首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,6-Dichloroisonicotinic acid (INA) and salicylic acid (SA) are potent inducers of plant defense responses including the synthesis of pathogenesis-related (PR) proteins and the development of enhanced disease resistance. A soluble SA-binding protein has been purified from tobacco with an affinity and specificity of binding that suggest it is a SA receptor. Recently, this protein has been shown to be a catalase whose enzymatic activity is inhibited by SA binding. We have proposed that the resulting increase in intracellular levels of reactive oxygen species plays a role in the induction of defense responses such as PR protein gene expression. Here we report that INA, like SA, binds the SA-binding protein/catalase and inhibits its enzymatic activity. In fact, the dose-response curves for inhibition of catalase by these two compounds are similar. Furthermore, the ability of both INA analogues and SA derivatives to bind and inhibit tobacco catalase correlates with their biological activity to induce PR-1 gene expression and enhance resistance to tobacco mosaic virus. Comparison of the structures of INA, SA, and their analogues reveals several common features that appear to be important for biological activity. Thus, these results not only suggest that INA and SA share the same mechanism of action that involves binding and inhibition of catalase but also further indicate an important role for reactive oxygen species in the induction of certain plant defense responses. This is supported by the demonstration that INA-mediated PR-1 gene activation is suppressed by antioxidants.  相似文献   

2.
3.
Salicylic acid (SA) is a critical hormone for signaling innate immunity in plants. Here we present the purification and characterization of SA-binding protein 2 (SABP2), a tobacco protein that is present in low abundance and specifically binds SA with high affinity. Sequence analysis predicted that SABP2 is a lipase belonging to the alpha/beta fold hydrolase super family. Confirming this prediction, recombinant SABP2 exhibited lipase activity against several synthetic substrates. Moreover, this lipase activity was stimulated by SA binding and may generate a lipid-derived signal. Silencing of SABP2 expression suppressed local resistance to tobacco mosaic virus, induction of pathogenesis-related 1 (PR-1) gene expression by SA, and development of systemic acquired resistance. Together, these results suggest that SABP2 is an SA receptor that is required for the plant immune response. We further propose that SABP2 belongs to a large class of ligand-stimulated hydrolases involved in stress hormone-mediated signal transduction.  相似文献   

4.
In recent years, it has become apparent that salicylic acid (SA) plays an important role in plant defense responses to pathogen attack. Previous studies have suggested that one of SA's mechanisms of action is the inhibition of catalase, resulting in elevated levels of H2O2, which activate defense-related genes. Here we demonstrate that SA also inhibits ascorbate peroxoidase (APX), the other key enzyme for scavenging H2O2. The synthetic inducer of defense responses, 2,6-dichloroisonicotinic acid (INA), was also found to be an effective inhibitor of APX. In the presence of 750 microM ascorbic acid (AsA), substrate-dependent IC50 values of 78 microM and 95 microM were obtained for SA and INA, respectively. Furthermore, the ability of SA analogues to block APX activity correlated with their ability to induce defense-related genes in tobacco and enhance resistance to tobacco mosaic virus. Inhibition of APX by SA appears to be reversible, thus differing from the time-dependent, irreversible inactivation by suicide substrates such as p-aminophenol. In contrast to APX, the guaiacol-utilizing peroxidases, which participate in the synthesis and crosslinking of cell wall components as part of the defense response, are not inhibited by SA or INA. The inhibition of both catalase and APX, but not guaiacol peroxidases, supports the hypothesis that SA-induced defense responses are mediated, in part, through elevated H2O2 levels or coupled perturbations of the cellular redox state.  相似文献   

5.
In plants, salicylic acid (SA) plays an important role in signaling both local and systemic defense responses. Previous efforts to identify SA effector proteins in tobacco have led to the isolation of two soluble cytoplasmic SA-binding proteins (SABPs): catalase, SABP, and an approximately 25-kDa protein, SABP2. Here we describe the identification of an SA-binding protein, SABP3, in the stroma of tobacco chloroplasts. SABP3 bound SA with an apparent dissociation constant (K(d)) of 3.7 microM and exhibited much greater affinity for biologically active than inactive analogs. Purification and partial sequencing of SABP3 indicated that it is the chloroplast carbonic anhydrase (CA). Confirming this finding, recombinant tobacco chloroplast CA exhibited both CA enzymatic and SA-binding activities. Expression of this protein in yeast also demonstrated that CA/SABP3 has antioxidant activity. A second gene encoding CA was also cloned, and its encoded protein was shown to behave similarly to that purified as SABP3. Finally, silencing of CA gene expression in leaves suppressed the Pto:avrPto-mediated hypersensitive response in disease resistance. These results demonstrate that SA may act through multiple effector proteins in plants and shed further light on the function of CA in chloroplasts.  相似文献   

