首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper quantitatively characterizes the approximation power of deep feed-forward neural networks (FNNs) in terms of the number of neurons. It is shown by construction that ReLU FNNs with width$\mathcal{O}$(max{$d⌊N^{1/d}⌋$,$N$+1}) and depth $\mathcal{O}(L)$ can approximate an arbitrary Hölder continuous function of order $α∈(0,1]$ on $[0,1]^d$ with a nearly tight approximation rate $\mathcal{O}(\sqrt{d}N^{−2α/d}L^{−2α/d})$ measured in $L^p$ -norm for any $N,L∈\mathbb{N}^+$ and $p∈[1,∞]$. More generally for an arbitrary continuous function $f$ on $[0,1]^d$ with a modulus of continuity $ω_f (·)$, the constructive approximation rate is $\mathcal{O}(\sqrt{d}ω_f(N^{−2α/d}L^{−2α/d}))$. We also extend our analysis to $f$ on irregular domains or those localized in an ε-neighborhood of a $d_\mathcal{M}$-dimensional smooth manifold $\mathcal{M}⊆[0,1]^d$ with $d_\mathcal{M}≪d$. Especially, in the case of an essentially low-dimensional domain, we show an approximation rate $\mathcal{O}(ω_f(\frac{ε}{1−δ}\sqrt{\frac{d}{d_δ}}+ε)+\sqrt{d}ω_f(\frac{\sqrt{d}}{1−δ\sqrt{d_δ}}N^{−2α/d_δ}L^{−2α/d_δ})$ for ReLU FNNs to approximate $f$ in the $ε$-neighborhood, where $d_δ=\mathcal{O}(d_\mathcal{M}\frac{\rm{ln}(d/δ)}{δ^2})$ for any $δ∈(0,1)$ as a relative error for a projection to approximate an isometry when projecting $\mathcal{M}$ to a $d_δ$-dimensional domain.  相似文献   

2.
This study aimed to specialise a directional $\mathcal{H}^2 (\mathcal{D}\mathcal{H}^2)$ compression to matrices arising from the discontinuous Galerkin (DG) discretisation of the hypersingular equation in acoustics. The significant finding is an algorithm that takes a DG stiffness matrix and finds a near-optimal $\mathcal{D}\mathcal{H}^2$ approximation for low and high-frequency problems. We introduced the necessary special optimisations to make this algorithm more efficient in the case of a DG stiffness matrix. Moreover, an automatic parameter tuning strategy makes it easy to use and versatile. Numerical comparisons with a classical Boundary Element Method (BEM) show that a DG scheme combined with a $\mathcal{D}\mathcal{H}^2$ gives better computational efficiency than a classical BEM in the case of high-order finite elements and $hp$ heterogeneous meshes. The results indicate that DG is suitable for an auto-adaptive context in integral equations.  相似文献   

3.
In this paper, an approach combining the DG method in space with CG method in time (CG-DG method) is developed to solve time-dependent Maxwell's equations when meta-materials are involved. Both the unconditional $L^2$-stability and error estimate of order $\mathcal{O}$($τ^ {r+1}$+$h^{k+\frac{1}{2}}$) are obtained when polynomials of degree at most r is used for the temporal discretization and at most k for the spatial discretization. Numerical results in 3D are given to validate the theoretical results.  相似文献   

4.
Numerical error caused by "ghost forces" in a quasicontinuum method is studied in the context of dynamic problems. The error in the discrete W1,∞ norm is analyzed for the time scale $\mathcal{O}$($ε$) and the time scale $\mathcal{O}$(1) with ε being the lattice spacing.  相似文献   

5.
A kernel-independent treecode (KITC) is presented for fast summation of particle interactions. The method employs barycentric Lagrange interpolation at Chebyshev points to approximate well-separated particle-cluster interactions. The KITC requires only kernel evaluations, is suitable for non-oscillatory kernels, and relies on the scale-invariance property of barycentric Lagrange interpolation. For a given level of accuracy, the treecode reduces the operation count for pairwise interactions from $\mathcal{O}$($N^2$) to $\mathcal{O}$($N$log$N$), where $N$ is the number of particles in the system. The algorithm is demonstrated for systems of regularized Stokeslets and rotlets in 3D, and numerical results show the treecode performance in terms of error, CPU time, and memory consumption. The KITC is a relatively simple algorithm with low memory consumption, and this enables a straightforward OpenMP parallelization.  相似文献   

