首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Epigenetic silencing of tumor suppressor genes (TSG) is involved in development andprogression of cancers. Re-expression of TSG is inversely proportionate with STAT3 signaling pathways.Demethylation of DNA by 5-Azacytidine (5-Aza) results in re-expression of silenced TSG. Forced expression ofPRG2 by 5-Aza induced apoptosis in cancer cells. Imatinib is a tyrosine kinase inhibitor that potently inhibits BCR/ABL tyrosine kinase resulting in hematological remission in CML patients. However, majority of CML patients treatedwith imatinib would develop resistance under prolonged therapy. Methods: CML cells resistant to imatinib weretreated with 5-Aza and cytotoxicity of imatinib and apoptosis were determined by MTS and annexin-V, respectively.Gene expression analysis was detected by real time-PCR, STATs activity examined using Western blot and methylationstatus of PRG2 was determined by pyrosequencing analysis. Result: Expression of PRG2 was significantly higher inK562-R+5-Aza cells compared to K562 and K562-R (p=0.001). Methylation of PRG2 gene was significantly decreasedin K562-R+5-Aza cells compared to other cells (p=0.021). STAT3 was inactivated in K562-R+5-Aza cells which showedhigher sensitivity to imatinib. Conclusion: PRG2 gene is a TSG and its overexpression might induce sensitivity toimatinib. However, further studies are required to evaluate the negative regulations of PRG2 on STAT3 signaling.  相似文献   

2.
目的:探讨重组变构人肿瘤坏死因子相关凋亡诱导配体(CPT)逆转慢性粒细胞白血病(CML)细胞伊马替尼耐药的相关机制。方法:选择2016年至2020年内蒙古医科大学附属医院就诊的5例CML患者,分别采集初诊和伊马替尼耐药状态下的肝素化骨髓血标本,分离单个核细胞。初诊时采集的单个核细胞依次命名为A1~E1,伊马替尼耐药后采集的单个核细胞分别命名为A2~E2。使用人CML野生型K562细胞株(K562-W),采用低浓度伊马替尼小剂量逐步加量的方法,获得伊马替尼耐药的K562细胞(K562-R)。采用20 μg/L CPT培养K562-R细胞,设为CPT-K562-R细胞组。CCK-8法检测细胞对伊马替尼的半数抑制浓度( IC50)。采用K562-W、K562-R细胞构建CML移植瘤裸鼠模型,将裸鼠分为K562-W、K562-R、CPT-K562-R移植瘤组,三组均经口灌注伊马替尼,CPT-K562-R组同时皮下注射CPT;比较三组裸鼠移植瘤在伊马替尼治疗前、治疗4周后的肿瘤体积,以及三组裸鼠的存活时间。蛋白质印迹法检测CML患者骨髓单个核细胞、K562细胞株及其移植瘤组织中酪氨酸蛋白激酶受体B4(EphB4)、髓细胞白血病蛋白1(Mcl-1)蛋白水平的变化。 结果:5例CML患者A2~E2细胞中EphB4蛋白表达水平均较A1~E1细胞增高(均 P<0.01)。K562-W、K562-R、CPT-K562-R细胞对伊马替尼的 IC50分别为(0.160±0.015)mg/L、(5.450±0.460)mg/L、(0.300±0.035)mg/L,差异有统计学意义( F=390.65, P<0.01)。K562-W组细胞中EphB4、Mcl-1蛋白均呈低水平表达(0.54±0.02和0.70±0.08);K562-R组细胞中EphB4、Mcl-1蛋白表达水平升高(3.04±0.11和2.88±0.04);CPT-K562-R组细胞中EphB4、Mcl-1蛋白表达水平下降(0.57±0.03和0.38±0.04)。伊马替尼治疗前,K562-W、K562-R和CPT-K562-R移植瘤组裸鼠移植瘤体积差异无统计学意义( F=0.39, P=0.68),提示裸鼠移植瘤成瘤均衡;伊马替尼治疗结束后三组移植瘤体积差异有统计学意义( F=26.16, P<0.01)。K562-W、K562-R和CPT-K562-R移植瘤组裸鼠存活时间分别为(18.5±3.3)d、(10.0±2.4)d、(17.5±1.6)d,差异有统计学意义( F=20.45, P<0.01)。K562-W移植瘤组中EphB4、Mcl-1蛋白均呈低水平表达(0.55±0.06和0.67±0.06);K562-R移植瘤组中EphB4、Mcl-1蛋白表达水平升高(1.95±0.08和6.21±0.53);CPT-K562-R移植瘤组中EphB4、Mcl-1蛋白表达水平下降(0.59±0.04和0.37±0.04),且接近K562-W移植瘤组的水平。 结论:CPT可能通过抑制EphB4、Mcl-1表达,增强CML对伊马替尼的敏感性,这可能是一种伊马替尼治疗靶向通路。  相似文献   