6.
Signal transduction in systemic acquired resistance   总被引:18,自引:0,他引:18       下载免费PDF全文
Systemic acquired resistance (SAR) is an important component of plant defense against pathogen infection. Accumulation of salicylic acid (SA) is required for the induction of SAR. However, SA is apparently not the translocated signal but is involved in transducing the signal in target tissues. Interestingly, SA accumulation is not required for production and release of the systemic signal. In addition to playing a pivotal role in SAR signal transduction, SA is important in modulating plant susceptibility to pathogen infection and genetic resistance to disease. It has been proposed that SA inhibition of catalase results in H2O2 accumulation and that therefore H2O2 serves as a second messenger in SAR signaling. We find no accumulation of H2O2 in tissues expressing SAR; thus the role of H2O2 in SAR signaling is questionable.  相似文献   

7.
Plants possess multiple resistance mechanisms that guard against pathogen attack. Among these are inducible systems such as systemic acquired resistance (SAR). SAR is activated by pathogen exposure and leads to an increase in salicylic acid (SA), high-level expression of SAR-related genes, and resistance to a spectrum of pathogens. To identify components of the signal transduction pathways regulating SAR, a mutant screen was developed that uses 2,6-dichloroisonicotinic acid as an activator of SAR gene expression and pathogen resistance, followed by assays for resistance to the fungal pathogen Peronospora parasitica. Mutants from this screen were subsequently examined to assess their defense responses. We describe here a recessive mutation that causes a phenotype of insensitivity to chemical and biological inducers of SAR genes and resistance. These data indicate the existence of a common signaling pathway that couples these diverse stimuli to induction of SAR genes and resistance. Because of its non-inducible immunity phenotype, we call this mutant nim1. Although nim1 plants fail to respond to SA, they retain the ability to accumulate wild-type levels of SA, a probable endogenous signal for SAR. Further, the ability of nim1 plants to support growth of normally incompatible races of a fungal pathogen indicates a role for this pathway in expression of genetically determined resistance, consistent with earlier findings for transgenic plants engineered to break down SA. These results suggest that the wild-type NIM1 gene product functions in a pathway regulating acquired resistance, at a position downstream of SA accumulation and upstream of SAR gene induction and expression of resistance.  相似文献   

8.
Tobacco plants transformed with rgp1, a gene encoding a Ras-related small GTP binding protein, were previously shown to exhibit a distinct reduction in apical dominance with increased tillering. These abnormal pheno-types were later found to be associated with elevated levels of endogenous cytokinins (zeatin and zeatin riboside). Analysis of the expression of several genes known to be affected by cytokinins identified a clear increase in the mRNA levels of genes encoding acidic pathogenesis-related proteins in both transgenic plants and their progenies. This increase was directly attributable to elevated levels of the acidic pathogenesis-related protein inducers, salicylic acid (SA) and salicylic acid beta-glucoside, due to an abnormal and sensitive response of the transgenic plants to wounding. In contrast, mRNA levels of the gene for proteinase inhibitor II, which is normally induced by wounding, were generally suppressed in the same wounded plants, probably due to SA overproduction. The changes in SA and pathogenesis-related protein levels in the transgenic plants resulted in a distinct increase in their resistance to tobacco mosaic virus infection. In normal plants, the wound and pathogen-induced signal transduction pathways are considered to function independently. However, the wound induction of SA in the transgenic plants suggests that overexpression of this small GTP binding protein somehow interferes with the normal signal pathways, possibly by affecting cytokinin biosynthesis, and results in cross-signaling between these two transduction systems.  相似文献   

9.
Expression of pathogenesis-related protein 1a (PR-1a), a protein of unknown biochemical function, is induced to high levels in tobacco in response to pathogen infection. The induction of PR-1a expression is tightly correlated with the onset of systemic acquired resistance (SAR), a defense response effective against a variety of fungal, viral, and bacterial pathogens. While PR-1a has been postulated to be involved in SAR, and is the most highly expressed of the PR proteins, evidence for its role is lacking. In this report, we demonstrate that constitutive high-level expression of PR-1a in transgenic tobacco results in tolerance to infection by two oomycete pathogens, Peronospora tabacina and Phytophthora parasitica var. nicotianae.  相似文献   