6.
In this paper we consider the numerical solution of the Allen-Cahn type diffuse interface model in a polygonal domain. The intersection of the interface with the re-entrant corners of the polygon causes strong corner singularities in the solution. To overcome the effect of these singularities on the accuracy of the approximate solution, for the spatial discretization we develop an efficient finite element method with exponential mesh refinement in the vicinity of the singular corners, that is based on ($k$−1)-th order Lagrange elements, $k$≥2 an integer. The problem is fully discretized by employing a first-order, semi-implicit time stepping scheme with the Invariant Energy Quadratization approach in time, which is an unconditionally energy stable method. It is shown that for the error between the exact and the approximate solution, an accuracy of $\mathcal{O}$($h^k$+$τ$) is attained in the $L^2$-norm for the number of $\mathcal{O}$($h^{−2}$ln$h^{−1}$) spatial elements, where $h$ and $τ$ are the mesh and time steps, respectively. The numerical results obtained support the analysis made.  相似文献   

7.
A fully discrete discontinuous Galerkin method is introduced for solving time-dependent Maxwell's equations. Distinguished from the Runge-Kutta discontinuous Galerkin method (RKDG) and the finite element time domain method (FETD), in our scheme, discontinuous Galerkin methods are used to discretize not only the spatial domain but also the temporal domain. The proposed numerical scheme is proved to be unconditionally stable, and a convergent rate $\mathcal{O}((∆t)^{r+1}+h^{k+1/2})$ is established under the $L^2$ -norm when polynomials of degree at most $r$ and $k$ are used for temporal and spatial approximation, respectively. Numerical results in both 2-D and 3-D are provided to validate the theoretical prediction. An ultra-convergence of order $(∆t)^{2r+1}$ in time step is observed numerically for the numerical fluxes w.r.t. temporal variable at the grid points.  相似文献   

8.
We consider in this paper random batch interacting particle methods for solving the Poisson-Nernst-Planck (PNP) equations, and thus the Poisson-Boltzmann (PB) equation as the equilibrium, in the external unbounded domain. To justify the simulation in a truncated domain, an error estimate of the truncation is proved in the symmetric cases for the PB equation. Then, the random batch interacting particle methods are introduced which are $\mathcal{O}(N)$ per time step. The particle methods can not only be considered as a numerical method for solving the PNP and PB equations, but also can be used as a direct simulation approach for the dynamics of the charged particles in solution. The particle methods are preferable due to their simplicity and adaptivity to complicated geometry, and may be interesting in describing the dynamics of the physical process. Moreover, it is feasible to incorporate more physical effects and interactions in the particle methods and to describe phenomena beyond the scope of the mean-field equations.  相似文献   

9.
We describe our implementation of a parallel fast multipole method for evaluating potentials for discrete and continuous source distributions. The first requires summation over the source points and the second requiring integration over a continuous source density. Both problems require$\mathcal{O}$($N^2$) complexity when computed directly; however, can be accelerated to $\mathcal{O}$($N$) time using FMM. In our PVFMM software library, we use kernel independent FMM and this allows us to compute potentials for a wide range of elliptic kernels. Our method is high order, adaptive and scalable. In this paper, we discuss several algorithmic improvements and performance optimizations including cache locality, vectorization, shared memory parallelism and use of coprocessors. Our distributed memory implementation uses space-filling curve for partitioning data and a hypercube communication scheme. We present convergence results for Laplace, Stokes and Helmholtz (low wavenumber) kernels for both particle and volume FMM. We measure efficiency of our method in terms of CPU cycles per unknown for different accuracies and different kernels. We also demonstrate scalability of our implementation up to several thousand processor cores on the Stampede platform at the Texas Advanced Computing Center.  相似文献   

10.
Based on the recently-developed sum-of-exponential (SOE) approximation, in this article, we propose a fast algorithm to evaluate the one-dimensional convolution potential $φ(x)=K∗ρ=∫^1_{0}K(x−y)ρ(y)dy$ at (non)uniformly distributed target grid points {$x_i$}$^M_{i=1}$, where the kernel $K(x)$ might be singular at the origin and the source density function $ρ(x)$ is given on a source grid ${{{y_i}}}^N_{j=1}$ which can be different from the target grid. It achieves an optimal accuracy, inherited from the interpolation of the density $ρ(x)$, within $\mathcal{O}(M+N)$ operations. Using the kernel's SOE approximation $K_{ES}$, the potential is split into two integrals: the exponential convolution $φ_{ES}$=$K_{ES}∗ρ$ and the local correction integral $φ_{cor}=(K−K_{ES})∗ρ$. The exponential convolution is evaluated via the recurrence formula that is typical of the exponential function. The local correction integral is restricted to a small neighborhood of the target point where the kernel singularity is considered. Rigorous estimates of the optimal accuracy are provided. The algorithm is ideal for parallelization and favors easy extensions to complicated kernels. Extensive numerical results for different kernels are presented.  相似文献   

