首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have examined whether primary human muscle-derived cells can be used in ex vivo gene therapy to deliver BMP-2 and to produce bone in vivo. Two in vitro experiments and one in vivo experiment were used to determine the osteocompetence and BMP-2 secretion capacity of cells isolated from human skeletal muscle. We isolated five different populations of primary muscle cells from human skeletal muscle in three patients. In the first in vitro experiment, production of alkaline phosphatase by the cells in response to stimulation by rhBMP-2 was measured and used as an indicator of cellular osteocompetence. In the second, secretion of BMP-2 was measured after the cell populations had been transduced by an adenovirus encoding for BMP-2. In the in vivo experiment, the cells were cotransduced with a retrovirus encoding for a nuclear localised beta-galactosidase gene and an adenovirus encoding for BMP-2. The cotransduced cells were then injected into the hind limbs of severe combined immune-deficient (SCID) mice and analysed radiographically and histologically. The nuclear localised beta-galactosidase gene allowed identification of the injected cells in histological specimens. In the first in vitro experiment, the five different cell populations all responded to in vitro stimulation of rhBMP-2 by producing higher levels of alkaline phosphatase when compared with non-stimulated cells. In the second, the five different cell populations were all successfully transduced by an adenovirus to express and secrete BMP-2. The cells secreted between 444 and 2551 ng of BMP-2 over three days. In the in vivo experiment, injection of the transduced cells into the hind-limb musculature of SCID mice resulted in the formation of ectopic bone at 1, 2, 3 and 4 weeks after injection. Retroviral labelling of the cell nuclei showed labelled human muscle-derived cells occupying locations of osteoblasts in the ectopic bone, further supporting their osteocompetence. Cells from human skeletal muscle, because of their availability to orthopaedic surgeons, their osteocompetence, and their ability to express BMP-2 after genetic engineering, are an attractive cell population for use in BMP-2 gene therapy approaches.  相似文献   

3.
Mesenchymal stem cells (MSC), easily culture-expanded from bone marrow, can significantly enhance bone defect healing. Several proteins, such as the bone morphogenetic proteins (BMPs) and in particular BMP-7, are involved in bone formation in vitro and in vivo. In this preclinical study, we evaluated if the association of human MSC (hMSC) with BMP-7 had synergic action on bone healing. Rat femoral defects (n=12) were treated with: autoclaved bone and mononucleated cells (MNC) as control group G1; bone and hMSC, group G2; bone with BMP-7, group G3; bone and hMSC plus BMP-7, group G4. Defect regeneration was evaluated with plain radiographs after 2, 4, 8 and 12 weeks and with histological analysis. We observed organized trabeculae bridging between the osteotomic ends of the host bone in rats treated with the association of hMSC and rhBMP-7. These trabeculae, formed by a core of devitalized tissue surrounded by osteoblasts, osteocytes and osteoclasts, were continuous with a cortical-like structure of bony tissue. Such new bone formation of the group treated with the association of hMSC and rhBMP-7 (G4) was clearly superior compared to rats treated with rhBMP-7 (G2) or hMSC (G3) alone, as shown by radiographic analysis and histological study. The present study suggests that the association of hMSC and BMP-7 is more effective than hMSC or BMP-7 alone in the healing of femoral defects in rats. Further studies with larger samples are required to confirm these results and to evaluate the best dosage.  相似文献   