3.
Background: Imatinib mesylate, a tyrosine kinase inhibitor specifically targeting the BCR/ABL fusion protein, induces hematological remission in patients with chronic myeloid leukemia (CML). However, the majority of CML patients treated with imatinib develop resistance with prolonged therapy. Dendrophthoe pentandra (L.) Miq. is a Malaysian mistletoe species that has been used as a traditional treatment for several ailments such as smallpox, ulcers, and cancers. Methods: We developed a resistant cell line (designated as K562R) by long-term co-culture of a BCR/ ABL positive CML cell line, K562, with imatinib mesylate. We then investigated the anti-proliferative effects of D. pentandra methanol extract on parental K562 and resistant K562R cells. Trypan blue exclusion assays were performed to determine the IC50 concentration; apoptosis and cell cycle analysis were conducted by flow cytometry. Results: D. pentandra extract had greater anti-proliferative effects towards K562R (IC50= 192 μg/mL) compared to K562 (500 μg/ mL) cells. Upon treatment with D. pentandra extract at the IC50. concentration: K562 but not K562R demonstrated increase in apoptosis and cell cycle arrest in the G2/M phase. Conclusion: D. pentandra methanol extract exerts potent anti-proliferative effect on BCR/ABL positive K562 cells.  相似文献   

4.
Huang Q  Yang Y  Li X  Huang S 《Tumour biology》2011,32(6):1191-1197
The BCR-ABL tyrosine kinase has been implicated in the dysregulation of oncogenes and tumor suppressor genes involved in chronic myelogenous leukemia (CML). Suppressor of activator protein-1, regulated by interferon (SARI), is a recently identified tumor suppressor gene whose expression has been reported to be suppressed in several malignant neoplasms. However, the expression of SARI in leukemia and the underlying regulatory mechanism remain elusive. In this study, we demonstrated that SARI mRNA expression was low in CML patients. In vitro, BCR-ABL kinase inhibitor imatinib mesylate or siRNA specific to BCR-ABL upregulated SARI mRNA expression in human leukemia cells. In addition, JAK/STAT signaling inhibitor AG490 and RAS/MAPK signaling inhibitor PD98059 upregulated SARI mRNA expression, but PI3K/AKT pathway inhibitor LY294002 had no such effect. Functionally, silencing of SARI in CML-derived cell line K562 partially decreased imatinib mesylate-induced apoptosis. Taken together, these data demonstrate that SARI mRNA expression is suppressed by BCR-ABL through the downstream signaling pathways, suggesting SARI as a potential therapeutic target in CML.  相似文献   

5.
6.
7.
Adaphostin is a tyrphostin that was designed to inhibit Bcr/Abl tyrosine kinase by altering the binding site of peptide substrates rather than that of adenosine triphosphate, a known mechanism of imatinib mesylate (IM). However, it has been shown that adaphostin-mediated cytotoxicity is dependent on oxidant production and does not require Bcr/Abl. We have tested adaphostin against both Philadelphia chromosome (Ph)-positive (K562, KBM5, KBM5-R [IM resistant KBM5], KBM7, and KBM7-R [IM-resistant KBM7]) and Ph-negative (OCI/AML2 and OCI/AML3) cells, and against cells from patients with chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Adaphostin significantly inhibited growth of all cell lines (50% inhibition of cell proliferation [IC50] 0.5-1 microM) except K562 (IC50 13 microM). Ph-positive IM-resistant cell lines showed significant cross resistance to adaphostin. Simultaneous or sequential treatment with adaphostin and IM did not exert a synergistic effect in any KBM line. Adaphostin induced superoxide and apoptosis in a dose-dependent and time-dependent fashion in both Ph-positive and Ph-negative cells. Adaphostin selectively inhibited colony growth of cells from CML (IM-sensitive and IM-resistant) and AML patients. Analysis of tyrosine phosphorylated proteins after treatment with adaphostin revealed alternate effects in different cells consistent with the modulation of multiple targets. In conclusion, adaphostin showed significant and selective activity against CML and AML cells and its development for clinical testing is warranted.  相似文献   