11.
We study a family of $H^m$-conforming piecewise polynomials based on the artificial neural network, referred to as the finite neuron method (FNM), for numerical solution of $2m$-th-order partial differential equations in$\mathbb{R}^d$ for any $m,d≥1$ and then provide convergence analysis for this method. Given a general domain Ω$⊂\mathbb{R}^d$ and a partition$\mathcal{T}_h$ of Ω, it is still an open problem in general how to construct a conforming finite element subspace of $H^m$(Ω) that has adequate approximation properties. By using techniques from artificial neural networks, we construct a family of $H^m$-conforming functions consisting of piecewise polynomials of degree $k$ for any $k≥m$ and we further obtain the error estimate when they are applied to solve the elliptic boundary value problem of any order in any dimension. For example, the error estimates that $‖u−u_N‖_{H^m(\rm{Ω})}=\mathcal{O}(N^{−\frac{1}{2}−\frac{1}{d}})$ is obtained for the error between the exact solution $u$ and the finite neuron approximation $u_N$. A discussion is also provided on the difference and relationship between the finite neuron method and finite element methods (FEM). For example, for the finite neuron method, the underlying finite element grids are not given a priori and the discrete solution can be obtained by only solving a non-linear and non-convex optimization problem. Despite the many desirable theoretical properties of the finite neuron method analyzed in the paper, its practical value requires further investigation as the aforementioned underlying non-linear and non-convex optimization problem can be expensive and challenging to solve. For completeness and the convenience of the reader, some basic known results and their proofs are introduced.  相似文献   

12.
We study compact finite difference methods for the Schrödinger-Poisson equation in a bounded domain and establish their optimal error estimates under proper regularity assumptions on wave function $ψ$ and external potential $V(x)$. The Crank-Nicolson compact finite difference method and the semi-implicit compact finite difference method are both of order $\mathcal{O}$($h^4$+$τ^2$) in discrete $l^2$, $H^1$ and $l^∞$ norms with mesh size $h$ and time step $τ$. For the errors of compact finite difference approximation to the second derivative and Poisson potential are nonlocal, thus besides the standard energy method and mathematical induction method, the key technique in analysis is to estimate the nonlocal approximation errors in discrete $l^∞$ and $H^1$ norm by discrete maximum principle of elliptic equation and properties of some related matrix. Also some useful inequalities are established in this paper. Finally, extensive numerical results are reported to support our error estimates of the numerical methods.  相似文献   

13.
14.
In this paper we consider PDE-constrained optimization problems which incorporate an $\mathcal{H}_1$ regularization control term. We focus on a time-dependent PDE, and consider both distributed and boundary control. The problems we consider include bound constraints on the state, and we use a Moreau-Yosida penalty function to handle this. We propose Krylov solvers and Schur complement preconditioning strategies for the different problems and illustrate their performance with numerical examples.  相似文献   

15.
In this paper, we propose a uniformly convergent adaptive finite element method with hybrid basis (AFEM-HB) for the discretization of singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation (BEC) and quantum chemistry. We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint. Matched asymptotic approximations for the problem are reviewed to confirm the asymptotic behaviors of the solutions in the boundary/interior layer regions. By using the normalized gradient flow, we propose an adaptive finite element with hybrid basis to solve the singularly perturbed nonlinear eigenvalue problem. Our basis functions and the mesh are chosen adaptively to the small parameter ε. Extensive numerical results are reported to show the uniform convergence property of our method. We also apply the AFEM-HB to compute the ground and excited states of BEC with box/harmonic/optical lattice potential in the semiclassical regime (0<ε≪1). In addition, we give a detailed error analysis of our AFEM-HB to a simpler singularly perturbed two point boundary value problem, show that our method has a minimum uniform convergence order $\mathcal{O}$(1/$(NlnN)^\frac{2}{3}$).  相似文献   

16.

Background

Hypertrophic cardiomyopathy (HCM) patients with preserved left ventricular ejection fraction (LVEF) often develop dyspnea and exercise intolerance. Diastolic dysfunction may contribute to exercise intolerance in these patients. This study aimed to clarify our hypothesis as to whether diastolic function rather than systolic function would be associated with exercise intolerance in HCM using two-dimensional (2D) speckle tracking echocardiography during exercise.

Methods

Thirty-three HCM patients (mean age 59.3 ± 15.7 years) underwent 2D speckle tracking echocardiography at rest and during submaximal semi-supine bicycle exercise. Global longitudinal strain (LS), LS rate during systole (LSRs), early diastole (LSRe), and late diastole (LSRa) were measured. The symptom-limited cardiopulmonary exercise testing was performed using a cycle ergometer for measuring the peak oxygen consumption (peak $ \dot{V}_{{{\text{O}}_{2} }} $ ).