4.
BACKGROUND: Recombinant human bone morphogenetic proteins (rhBMPs) can induce bone formation, but the inability to identify an ideal delivery system limits their clinical application. We used ex vivo adenoviral gene transfer to create BMP-2-producing bone-marrow cells, which allow delivery of the BMP-2 to a specific anatomical site. The autologous BMP-2-producing bone-marrow cells then were used to heal a critical-sized femoral segmental defect in syngeneic rats. METHODS: Femoral defects in five groups of rats were filled with 5 x 10(6) BMP-2-producing bone-marrow cells, created through adenoviral gene transfer (twenty-four femora, Group I); twenty micrograms of rhBMP-2 (sixteen femora, Group II); 5 x 10(6) beta-galactosidase-producing rat-bone-marrow cells, created through adenoviral gene transfer of the lacZ gene (twelve femora, Group III); 5 x 10(6) uninfected rat-bone-marrow cells (ten femora, Group IV); or guanidine hydrochloride-extracted demineralized bone matrix only (ten femora, Group V). Guanidine hydrochloride-extracted demineralized bone matrix served as a substrate in all experimental groups. Specimens that were removed two months postoperatively underwent histological and histomorphometric analysis as well as biomechanical testing. RESULTS: Twenty-two of the twenty-four defects in Group I (BMP-2-producing bone-marrow cells) and all sixteen defects in Group II (rhBMP-2) had healed radiographically at two months postoperatively compared with only one of the thirty-two defects in the three control groups (beta-galactosidase-producing rat-bone-marrow cells, uninfected rat-bone-marrow cells, and guanidine hydrochloride-extracted demineralized bone matrix alone). Histological analysis of the specimens revealed that defects that had received BMP-2-producing bone-marrow cells (Group I) were filled with coarse trabecular bone at two months postoperatively, whereas in those that had received rhBMP-2 (Group II) the bone was thin and lace-like. Defects that had been treated with bone-marrow cells producing beta-galactosidase (Group III), uninfected bone-marrow cells (Group IV), or guanidine hydrochloride-extracted demineralized bone matrix only (Group V) demonstrated little or no bone formation. Histomorphometric analysis revealed a significantly greater total area of bone formation in the defects treated with the BMP-2-producing bone-marrow cells than in those treated with the rhBMP-2 (p = 0.036). Biomechanical testing demonstrated no significant differences, with the numbers available, between the healed femora that had received BMP-2-producing bone-marrow cells and the untreated (control) femora with respect to ultimate torque to failure or energy to failure. CONCLUSIONS: This study demonstrated that BMP-2-producing bone-marrow cells created by means of adenoviral gene transfer produce sufficient protein to heal a segmental femoral defect. We also established the feasibility of ex vivo gene transfer with the use of biologically acute autologous short-term cultures of bone-marrow cells.  相似文献   

5.
壳聚糖与重组人骨形成蛋白2复合物体外成骨作用的研究   总被引:3,自引:0,他引:3  
目的探讨复合重组人骨形成蛋白2(recombinanthumanbonemorphogeneticprotein2,rhBMP-2)的壳聚糖-明胶支架的体外成骨作用。方法将rhBMP-2与壳聚糖-明胶支架复合,按2×104/ml的密度接种成骨细胞系或成肌细胞系至rhBMP-2复合材料上,以及无rhBMP-2复合的对照材料上。A组(2T3成骨细胞接种组),其中实验A组复合有rhBMP-2的材料14块,分别于接种培养第3、7、14和21天各取3块,以管家基因β-tubulin为内参照,RT-PCR行半定量分析,测定骨钙素基因表达水平,余2块于第14天终止培养,茜素红-S染色观察钙盐沉积情况;对照A组未复合rhBMP-2的材料5块,接种培养至14d终止,其中3块用于测定骨钙素基因表达,2块测定钙盐沉积。B组(C2C12成肌细胞接种组),实验组及对照组情况、培养时间及检测指标同A组。另取接种有rhBMP-2的材料2块接种2T3成骨细胞,培养3d后扫描电镜观察细胞与材料的黏附情况。结果A组培养3d,扫描电镜可见成骨细胞紧密黏附于多孔材料网表面,生长状态良好。实验A组成骨细胞中骨钙素基因的表达为1.28±0.17,对照A组14d为0.56±0.09,表明复合rhBMP-2可促进材料中骨钙素基因表达,两者差异有统计学意义(P<0.01);rhBMP-2还可诱导不表达骨钙素基因的C2C12成肌细胞出现基因表达,B组培养21d,实验B组为0.58±0.13,对照B组为0,差异有统计学意义(P<0.01)。茜素红-S染色可见,A组材料网络内均有不同程度的钙盐沉积。接种相同的细胞时,复合有rhBMP-2的材料中有更多的钙盐沉积。结论复合有rhBMP-2的壳聚糖-明胶人工骨支架材料在体外具有良好的诱导成骨能力。  相似文献   