8.
It is an important challenge to better understand the mechanisms of tyrosine kinase inhibitors-induced apoptosis in CML cells. Thus, we have investigated how this apoptosis can be modulated by extracellular factors. Apoptosis induced by imatinib and nilotinib was determined in BCR-ABL expressing cell lines and primary CML CD34+ cells. Both molecules induced apoptosis of BCR-ABL expressing cells. This apoptosis was inhibited by protein synthesis inhibition in both K562 and CML CD34+ cells. In K562, 80% inhibition of the BCR-ABL auto-phosphorylation by either imatinib or nilotinib induced a two fold increase in Bim-EL expression and induction of apoptosis in 48 h. Bim accumulation preceded apoptosis induction which was completely abolished by depletion in Bim using shRNA. However, the anti-proliferative effect of imatinib was preserved in Bim-depleted cells. When K562 cells were cultured in a cytokine containing medium, the pro-apoptotic effect of nilotinib was decreased by 68% and this was related to a decrease in Bim-EL dephosphorylation and accumulation. Similarly, the presence of a combination of cytokines inhibited 88% of NIL- and 39% of IMA-induced apoptosis in primary CML CD34+ cells. In conclusion, both nilotinib and imatinib induce apoptosis through Bim accumulation independently of cell cycle arrest. However, the pro-apoptotic effect of both molecules can be attenuated by the presence of cytokines and growth factors, particularly concerning nilotinib. Thus BCR-ABL inhibition restores the cytokine dependence but is not sufficient to induce apoptosis when other signaling pathways are activated.  相似文献   

9.
The therapeutic efficacy of imatinib mesylate (Gleevec) is based on its specific inhibition of the BCR-ABL oncogene protein, a widely expressed tyrosine kinase in chronic myelogenous leukemia (CML) cells. The goal of this study was to evaluate glucose metabolism in BCR-ABL-positive cells that are sensitive to imatinib exposure. Two human BCR-ABL-positive cell lines (CML-T1 and K562) and one BCR-ABL-negative cell line (HC-1) were incubated with different imatinib concentrations for 96 hours. Magnetic resonance spectroscopy on cell acid extracts was performed to evaluate [1-13C]glucose metabolism, energy state, and changes in endogenous metabolites after incubation with imatinib. Imatinib induced a concentration-dependent inhibition of cell proliferation in CML-T1 (IC50, 0.69 +/- 0.06 micromol/L) and K562 cells (IC50, 0.47 +/- 0.04 micromol/L), but not in HC-1 cells. There were no metabolic changes in imatinib-treated HC-1 cells. In BCR-ABL-positive cells, the relevant therapeutic concentrations of imatinib (0.1-1.0 micromol/L) decreased glucose uptake from the media by suppressing glycolytic cell activity (C3-lactate at 0.25 mmol/L, 65% for K562 and 77% for CML-T1 versus control). Additionally, the activity of the mitochondrial Krebs cycle was increased (C4-glutamate at 0.25 micromol/L, 147% for K562 and 170% for CML-T1). The improvement in mitochondrial glucose metabolism resulted in an increased energy state (nucleoside triphosphate/nucleoside diphosphate at 0.25 micromol/L, 130% for K562 and 125% for CML-T1). Apoptosis was observed at higher concentrations. Unlike standard chemotherapeutics, imatinib, without cytocidal activity, reverses the Warburg effect in BCR-ABL-positive cells by switching from glycolysis to mitochondrial glucose metabolism, resulting in decreased glucose uptake and higher energy state.  相似文献   