Results

In the multivariate linear regression analysis, peak $ \dot{V}_{{{\text{O}}_{2} }} $ did not associate with strain or strain rate at rest. However, peak $ \dot{V}_{{{\text{O}}_{2} }} $ correlated with LS (β = ?0.403, p = 0.007), LSRe (β = 6.041, p = 0.001), and LSRa (β = 5.117, p = 0.021) during exercise after adjustment for age, gender, and heart rate. The first quartile peak $ \dot{V}_{{{\text{O}}_{2} }} $ (14.2 mL/min/kg) was assessed to predict exercise intolerance. The C-statistic of delta LSRe was 0.74, which was relatively greater than that of delta LS (0.70) and delta LSRa (0.58), indicating that early diastolic function rather than systolic and late diastolic function affects exercise intolerance.

Conclusions

LSRe during exercise is closely associated with the peak $ \dot{V}_{{{\text{O}}_{2} }} $ . Early diastolic function during exercise is an important determinant of exercise capacity in patients with HCM.  相似文献   

17.
We review, implement, and compare numerical integration schemes for spatially bounded diffusions stopped at the boundary which possess a convergence rate of the discretization error with respect to the time step $h$ higher than $\mathcal{O}$$(√h)$. We address specific implementation issues of the most general-purpose of such schemes. They have been coded into a single Matlab program and compared, according to their accuracy and computational cost, on a wide range of problems in up to R48. The paper is self-contained and the code will be made freely downloadable.  相似文献   

18.
Correlation functions in the $\mathcal{O}$$(n)$ models below the critical temperature are considered. Based on Monte Carlo (MC) data, we confirm the fact stated earlier by Engels and Vogt, that the transverse two-plane correlation function of the $\mathcal{O}$$(4)$ model for lattice sizes about $L=120$ and small external fields $h$ is very well described by a Gaussian approximation. However, we show that fits of not lower quality are provided by certain non-Gaussian approximation. We have also tested larger lattice sizes, up to $L=512$. The Fourier-transformed transverse and longitudinal two-point correlation functions have Goldstone mode singularities in the thermodynamic limit at $k→0$ and $h=+0$, i.e., $G_⊥$(k)$≃ak^{−λ_⊥}$ and$G_{||}($k$)≃bk^{−λ_{||}}$, respectively. Here $a$ and $b$ are the amplitudes, $k$=|k| is the magnitude of the wave vector k. The exponents $λ_⊥$, $λ_{||}$ and the ratio $bM^2/a^2$, where $M$ is the spontaneous magnetization, are universal according to the GFD (grouping of Feynman diagrams) approach. Here we find that the universality follows also from the standard (Gaussian) theory, yielding $bM^2/a^2$=$(n−1)/16$. Our MC estimates of this ratio are $0.06±0.01$ for $n=2$, $0.17±0.01$ for $n=4$ and $0.498±0.010$ for $n=10$. According to these and our earlier MC results, the asymptotic behavior and Goldstone mode singularities are not exactly described by the standard theory. This is expected from the GFD theory. We have found appropriate analytic approximations for $G_⊥$(k) and $G_{||}$(k), well fitting the simulation data for small $k$. We have used them to test the Patashinski-Pokrovski relation and have found that it holds approximately.  相似文献   

19.
Random batch algorithms are constructed for quantum Monte Carlo simulations. The main objective is to alleviate the computational cost associated with the calculations of two-body interactions, including the pairwise interactions in the potential energy, and the two-body terms in the Jastrow factor. In the framework of variational Monte Carlo methods, the random batch algorithm is constructed based on the over-damped Langevin dynamics, so that updating the position of each particle in an $N$-particle system only requires$\mathcal{O}(1)$ operations, thus for each time step the computational cost for $N$ particles is reduced from$\mathcal{O}(N^2)$ to$\mathcal{O}(N)$. For diffusion Monte Carlo methods, the random batch algorithm uses an energy decomposition to avoid the computation of the total energy in the branching step. The effectiveness of the random batch method is demonstrated using a system of liquid $^4$He atoms interacting with a graphite surface.  相似文献   

20.
In this paper, we will present a high-order, well-conditioned boundary element method (BEM) based on Müller's hypersingular second kind integral equation formulation to accurately compute electrostatic potentials in the presence of inhomogeneity embedded within layered media. We consider two types of inhomogeneities: the first one is a simple model of an ion channel which consists of a finite height cylindrical cavity embedded in a layered electrolytes/membrane environment, and the second one is a Janus particle made of two different semi-spherical dielectric materials. Both types of inhomogeneities have relevant applications in biology and colloidal material, respectively. The proposed BEM gives$\mathcal{O}$(1) condition numbers, allowing fast convergence of iterative solvers compared to previous work using first kind of integral equations. We also show that the second order basis converges faster and is more accurate than the first order basis for the BEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号