6.
Marrony S  Bassilana F  Seuwen K  Keller H 《BONE》2003,33(3):426-433
Bone-forming osteoblasts differentiate from pluripotent mesenchymal stem cells (MSCs) in a multistage process that can be modeled in vitro using MSCs isolated from adult human trabecular bone or bone marrow. To identify new genes involved in osteoblast differentiation, we have performed large-scale gene expression profiling using high-density cDNA microarrays in primary human MSCs treated with the known osteogenic agent bone morphogenetic protein 2 (BMP-2). The vascular endothelial growth factor (VEGF) family member placental growth factor (PlGF) was found as an early regulated gene whose induction was already detected after 2 h treatment with BMP-2. Tissue distribution analysis of PlGF mRNA expression using microarrays revealed a very restricted expression of PlGF only in BMP-2-treated MSCs and in placenta as expected. Ribonuclease protection assay (RPA) confirmed the induction of PlGF and showed preferential expression of the PlGF-1 isoform over PLGF-2 in MSCs and MG63 cells. BMP-2 stimulated PlGF expression in MG63 cells with an EC50 of about 50 ng/ml and mRNA levels peaked between 24 and 32 h after stimulation. Furthermore, induction of PlGF by BMP-2 appeared specific, as other osteogenic agents including vitamin D3, transforming growth factor beta, and basic fibroblast growth factor were inactive. BMP-2 stimulated PlGF secretion from MG63 and MSC cells, but PlGF had no effect on MSC proliferation and osteoblastic differentiation. Based on the known function of PlGF in the recruitment of endothelial and hematopoietic stem cells, these results suggest a paracrine role for MSC-derived PlGF in the angiogenesis and hematopoiesis that accompany BMP-2-induced bone formation.  相似文献   

7.
We established the clonal mesenchymal cell line, GFP-C3 (C3), which differentiates into osteoblasts in response to BMP-2 from calvariae of newborn green fluorescence protein (GFP) transgenic mice. This cell line cultured with control medium expressed low levels of alkaline phosphatase (ALP) activity and osterix mRNA and undetectable ALP and osteocalcin mRNA. Incubation of these cells with rhBMP-2 increased ALP activity dose-dependently and induced substantial levels of ALP, osteocalcin and osterix mRNA expression. C3 cells infected with adenovirus vector encoding BMP-2 (AdBMP-2) or Runx2 (AdRunx2) showed greatly increased ALP mRNA expression in a time-dependent fashion. Transduction with AdRunx2-induced expression of ALP and osteocalcin mRNA, but not osterix mRNA by day 3. Transduction with AdBMP-2 induced apparent expression of ALP and osterix mRNA by day 1 after transduction, but induced only weak expression of osteocalcin mRNA day 3 after transduction. Transplantation of C3 cells transduced with AdBMP-2 into back subfascia in wild-type mice with a complex of poly-d,l-lactic-co-glycolic acid/gelatin sponge (PGS) generated ectopic bone formation involving GFP-positive osteoblasts and osteocytes 2 weeks after transplantation. C3 cells transduced with AdRunx2 or AdLacZ failed to induce ectopic bone formation. Transplantation of C3 cells transduced with AdBMP-2 into craniotomy defects in wild-type mice using PGS as a carrier induced bone formation 2 weeks after transplantation, and replaced defects 4 weeks after transplantation. C3 cells transduced with AdRunx2 failed to induce bone repair after transplantation into craniotomy defects. These results indicate that C3 cells retain differentiation potential into osteoblasts in response to BMP-2. They are useful tools for analyzing the process of osteoblast differentiation in vivo after transplantation.  相似文献   

