of 22 families affected by schizophrenia (SCZ) or bipolar affective disorder (BPAD). To minimise the effect of genetic heterogeneity, we collected mainly large extended families (average family size >18). The families collected were Scottish, carried no chromosomal abnormalities and were unrelated to the large family previously reported as segregating a balanced (1:11) translocation with major psychiatric disease. In the genome scan, we found linkage peaks with logarithm of odds (LOD) scores >1.5 on chromosomes 1q (BPAD), 3p (SCZ), 8p (SCZ), 8q (BPAD), 9q (BPAD) and 19q (SCZ). In the follow-up sample, we obtained most evidence for linkage to 1q42 in bipolar families, with a maximum (parametric) LOD of 2.63 at D1S103. Multipoint variance components linkage gave a maximum LOD of 2.77 (overall maximum LOD 2.47 after correction for multiple tests), 12 cM from the previously identified SCZ susceptibility locus DISC1. Interestingly, there was negligible evidence for linkage to 1q42 in the SCZ families. These results, together with results from a number of other recent studies, stress the importance of the 1q42 region in susceptibility to both BPAD and SCZ.  相似文献   

11.
CONTEXT: Variation at the DAOA/G30 locus has been described to be associated with both schizophrenia and bipolar disorder, but there is little consistency between studies of the tested polymorphisms or variants showing association. OBJECTIVES: To obtain a stringent replication of association in large samples of both disorders using consistent clinical and laboratory methods, and to test the hypothesis that association at DAOA/G30 identifies an underlying domain of psychopathological abnormalities that cuts across traditional diagnostic categories. DESIGN: A systematic study of polymorphisms at DAOA/G30 using genetic case-control association analysis. SETTING: Subjects were unrelated and ascertained from general psychiatric inpatient and outpatient services. PARTICIPANTS: White persons from the United Kingdom meeting criteria for DSM-IV schizophrenia (n = 709) or bipolar I disorder (n = 706) and 1416 ethnically matched controls. METHODS: Nine polymorphisms that tag common genetic variations at DAOA/G30 were genotyped in all of the individuals, and comparisons were made between affected and unaffected individuals. RESULTS: We identified significant association (P = .01-.047) between 3 single-nucleotide polymorphisms and bipolar disorder but failed to find association with schizophrenia. Analyses across the traditional diagnostic categories revealed significant evidence (P = .002-.02) for association with 4 single-nucleotide polymorphisms in the subset of cases (n = 818) in which episodes of major mood disorder had occurred (gene-wide P = .009). We found a similar pattern of association in bipolar cases and in schizophrenia cases in which individuals had experienced major mood disorder. In contrast, we found no evidence for association in the subset of cases (n = 1153) in which psychotic features occurred (all P>.08). CONCLUSIONS: Despite being originally described as a schizophrenia susceptibility locus, our data suggest that variation at the DAOA/G30 locus does not primarily increase susceptibility for prototypical schizophrenia or psychosis. Instead, our results imply that variation at the DAOA/G30 locus influences susceptibility to episodes of mood disorder across the traditional bipolar and schizophrenia categories.  相似文献   

12.
Genetic factors play an important part in the development of schizophrenia and bipolar disorder, and linkage analyses in families have successfully identified several chromosomal regions containing candidate genes. A single large pedigree has been described in which schizophrenia and depression segregate with a balanced chromosomal translocation involving the long arm of chromosome 1 and the short arm of chromosome 11. The gene named DISC1, disrupted at the chromosome 1 breakpoint, is a novel candidate gene that may have a role in the pathogenesis of schizophrenia. The cellular location and function of the protein coded by DISC1 is currently being investigated. The phenotype associated with DISC1 in the t (1;11) translocation family includes schizophrenia, schizoaffective disorder, recurrent major depression and bipolar disorder. Hence this locus is one of several now reported apparently showing linkage to both schizophrenia and bipolar disorder. The study of intermediate phenotypes or "endophenotypes" may clarify the relations between phenotype and genotype. Auditory event related potentials are EEG based physiological measures widely studied in schizophrenia. In particular the cognitive evoked potential, the P300 response generated during an "odd-ball" two-tone discrimination task consistently shows reduced amplitude in schizophrenia compared to controls. In members of the family with the t (1;11) translocation, P300 amplitude was reduced in relatives who carried the translocation compared to relatives with a normal karyotype. Furthermore the amplitude reduction was independent of the presence or absence of symptoms because asymptomatic translocation carriers showed similar P300 amplitude reduction as was found in translocation carriers who were diagnosed with schizophrenia, bipolar disorder or unipolar depression. The results confirm that subjects with schizophrenia who carry the t (1;11) translocation have similar phenotype to unrelated subjects with schizophrenia and a normal karyotype. Furthermore P300 amplitude may be a useful intermediate phenotype detecting the neuropathology of schizophrenia in "at risk" individuals even in the absence of clinical symptoms.  相似文献   