10.
BCR–ABL tyrosine kinase, generated from the reciprocal chromosomal translocation t(9;22), causes chronic myeloid leukemia (CML). BCR–ABL is inhibited by imatinib; however, several mechanisms of imatinib resistance have been proposed that account for loss of imatinib efficacy in patients with CML. Previously, we showed that overexpression of the efflux drug transporter P-glycoprotein partially contributed to imatinib resistance in imatinib-resistant K562 CML cells having no BCR–ABL mutations. To explain an additional mechanism of drug resistance, we established a subclone (K562/R) of the cells and examined the BCR–ABL signaling pathway in these and wild-type K562 (K562/W) cells. We found the K562/R cells were 15 times more resistant to imatinib than their wild-type counterparts. In both cell lines, BCR–ABL and its downstream signaling molecules, such as ERK1/2, ERK5, STAT5, and AKT, were phosphorylated in the absence of imatinib. In both cell lines, imatinib effectively reduced the phosphorylation of all the above, except ERK1/2, whose phosphorylation was, interestingly, only inhibited in the wild-type cells. We then observed that phospho-ERK1/2 levels decreased in the presence of siRNA targeting BCR–ABL, again, only in the K562/W cells. However, using an ERK1/2 inhibitor, U0126, we found that we could reduce phospho-ERK1/2 levels in K562/R cells and restore their sensitivity to imatinib. Taken together, we conclude that the BCR–ABL-independent activation of ERK1/2 contributes to imatinib resistance in K562/R cells, and that ERK1/2 could be a target for the treatment of CML patients whose imatinib resistance is due to this mechanism. ( Cancer Sci 2009)  相似文献   

11.
Ju DS  Kim MJ  Bae JH  Song HS  Chung BS  Lee MK  Kang CD  Lee HS  Kim DW  Kim SH 《Cancer letters》2007,252(1):75-85
In this study, we have tried to find new targets and effective drugs for imatinib-resistant chronic myelogenous leukemia (CML) cells displaying loss of Bcr-Abl kinase target dependence. The imatinib-resistant K562/R1, -R2 and -R3 cells showed profound declines of Bcr-Abl level and concurrently exhibited up-regulation of Bcl-2 and Ku70/80, and down-regulation of Bax, DNA-PKcs and BRCA1, suggesting that loss of Bcr-Abl after exposure to imatinib might be accompanied by other cell survival mechanism. K562/R3 cells were more sensitive to camptothecin (CPT)- and radiation-induced apoptosis than K562 cells, indicating hypersensitivity of imatinib-resistant cells to DNA damaging agents. Moreover, when K562 cells were treated with the combination of imatinib with CPT, the level of Bax and the cleavage of PARP-1 and DNA-PK were significantly increased in comparison with the effects of each drug. Therefore, our study suggests that CPT can be used to treat CML with loss of Bcr-Abl expression.  相似文献   

12.
13.
Meng Y  Li Y  Li J  Li H  Fu J  Liu Y  Liu H  Chen X 《Leukemia & lymphoma》2007,48(11):2204-2212
Chronic myeloid leukemia (CML) is characterized by the presence of chimeric protein BCR-ABL associated with high tyrosine kinase (TK) activity, which leads to cell tumorogenicity, resistance to apoptosis, and differentiation. Gossypol is a natural polyphenolic compound isolated from cottonseed and has antiproliferative activity in a variety of cancer cell lines. (-)Gossypol is proved the potent component. Here we examined the growth inhibitory effect of (-)gossypol and its combination with imatinib in K562 cells. (-)Gossypol inhibited cell growth, promoted apoptosis, induced DeltaPsim loss, and cytochrome C release. Furthermore, (-)gossypol had a synergistic inhibitory effect on growth in K562 cells when combined with imatinib. Enhanced apoptosis, cytochrome C release, and caspase 3 cleavage as well as noticeable decrease of Mcl-1 and Bcl-XL were observed in K562 cells treated with both (-)gossypol and imatinib. These results suggest that (-)gossypol induced apoptosis in K562 cells through a mitochondria pathway and that the combination of imatinib and (-)gossypol might be an effective treatment for CML.  相似文献   