8.
Normal bone formation is a prolonged process that is carefully regulated and involves sequential expression of growth regulatory factors by osteoblasts as they proliferate and ultimately differentiate. Since this orderly sequence of gene expression by osteoblasts suggests a cascade effect, and BMP-2 is capable of initiating and maintaining this effect, we examined the effects of BMP-2 on expression of other BMPs and compared these effects with the expression pattern of bone cell differentiation marker genes in primary cultures of fetal rat calvarial (FRC) osteoblasts. To examine the gene expression profile during bone cell differentiation and bone formation, we also examined the effects of rBMP-2 on bone formation in vivo and in vitro. rBMP-2 stimulated bone formation on the periosteal surface of mice when 500 ng/day rBMP-2 was injected subcutaneously. When rBMP-2 was added to primary cultures of FRC osteoblasts, it accelerated mineralized nodule formation in a time and concentration-dependent manner (10–40 ng/ml). rBMP-2 (40 ng/ml) enhanced BMP-3 and -4 mRNA expression during the mineralization phase of primary cultures of FRC osteoblasts. Enhancement of BMP-3 and -4 mRNA expression by rBMP-2 was associated with increased expression of bone cell differentiation marker genes, alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), osteopontin (OP), and bone sialoprotein (BSP). These results suggest that BMP-2 enhances expression of other BMP genes during bone cell differentiation. BMP-2 may act in a paracrine fashion in concert with other BMPs it induces to stimulate bone cell differentiation and bone formation during remodeling. Received: 27 November 1995 / Accepted: 19 July 1996  相似文献   

9.
Recombinant human BMP-2 (rhBMP-2) is a potent osteoinductive agent, but has been associated not only with bone formation, but also osteoclastogenesis and bone resorption. Osteoprotegerin (OPG) is a RANKL inhibitor that blocks differentiation and function of osteoclasts. We hypothesized that the combination of local BMP-2 (recombinant protein or a product of gene therapy) plus systemic OPG-Fc is more effective than BMP-2 alone in promoting bone repair. To test this hypothesis we used a mouse critical-sized femoral defect model. Col2.3eGFP (osteoblastic marker) male mice were treated with rhBMP-2 (group I), rhBMP-2 and systemic OPG (group II), rhBMP-2 and delayed administration of OPG (group III), mouse BM cells transduced with a lentiviral vector containing the BMP-2 gene (LV-BMP-2; group IV), LV-BMP-2 and systemic OPG (group V), a carrier alone (group VI) and administration of OPG alone (group VII). All bone defects treated with BMP-2 (alone or combined with OPG) healed, whereas minimal bone formation was noted in animals treated with the carrier alone or OPG alone. MicroCT analysis showed that bone volume (BV) in rhBMP-2 + OPG and LV-BMP-2 + OPG groups was significantly higher compared to rhBMP-2 alone (p < 0.01) and LV-BMP-2 alone (p < 0.001). Similar results were observed in histomorphometry, with rhBMP-2 alone defects exhibiting significantly lower bone area (B.Ar) compared to rhBMP-2 + OPG defects (p < 0.005) and LV-BMP-2 defects having a significantly lower B.Ar compared to all BMP-2 + OPG treated groups (p  0.01). TRAP staining demonstrated a major osteoclast response in the groups that did not receive OPG (rhBMP-2, LV-BMP-2 and sponge alone) beginning as early as 7 days post-operatively. In conclusion, we demonstrated that locally delivered BMP-2 (recombinant protein or gene therapy) in combination with systemically administered OPG improved bone healing compared to BMP-2 alone in a mouse critical-sized bone defect. These data indicate that osteoclasts can diminish healing responses to BMP-2 and that RANKL inhibition may thus accentuate BMP-2 efficacy.  相似文献   