13.
DISC1 is disrupted by a chromosomal translocation cosegregating with schizophrenia and recurrent major depression in a large Scottish family and has also been reported as a potential susceptibility locus in independent populations. We reveal a widespread and complex pattern of DISC1 expression, with at least five forms of Disrupted in Schizophrenia 1 DISC1 detectable. Mitochondria are the predominant site of DISC1 expression with additional nuclear, cytoplasmic, and actin-associated locations evident. Although the subcellular targeting of DISC1 is clearly complex, the association with mitochondria is of interest as many mitochondrial deficits have been reported in schizophrenia and other neuropsychiatric illnesses. Moreover, of the many cellular functions performed by mitochondria, their role in oxidative phosphorylation, calcium homeostasis, and apoptosis may hold particular relevance for the neuronal disturbances believed to be involved in the pathogenesis of schizophrenia.  相似文献   

14.
BACKGROUND: DISC1 has been suggested as a causative gene for psychoses in a large Scottish family. We recently identified FEZ1 as an interacting partner for DISC1. To investigate the role of FEZ1 in schizophrenia and bipolar disorder, case-control association analyses were conducted in Japanese cohorts. METHODS: We performed a mutation screen of the FEZ1 gene and detected 15 polymorphisms. Additional data on informative polymorphisms were obtained from public databases. Eight single nucleotide polymorphisms (SNPs) were analyzed in 119 bipolar disorder and 360 schizophrenic patients and age- and gender-matched control subjects. All genotypes were determined with the TaqMan assay, and selected samples were confirmed by sequencing. RESULTS: The two adjacent polymorphisms displayed a nominally significant association with schizophrenia (IVS2+ 1587G>A, p = .014; 396T相似文献   

15.
Schizophrenia and related disorders have a major genetic component, but despite much effort and many claims, few genes have been consistently replicated and fewer have biological support. One recent exception is "Disrupted in Schizophrenia 1" (DISC1), which was identified at the breakpoint on chromosome 1 of the balanced translocation (1;11)(q42.1;q14.3) that co-segregated in a large Scottish family with a wide spectrum of major mental illnesses. Since then, genetic analysis has implicated DISC1 in schizophrenia, schizoaffective disorder, bipolar affective disorder, and major depression. Importantly, evidence is emerging from genetic studies for a causal relationship between DISC1 and directly measurable trait variables such as working memory, cognitive aging, and decreased gray matter volume in the prefrontal cortex, abnormalities in hippocampal structure and function, and reduction in the amplitude of the P300 event-related potential. Further, DISC1 binds a number of proteins known to be involved in essential processes of neuronal function, including neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction. Thus, both genetic and functional data provide evidence for a critical role for DISC1 in schizophrenia and related disorders, supporting the neurodevelopmental hypothesis for the molecular pathogenesis of these devastating illnesses.  相似文献   

16.
In the developing field of biological psychiatry, DISC1 stands out by virtue of there being credible evidence, both genetic and biological, for a role in determining susceptibility to schizophrenia and related disorders. We highlight the methodologic paradigm that led to identification of DISC1 and review the supporting genetic and biological evidence. The original finding of DISC1 as a gene disrupted by a balanced translocation on chromosome 1q42 that segregates with schizophrenia, bipolar disorder, and recurrent major depression has sparked a number of confirmatory linkage and association studies. These indicate that DISC1 is a generalizable genetic risk factor for psychiatric illness that also influences cognition in healthy subjects. DISC1 has also been shown to interact with a number of proteins with neurobiological pedigrees, including Ndel1 (NUDEL), a key regulator of neuronal migration with endo-oligopeptidase activity, and PDE4B, a phosphodiesterase that is critical for cyclic adenosine monophosphate signaling and that is directly linked to learning, memory, and mood. Both are potential "drug" targets. DISC1 has thus emerged as a key molecular player in the etiology of major mental illness and in normal brain processes.  相似文献   