14.
15.
Acquired point mutations within the BCR-ABL kinase domain represent a common mechanism of resistance to ABL inhibitor therapy in patients with chronic myeloid leukemia (CML). The BCR-ABL(T315I) mutant is highly resistant to imatinib, nilotinib, and dasatinib, and is frequently detected in relapsed patients. This critical gap in resistance coverage drove development of DCC-2036, an ABL inhibitor that binds the switch control pocket involved in conformational regulation of the kinase domain. We evaluated the efficacy of DCC-2036 against BCR-ABL(T315I) and other mutants in cellular and biochemical assays and conducted cell-based mutagenesis screens. DCC-2036 inhibited autophosphorylation of ABL and ABL(T315I) enzymes, and this activity was consistent with selective efficacy against Ba/F3 cells expressing BCR-ABL (IC(50): 19 nmol/L), BCR-ABL(T315I) (IC(50): 63 nmol/L), and most kinase domain mutants. Ex vivo exposure of CML cells from patients harboring BCR-ABL or BCR-ABL(T315I) to DCC-2036 revealed marked inhibition of colony formation and reduced phosphorylation of the direct BCR-ABL target CrkL. Cell-based mutagenesis screens identified a resistance profile for DCC-2036 centered around select P-loop mutations (G250E, Q252H, Y253H, E255K/V), although a concentration of 750 nmol/L DCC-2036 suppressed the emergence of all resistant clones. A decreased concentration of DCC-2036 (160 nmol/L) in dual combination with either nilotinib or dasatinib achieved the same zero outgrowth result. Further screens for resistance due to BCR-ABL compound mutations (two mutations in the same clone) identified BCR-ABL(E255V / T315I) as the most resistant mutant. Taken together, these findings support continued evaluation of DCC-2036 as an important new agent for treatment-refractory CML.  相似文献   

16.
17.
18.
19.
AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL   总被引:6,自引:0,他引:6  
Chronic myelogenous leukaemia (CML) and Philadelphia chromosome positive (Ph+) acute lymphoblastic leukaemia (ALL) are caused by the BCR-ABL oncogene. Imatinib inhibits the tyrosine kinase activity of the BCR-ABL protein and is an effective, frontline therapy for chronic-phase CML. However, accelerated or blast-crisis phase CML patients and Ph+ ALL patients often relapse due to drug resistance resulting from the emergence of imatinib-resistant point mutations within the BCR-ABL tyrosine kinase domain. This has stimulated the development of new kinase inhibitors that are able to over-ride resistance to imatinib. The novel, selective BCR-ABL inhibitor, AMN107, was designed to fit into the ATP-binding site of the BCR-ABL protein with higher affinity than imatinib. In addition to being more potent than imatinib (IC50< 30 nM) against wild-type BCR-ABL, AMN107 is also significantly active against 32/33 imatinib-resistant BCR-ABL mutants. In preclinical studies, AMN107 demonstrated activity in vitro and in vivo against wild-type and imatinib-resistant BCR-ABL-expressing cells. In phase I/II clinical trials, AMN107 has produced haematological and cytogenetic responses in CML patients, who either did not initially respond to imatinib or developed imatinib resistance. Dasatinib (BMS-354825), which inhibits Abl and Src family kinases, is another promising new clinical candidate for CML that has shown good efficacy in CML patients. In this review, the early characterisation and development of AMN107 is discussed, as is the current status of AMN107 in clinical trials for imatinib-resistant CML and Ph+ ALL. Future trends investigating prediction of mechanisms of resistance to AMN107, and how and where AMN107 is expected to fit into the overall picture for treatment of early-phase CML and imatinib-refractory and late-stage disease are discussed.  相似文献   

20.
CUEDC2, a newly reported protein, has been found to be ubiquitously expressed in human tissues and repress NF-κB activity. To study the role of CUEDC2 in chronic myeloid leukemia (CML), we explored the function of CUEDC2 in CML cells through using the CML cell line K562 and its imatinib resistant cells K562/G01. K562 cells expressed a relatively higher level of CUEDC2 compared to K562/G01 cells. Knockdown of CUEDC2 in K562 cells resulted in decreased cell apoptosis after imatinib treatment; when CUEDC2 was overexpressed in K562/G01 cells, imatinib induced more cell apoptosis. By analyzing the activity of NF-κB, the results indicated a negative association between the expression of CUEDC2 and NF-κB signaling pathway in these CML cells. Our data suggested that the expression level of CUEDC2 has an inverse correlation with imatinib resistance and activity of NF-κB signaling pathway in CML cells, CUEDC2 could regulate imatinib sensitivity in CML cells at least partially through NF-κB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号