10.
Biosynthesis and metabolism of salicylic acid   总被引:11,自引:0,他引:11       下载免费PDF全文
Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-beta-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance.  相似文献   

11.
Salicylic acid (SA) plays an important role in activating various plant defense responses, including expression of the pathogenesis-related (PR) genes and systemic acquired resistance. A critical positive regulator of the SA signaling pathway in Arabidopsis is encoded by the NPR1 gene. However, there is growing evidence that NPR1-independent pathways can also activate PR expression and disease resistance. To elucidate the components associated with NPR1-independent defense signaling, we isolated a suppressor of the npr1-5 allele, designated ssi2. The recessive ssi2 mutation confers constitutive PR gene expression, spontaneous lesion formation, and enhanced resistance to Peronospora parasitica. In contrast, a subset of defense responses regulated by the jasmonic acid (JA) signaling pathway, including expression of the defensin gene PDF1.2 and resistance to Botrytis cinerea, is impaired in ssi2 plants. With the use of a map-based approach, the SSI2 gene was cloned and shown to encode a stearoyl-ACP desaturase (S-ACP DES). S-ACP DES is an archetypical member of a family of soluble fatty acid (FA) desaturases; these enzymes play an important role in regulating the overall level of desaturated FAs in the cell. The activity of mutant S-ACP DES enzyme was reduced 10-fold, resulting in elevation of the 18:0 FA content in ssi2 plants. Because reduced S-ACP DES activity leads to the induction of certain defense responses and the inhibition of others, we propose that a FA-derived signal modulates crosstalk between different defense signaling pathways.  相似文献   

12.
The endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA), whose levels increase on pathogen infection, activate separate sets of genes encoding antimicrobial proteins in Arabidopsis thaliana. The pathogen-inducible genes PR-1, PR-2, and PR-5 require SA signaling for activation, whereas the plant defensin gene PDF1.2, along with a PR-3 and PR-4 gene, are induced by pathogens via an SA-independent and JA-dependent pathway. An Arabidopsis mutant, coi1, that is affected in the JA-response pathway shows enhanced susceptibility to infection by the fungal pathogens Alternaria brassicicola and Botrytis cinerea but not to Peronospora parasitica, and vice versa for two Arabidopsis genotypes (npr1 and NahG) with a defect in their SA response. Resistance to P. parasitica was boosted by external application of the SA-mimicking compound 2,6-dichloroisonicotinic acid [Delaney, T., et al. (1994) Science 266, 1247–1250] but not by methyl jasmonate (MeJA), whereas treatment with MeJA but not 2,6-dichloroisonicotinic acid elevated resistance to Alternaria brassicicola. The protective effect of MeJA against A. brassicicola was the result of an endogenous defense response activated in planta and not a direct effect of MeJA on the pathogen, as no protection to A. brassicicola was observed in the coi1 mutant treated with MeJA. These data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.  相似文献   

13.
Salicylic acid (SA) is hypothesized to be a natural signal that triggers the systemic induction of pathogenesis-related proteins and disease resistance in tobacco. When Xanthi-nc (NN genotype) tobacco was inoculated with tobacco mosaic virus (TMV) there was an increase in endogenous SA in both inoculated and virus-free leaves. The highest levels of SA were detected in and around necrotic lesions that formed in response to TMV. Chemical and enzymatic hydrolysis of extracts from TMV-inoculated leaves demonstrated the presence of a SA conjugate tentatively identified as O-beta-D-glucosyl-SA. The SA conjugate was detected only in leaves that contained necrotic lesions and was not detected in phloem exudates or uninoculated leaves of TMV-inoculated Xanthi-nc tobacco. When exogenous SA was fed to excised tobacco leaves, it was metabolized within 10 hr. However, this reduction in free SA did not prevent the subsequent accumulation of the PR-1 family of pathogenesis-related proteins. The absence of SA accumulation in TMV-inoculated tobacco plants incubated at 32 degrees C was not a result of the glucosylation of SA. The addition of SA to the medium elevated levels of SA in the leaves of virus-free tobacco grown hydroponically. Increasing the endogenous level of SA in leaves to those naturally observed during systemic acquired resistance resulted in increased resistance to TMV, expressed as a reduction in lesion area. These data further support the hypothesis that SA is a likely natural inducer of pathogenesis-related proteins and systemic acquired resistance in TMV-inoculated Xanthi-nc tobacco.  相似文献   