10.
Demineralized bone induces chondrogenic differentiation of human dermal fibroblasts in vitro. Analyses of signaling gene expression showed that DBP and BMP-2 regulate common and distinct pathways. Although BMP-2 was originally isolated as a putative active factor in DBP, rhBMP-2 and DBP do not affect all the same genes or in the same ways. INTRODUCTION: Demineralized bone powder (DBP) induces chondrogenic differentiation of human dermal fibroblasts (hDFs) in 3D culture, but the initiating mechanisms have not been identified. We tested the hypotheses that DBP would affect expression of signaling genes and that DBP's effects would differ from the effects of bone morphogenetic proteins (BMPs). MATERIALS AND METHODS: A chondroinduction model was used in which hDFs were cultured with and without DBP in a porous collagen sponge. BMP-2 was delivered in a square of absorbable collagen felt inserted into a collagen sponge. Total RNA was isolated after 3 days of culture, a time that precedes expression of the chondrocyte phenotype. Gene expression was evaluated with two targeted macroarray screens. Effects of DBP and rhBMP-2 were compared by macroarray, RT-PCR, and Northern hybridization analysis of selected genes in the transforming growth factor (TGF)-beta/BMP signaling pathways. RESULTS: By macroarray analysis of 16 signal transduction pathways, the following pathways were modulated in hDFs by DBP: TGF-beta, insulin/LDL, hedgehog, PI3 kinase/AKT, NF-kappaB, androgen, retinoic acid, and NFAT. There was convergence and divergence in DBP and rhBMP-2 regulation of genes in the TGF-beta/BMP signaling pathway. Smad target genes were the predominant group of DBP- or rhBMP-2-regulated genes. Several genes (IGF-BP3, ID2, and ID3) showed similar responses (increased expression) to DBP and rhBMP-2. In contrast, many of the genes that were greatly upregulated by DBP (TGFBI/betaig-h3, Col3A1, TIMP1, p21/Waf1/Cip1) were barely affected by rhBMP-2. CONCLUSION: These findings indicate that multiple signaling pathways are regulated in fibroblasts by DBP, that one of the major pathways involves Smad target genes, and that DBP and rhBMP-2 elicit different gene expression responses in hDFs. Although BMP-2 was originally isolated as a putative inductive factor in DBP, rhBMP-2 and DBP do not affect all the same genes or in the same ways.  相似文献   

11.
复合骨在兔腰椎融合过程中相关基因表达调控的影响   总被引:1,自引:0,他引:1  
目的 观察复合骨即重组人骨形态发生蛋白-2(rhBMP-2)/异体骨不同时间点融合骨组织中BMP-2、血管内皮生长因子(VEGF)的表达.方法 将新西兰大白兔60只随机分为3组,在L5、L6横突间行后路植骨融合术,分别植入复合骨条、自体骨条及异体骨条,于术后第1、2、3、4、5周取融合标本,用实时荧光定量逆转录聚合酶链反应(real time RT-PCR)分析内源性BMP-2和VEGF基因水平的变化.结果 术后第3周,复合骨组BMP-2为(5.3519±1.0384),VEGF为(0.9257±0.2534),均达到峰值且高于异体骨组和自体骨组(P<0.05),之后则缓慢下降.第4周后,内源性BMP-2表达仍保持较高水平,但VEGF的水平与自体骨组和异体骨组差异无统计学意义(P>0.05).结论 复合骨能有效地诱导内源性BMP-2和VEGF的表达,促进了成骨效应.  相似文献   

12.
The osteogenic factors bone morphogenetic protein (BMP-7), platelet-derived growth factor (PDGF)-BB, and fibroblast growth factor (FGF-2) regulate the recruitment of osteoprogenitor cells and their proliferation and differentiation into mature osteoblasts. However, their mechanisms of action on osteoprogenitor cell growth, differentiation, and bone mineralization remain unclear. Here, we tested the hypothesis that these osteogenic agents were capable of regulating osteoblast differentiation and bone formation in vitro. Normal human bone marrow stromal (HBMS) cells were treated with BMP-7 (40 ng ml(-1)), PDGF-BB (20 ng ml(-1)), FGF-2 (20 ng ml(-1)), or FGF-2 plus BMP-7 for 28 days in a serum-containing medium with 10 mM beta-glycerophosphate and 50 microg ml(-1) ascorbic acid. BMP-7 stimulated a morphological change to cuboidal-shaped cells, increased alkaline phosphatase (ALKP) activity, bone sialoprotein (BSP) gene expression, and alizarin red S positive nodule formation. Hydroxyapatite (HA) crystal deposition in the nodules was demonstrated by Fourier transform infrared (FTIR) spectroscopy only in BMP-7- and dexamethasone (DEX)-treated cells. DEX-treated cells appeared elongated and fibroblast-like compared to BMP-7-treated cells. FGF-2 did not stimulate ALKP, and cell morphology was dystrophic. PDGF-BB had little or no effect on ALKP activity and biomineralization. Alizarin Red S staining of cells and calcium assay indicated that BMP-7, DEX, and FGF-2 enhanced calcium mineral deposition, but FTIR spectroscopic analysis demonstrated no formation of HA similar to human bone in control, PDGF-BB-, and FGF-2-treated samples. Thus, FGF-2 stimulated amorphous octacalcium phosphate mineral deposition that failed to mature into HA. Interestingly, FGF-2 abrogated BMP-7-induced ALKP activity and HA formation. Results demonstrate that BMP-7 was competent as a sole factor in the differentiation of human bone marrow stromal cells to bone-forming osteoblasts confirmed by FTIR examination of mineralized matrix. Other growth factors, PDGF, and FGF-2 were incompetent as sole factors, and FGF-2 inhibited BMP-7-stimulated osteoblast differentiation.  相似文献   