17.
Disrupted-in-schizophrenia-1 (DISC1), located on chromosome 1q42.1, is linked to rare familial schizophrenia in a large Scottish family. The chromosomal translocation that segregates with the disease results in a truncated protein that impairs neurite outgrowth and proper development of the cerebral cortex, suggesting that lost DISC1 function may underlie neurodevelopmental dysfunction in schizophrenia. DISC1 has been associated with schizophrenia in multiple populations, but there is little evidence of convergence across populations. In the present case-control study three Scandinavian samples of 837 individuals affected with schizophrenia and 1473 controls, were used in an attempt to replicate previously reported associations between single nucleotide polymorphisms (SNPs) in DISC1 and schizophrenia. No SNP with allele frequency above 10% was significantly associated with the disease after correction for multiple testing. However, the minor allele of rs3737597 (frequency 2%) in the 3'-untranslated region (UTR), previously identified as a risk allele in Finnish families, was significantly and consistently associated with the disorder across the three samples, (p-value corrected for multiple testing was 0.002). Our results suggest that a relatively uncommon DISC1 mutation, which increases the susceptibility for schizophrenia may be segregating in the Scandinavian population, and support the view that common DISC1 SNP alleles are unlikely to account for a substantial proportion of the genetic risk of the disease across populations of European descent.  相似文献   

18.
Disrupted in schizophrenia 1 (DISC1) has been identified as a putative risk factor for schizophrenia and affective disorders through study of a Scottish family with a balanced (1;11) (q42.1;q14.3) translocation, which results in the disruption of the DISC1 locus and cosegregates with major psychiatric disease. Several other reports of genetic linkage and association between DISC1 and schizophrenia in a range of patient populations have added credibility to the DISC1-schizophrenia theory, but the function of the DISC1 protein is still poorly understood. Recent studies have suggested that DISC1 plays a role in neuronal outgrowth, possibly through reported interactions with the molecules Nudel and FEZ1. Here we have analyzed the DISC1 protein sequence to identify previously unknown regions that are important for the correct targeting of the protein and conducted imaging studies to identify DISC1 subcellular location. We have identified a central coiled-coil region and show it is critical for the subcellular targeting of DISC1. This domain is independent from the C-terminal Nudel binding domain highlighting the multidomain nature/functionality of the DISC1 protein. Furthermore, we have been able to provide the first direct evidence that DISC1 is localized to mitochondria in cultured cortical neurons that are dependent on an intact cytoskeleton. Surprisingly, Nudel is seen to differentially associate with mitochondrial markers in comparison to DISC1. Disruption of the cytoskeleton results in colocalization of Nudel and mitochondrial markers-the first observation of such a direct relationship. Mitochondrial dysfunction has been implicated to play a role in schizophrenia so we speculate that mutations in DISC1 or Nudel may impair mitochondrial transport or function, initiating a cascade of events culminating in psychiatric illness.  相似文献   

19.
Depression is common in patients with schizophrenia and it is well established from family studies that rates of depression are increased among relatives of probands with schizophrenia, making it likely that the phenotypes described under the categories of affective and non-affective psychoses share some genetic risk factors. Family linkage studies have identified several chromosomal regions likely to contain risk genes for schizophrenia and bipolar disorder, suggesting common susceptibility loci. Candidate gene association studies have provided further evidence to suggest that some genes including two of the most studied candidates, Disrupted in Schizophrenia 1 (DISC1) and Neuregulin 1 (NRG1) may be involved in both types of psychosis. We have recently identified another strong candidate for a role in both schizophrenia and affective disorders, GRIK4 a glutamate receptor mapped to chromosome 11q23 [Glutamate Receptor, Ionotropic, Kainate, type 4]. This gene is disrupted by a translocation breakpoint in a patient with schizophrenia, and case control studies show significant association of GRIK4 with both schizophrenia and bipolar disorder. Identifying genes implicated in the psychoses may eventually provide the basis for classification based on biology rather than symptoms, and suggest novel treatment strategies for these complex brain disorders.  相似文献   

20.
We recently reported an association between DISC1 and schizophrenia, schizoaffective disorder, and bipolar disorder. Convergent evidence suggests that DISC1 has a direct effect on central nervous system functioning. However, there is a paucity of data investigating the effects of DISC1 on neurocognition. Thus, we analyzed the relationship between five single-nucleotide polymorphisms that influenced risk for schizophrenia in our previous study and neurocognition in 250 patients with schizophrenia. DISC1 genotype was related to neurocognitive performance on measures of rapid visual search and verbal working memory, when controlling for age and premorbid intellectual capacity, and explained 3%-4% of the variance. These data suggest that DISC1 is associated with neurocognitive functioning in schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号