14.
15.
We used rice dwarf1 (d1) mutants lacking a single-copy Galpha gene and addressed Galpha's role in disease resistance. d1 mutants exhibited a highly reduced hypersensitive response to infection by an avirulent race of rice blast. Activation of PR gene expression in the leaves of the mutants infected with rice blast was delayed for 24 h relative to the wild type. H(2)O(2) production and PR gene expression induced by sphingolipid elicitors (SE) were strongly suppressed in d1 cell cultures. Expression of the constitutively active OsRac1, a small GTPase Rac of rice, in d1 mutants restored SE-dependent defense signaling and resistance to rice blast. Galpha mRNA was induced by an avirulent race of rice blast and SE application on the leaf. These results indicated the role of Galpha in R gene-mediated disease resistance of rice. We have proposed a model for the defense signaling of rice in which the heterotrimeric G protein functions upstream of the small GTPase OsRac1 in the early steps of signaling.  相似文献   

16.
Despite the recognition of H(2)O(2) as a central signaling molecule in stress and wounding responses, pathogen defense, and regulation of cell cycle and cell death, little is known about how the H(2)O(2) signal is perceived and transduced in plant cells. We report here that H(2)O(2) is a potent activator of mitogen-activated protein kinases (MAPKs) in Arabidopsis leaf cells. Using epitope tagging and a protoplast transient expression assay, we show that H(2)O(2) can activate a specific Arabidopsis mitogen-activated protein kinase kinase kinase, ANP1, which initiates a phosphorylation cascade involving two stress MAPKs, AtMPK3 and AtMPK6. Constitutively active ANP1 mimics the H(2)O(2) effect and initiates the MAPK cascade that induces specific stress-responsive genes, but it blocks the action of auxin, a plant mitogen and growth hormone. The latter observation provides a molecular link between oxidative stress and auxin signal transduction. Finally, we show that transgenic tobacco plants that express a constitutively active tobacco ANP1 orthologue, NPK1, display enhanced tolerance to multiple environmental stress conditions without activating previously described drought, cold, and abscisic acid signaling pathways. Thus, manipulation of key regulators of an oxidative stress signaling pathway, such as ANP1/NPK1, provides a strategy for engineering multiple stress tolerance that may greatly benefit agriculture.  相似文献   

17.
18.
Strains of the yeast Saccharomyces cerevisiae differ in their sensitivities to tobacco osmotin, an antifungal protein of the PR-5 family. However, cells sensitive to tobacco osmotin showed resistance to osmotin-like proteins purified from the plant Atriplex nummularia, indicating a strict specificity between the antifungal protein and its target cell. A member of a gene family encoding stress proteins induced by heat and nitrogen limitation, collectively called Pir proteins, was isolated among the genes that conveyed resistance to tobacco osmotin to a susceptible strain. We show that overexpression of Pir proteins increased resistance to osmotin, whereas simultaneous deletion of all PIR genes in a tolerant strain resulted in sensitivity. Pir proteins have been immunolocalized to the cell wall. The enzymatic digestion of the cell wall of sensitive and resistant cells rendered spheroplasts equally susceptible to the cytotoxic action of tobacco osmotin but not to other osmotin-like proteins, indicating that the cell membrane interacts specifically with osmotin and facilitates its action. Our results demonstrate that fungal cell wall proteins are determinants of resistance to antifungal PR-5 proteins.  相似文献   

19.
Melatonin plays pleiotropic roles in both animals and plants. The possible role of melatonin in plant innate immune responses was recently discovered. As an initial study, we employed Arabidopsis to determine whether melatonin is involved in defense against the virulent bacterial pathogen Pseudomonas syringae DC3000. The application of a 10 μm concentration of melatonin on Arabidopsis and tobacco leaves induced various pathogenesis‐related (PR) genes, as well as a series of defense genes activated by salicylic acid (SA) and ethylene (ET), two key factors involved in plant defense response, compared to mock‐treated leaves. The induction of these defense‐related genes in melatonin‐treated Arabidopsis matched an increase in resistance against the bacterium by suppressing its multiplication about ten‐fold relative to the mock‐treated Arabidopsis. Like melatonin, N‐acetylserotonin also plays a role in inducing a series of defense genes, although serotonin does not. Furthermore, melatonin‐induced PR genes were almost completely or partially suppressed in the npr1, ein2, and mpk6 Arabidopsis mutants, indicative of SA and ET dependency in melatonin‐induced plant defense signaling. This suggests that melatonin may be a novel defense signaling molecule in plant–pathogen interactions.  相似文献   

20.
Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicylic acid with 18O2 suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation or benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[35S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号