13.
目的 观察腺病毒介导的人骨形态发生蛋白绿色荧光蛋白基因(Ad-GFP-hBMP-2)转染对骨髓间质干细胞(bMSCs)成骨能力的影响.方法 取日本大耳白兔4只自双侧股骨远端抽取骨髓培养bMSCs.以Ad-GFP-hBMP-2基因(实验组)及Ad-GFP(对照组)基因转染bMSCs后,用ALP检测试剂盒检测两组细胞的ALP活性;原位杂交检测两组细胞I型胶原的表达;Western blot 检测细胞中BMP-2的表达.将转染后24 h的bMSCs接种到裸鼠体内,术后第4、8、12周观察成骨情况.结果 转Ad-GFP-hBMP-2基因组和Ad-GFP组各时间段ALP分泌量差异分别有统计学意义(P<0.01);实验组I型胶原原位杂交实验组为阳性.实验组成骨阳性率为90%,对照组为40%.结论 bMSCs经Ad-GFP-hBMP-2基因转染后能高效表达BMP-2并诱导成骨.腺病毒介导人BMP-2转基因可以提高bMSCs的成骨能力.  相似文献   

14.
Unloading can prevent bone formation by osteoblasts. To study this mechanism, we focused on a ubiquitin ligase, Cbl-b, which was highly expressed in osteoblastic cells during denervation. Our results suggest that Cbl-b may mediate denervation-induced osteopenia by inhibiting IGF-I signaling in osteoblasts. INTRODUCTION: Unloading, such as denervation (sciatic neurectomy) and spaceflight, suppresses bone formation by osteoblasts, leading to osteopenia. The resistance of osteoblasts to growth factors contributes to such unloading-mediated osteopenia. However, a detailed mechanism of this resistance is unknown. We first found that a RING-type ubiquitin ligase, Cbl-b, was highly expressed in osteoblastic cells after sciatic neurectomy in mice. In this study, we reasoned that Cbl-b played an important role in the resistance of osteoblasts to IGF-I. Materials AND METHODS: Cbl-b-deficient (Cbl-b(-/-)) or wildtype (Cbl-b(+/+)) mice were subjected to sciatic neurectomy. Bone formation in these mice was assessed by calcein labeling and histomorphometric analyses. We examined IGF-I signaling molecules in femora of these mice by Western blot and immunohistochemical analyses. We also examined the mitogenic response of Cbl-b-overexpressing or -deficient osteoblastic cells to various growth factors. RESULTS: In Cbl-b(+/+) mice, denervation decreased femur mass and bone formation, whereas it increased the expression of Cbl-b protein in osteoprogenitor cells and in osteocalcin-positive cells (osteoblastic cells) in hindlimb bone. In contrast, in Cbl-b(-/-) mice, bone mass and bone formation were sustained during denervation. Denervation inhibited the mitogenic response of osteoprogenitor cells most significantly to IGF-I. Therefore, we focused on Cbl-b-mediated modification of IGF-I signaling. Denervation decreased the amounts of insulin receptor substrate-1 (IRS-1), phosphatidly inositol 3-phosphate kinase (PI3K), and Akt-1 proteins in femora of Cbl-b(+/+) mice, whereas the amounts of these IGF-I signaling molecules in femora of Cbl-b(-/-) mice were constant after denervation. On a cellular level, primary osteoblastic cells from Cbl-b(-/-) mice were more stimulated to proliferate by IGF-I treatment compared with those from Cbl-b(+/+) mice. Furthermore, overexpression of Cbl-b increased ubiquitination and degradation of IRS-1 in primary Cbl-b(-/-) osteoblastic cells, leading to their impaired mitogenic response to IGF-I. CONCLUSIONS: These results suggest that Cbl-b induces resistance of osteoblasts to IGF-I during denervation by increasing IRS-1 degradation and that Cbl-b-mediated modification of IGF-I signaling may contribute to decreased bone formation during denervation.  相似文献   

15.
IGF-I plays an important anabolic role in stimulating bone formation and maintaining bone mass. We show that the pro-proliferative, anti-apoptotic, and functional responses to IGF-I in bone and BMSCs decrease with aging. These changes are associated with impaired receptor activation and signal transduction through the MAPK and PI3K pathways. INTRODUCTION: IGF-I is a potent anabolic agent having effects across diverse tissues and cell types. With aging, bone becomes resistant to the anabolic actions of IGF-I. To examine the effects of aging on bone responsiveness to IGF-I, we measured the pro-proliferative, anti-apoptotic, and functional responses of bone and bone marrow stromal cells (BMSCs) to IGF-I and evaluated IGF-I signal transduction in young, adult, and old mice. MATERIALS AND METHODS: Male C57BL/6 mice 6 wk (young), 6 mo (adult), and 24 mo (old) were treated with IGF-I for 2 wk using osmotic minipumps, and osteoblast proliferation (BrdU labeling) in vivo, and osteoprogenitor number (BMSC culture and calcium nodule formation) were measured. Proliferation, apoptosis, and expression of key osteoblast factors (alkaline phosphatase, collagen, osteocalcin, RANKL, osteoprotegerin (OPG), macrophage-colony stimulating factor [M-CSF]) and IGF-I signaling elements and their activation in IGF-I-treated cells were studied using QRT-PCR and Western blot analysis. Data were analyzed using ANOVA. RESULTS: Aging decreased the basal and IGF-I-stimulated number of BrdU-labeled osteoblasts and reduced the ability of IGF-I to stimulate osteoprogenitor formation (calcium nodule number) by 50%. The pro-proliferative and anti-apoptotic actions of IGF-I were blunted in cells from old animals. These changes were accompanied by age-related alterations in the ability of IGF-I to regulate alkaline phosphatase, collagen, osteocalcin, RANKL, OPG, and M-CSF expression. IGF-I binding was normal, but IGF-I receptor mRNA and protein expression was increased in aged animals by 2- and 10-fold, respectively. The age-related changes in proliferation, apoptosis, and function were accompanied by loss of IGF-I-induced signaling at the receptor level and at key regulatory sites along the MAPK (ERK1/2) and PI3K (AKT) pathways. CONCLUSIONS: Our data show that aging is accompanied by loss of bone and BMSC/osteoblast responsiveness to IGF-I and that these changes are associated with resistance to IGF-I signaling that involve receptor activation and downstream signaling events.  相似文献   

16.
17.
IGF-I production by mouse osteoblasts   总被引:1,自引:0,他引:1  
Mouse osteoblasts contain and secrete insulinlike growth factor I (IGF-I), which can be measured by radioimmunoassay after separation from endogenous IGF-I binding activity. Our studies indicate that IGF-I is produced by all bone cell populations prepared by sequential digestion of mouse calvaria with collagenase and protease. Furthermore, relatively small amounts of IGF-I are cell associated, and IGF-I is recovered primarily in the cell medium after 24 h of culture. Basal IGF-I secretion is also density dependent, and secretion per cell is approximately 20-fold higher when cultures are inoculated at 0.125 versus 1.0 x 10(5) cells per cm2. Growth hormone increased the secretion of IGF-I only in cells released in the earlier stages of digestion. These growth hormone-responsive populations were previously shown to differ from late released cells in that they show a lower expression of the osteoblastic phenotype, harbor more EGF receptors per cell, and have a higher proliferative response to low doses of exogenous IGF-I and EGF. These data reaffirm the presence of different subclasses of bone cells in populations obtained by sequential digestion of bone and suggest that growth hormone stimulates IGF-I secretion by immature osteoblasts.  相似文献   

18.
Osteogenesis and angiogenesis are inter-linked and tightly regulated processes involved in growth, repair, and bone remodeling. Bone morphogenic protein 2 (BMP-2), vascular endothelial growth factor (VEGF), pleiotrophin (PTN) and thrombin-related peptide, TP508 have all been found to have the ability to promote bone fracture healing by enhancing both the osteogenesis and angiogenesis processes. One of the underlying mechanisms proposed is that mediators for osteogenesis may also be involved in mediating angiogenesis and vice versa. The aim of this study was to examine the chemotactic effects of rhBMP-2, rhVEGF(165), rhPTN and TP508 on human osteoblasts and endothelial cells. Using a direct-viewing chemotaxis assay system, we report for the first time, the direct quantitative observation of chemotaxis of both human osteoblastc cells and microvascular endothelial cells towards sources of rhBMP-2, rhVEGF(165), rhPTN and TP508. This study confirmed that rhBMP-2, rhVEGF(165), rhPTN and TP508 have chemotactic effects on both human osteoblastic and endothelial cells, indicating that these factors are directly involved in promoting angiogenesis and osteogenesis by recruiting osteoblasts and endothelial cells via chemotaxis.  相似文献   

19.
Tang X  Fu DH  Yang SH  Chen YC  Li Q  Yu CN  Xu WH  Li J  Ye SN 《中华外科杂志》2008,46(8):614-617
目的 检测并分析骨形态发生蛋白2(BMP-2)及血管内皮生长因子(VEGF)在骨发育基因表达谱及诱导成骨过程中表达规律及相互作用,为工程化BMP-2蛋白在骨科临床治疗中的运用提供依据.方法 应用基因芯片技术建立妊娠胎鼠肢芽发育成骨过程的基因表达谱,分析BMP-2与VEGF在发育成骨过程中的表达规律;检测VEGF mRNA在小鼠外源性工程化BMP-2蛋白体内诱导软骨内成骨过程中表达情况,结合组织学、免疫组织化学观察结果与基因表达谱分析结果,分析BMP-2与VEGF在软骨内成骨过程中的相互作用.结果 BMP-2及VEGF在发育成骨过程的基因表达谱中以及VEGF表达信号在外源性BMP-2诱导的体内软骨内成骨过程中,均呈现以诱导间质细胞向软骨细胞分化-肥大-吸收直至骨形成这一过程为轴线的时间-浓度表达关系.结论 BMP-2及VEGF在骨发育及诱导成骨过程中均存在协同促进作用,工程化BMP-2蛋白将在骨科临床治疗中得到更广泛的运用.  相似文献   

20.
Osteotropic growth factors play an important role in bone metabolism. Nevertheless, knowledge about their expression in relation to distraction osteogenesis remains limited. The aim of the present study was to determine the expression of growth hormone (GH), growth hormone receptor (GHR), insulin-like growth factor I (IGF-I), insulin-like growth factor II (IGF-II), and bone morphogenetic protein 2 (BMP-2) in distraction-induced bone regeneration. Expression of these factors was assessed during the consolidation phase, comparing distraction osteogenesis with osteotomy-induced bone formation. Real-time PCR was performed as a semiquantitative measurement of mRNA, and the relative expression levels of these factors were determined. In addition, plasma GH profiles and plasma concentrations of IGF-I, IGF-II, and insulin-like growth factor-binding protein 4 and -6 (IGFBP-4 and -6) were measured to assess their potential systemic role during bone formation. Expression of GHR, IGF-I, and BMP-2 had significantly increased in comparison with the expression of these factors in mature bone. Expression of GHR was significantly higher in distraction-induced bone regenerate than in osteotomy-induced bone. No significant differences were found for the expression of IGF-I and BMP-2 between distraction and osteotomy. Plasma concentrations of GH, IGF-I, IGF-II, IGFBP-4, and IGFBP-6 did not demonstrate any significant differences between treatment groups and controls. Upregulation of GHR expression in distraction osteogenesis may enhance sensitivity to endogenous systemic GH and thus promote consolidation of the regenerated bone. Changes in the systemic osteotropic growth factors GH, IGF-I, IGF-II, IGFBP-4, and IGFBP-6 do not seem to be of importance during distraction osteogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号