首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM:To study the distribution of the constitutive nitric oxide synthase(NOS) in the jejunom of adult rat.METHODS:The distribution of endothelial NOS(eNOS) was detected by immunohistochemistry.Immunofluorescence histochemical dual stainging technique were used for studying the distribution of neuronal NOS( nNOS) and eNOS,The dual stained slides were observed under a confocal laser scanning microscope.RESULTS:Positive neuronal NOS(nNOS) and endothelial NOS(eNOS) cells were found to be distributed in lamina propria of villi,and the epithelial cell was not stained,eNOS was mainly located in submucosal vascular endothelia while nNOS was mainly sityated in myenteric plexus.Some cells in the villi had both nNOS and eNOS.More than 80% of the cells were positive for both nNOS and eNOS,the rest cells were positive either for nNOS or for eNOS.CONCLUSION:The two constitutive nitric oxide synthases are distributed differently in the jejunum of rat.nNOS distributed in myenteric plexus is a neurotransmitter in the non-adrenergic non-cholinergic(NANC)inhibitory nerves eNOS distributed in endothelial and smooth muscle cells of blood vessels plays vasodilator role .eNOS and nNOS are coexpressed in some cells of lamina propria of villi.NO genearted y those NOS is very important in the physiological and pathological process of small intestine.  相似文献   

2.
BACKGROUND/AIMS: Inflammation-induced alterations in smooth muscle contractility may be due to the effects on smooth muscle itself, neurotransmitters or enteric nerves. In dextran sulfate sodium-induced colitic rat, the delay in colonic transit was caused by decreased activity and production of neuronal nitric oxide synthase (nNOS) in the myenteric plexus of the distal colon. The aim of this study was to investigate the relationship between the delay in colonic transit and the distribution of inducible NOS (iNOS) and nNOS immunoreactive cells in the myenteric plexus of trinitrobenzene sulfonic acid (TNBS)-induced colitic guinea pig. METHODS: Sacrificed and their colonic tissues of forty-five TNBS-induced colitic guinea pigs were used to measure the colonic transit, and analyzed by immunohistochemistry. RESULTS: Colonic transit was delayed significantly at 3, 7 and 14 days after administration of TNBS. In control, nNOS immunoreactivity was present in the mucosa, submucosa, lamina propria, and ganglion cells of the myenteric plexus, while after TNBS treatment, reduced nNOS cells were found. However, the number of nNOS ganglion cells in the myenteric plexus was similar to those seen in controls. After administration of TNBS, iNOS immunoreactivity was increased in the mucosa and submucosa, but the number of iNOS positive ganglion cells in the myenteric plexus was not changed compared to control. CONCLUSIONS: It is suggested that in TNBS-induced guinea pig colitis, delayed colonic transit is not associated with the expression of nNOS nor iNOS in the myenteric plexus.  相似文献   

3.
In kidney, nitric oxide (NO) synthesized by nitric oxide synthase (NOS) regulates sodium and water excretion, and renal medullary blood flow. The expression of constitutive NOS, endothelial NOS (eNOS) and neuronal NOS (nNOS), were assessed in kidney of the spontaneously hypertensive rat (SHR) and the normotensive Wistar Kyoto (WKY) rat by Western blot analysis and immunocytochemistry. Neuronal NOS expression was observed in the cortex and eNOS was detected only in the inner medulla of both WKY and SHR. In SHR, expression of eNOS was attenuated to 35.1 ± 10.8%, while expression of nNOS was only 57.5 ± 5.7% of the levels seen in WKY rat. Immunocytochemical studies revealed decreased staining of nNOS in the macula densa, collecting ducts and in the glomerulus of SHR compared to WKY rat. Endothelial NOS immunoreactivity was restricted to vascular structures of the inner intima cells and smooth muscle cells, and was markedly reduced in the vasculature of SHR. The decreased renal blood flow observed in SHR may be linked to a diminished expression of eNOS and nNOS, underscoring the importance of these enzymes in the pathophysiology and maintenance of genetic hypertension.  相似文献   

4.
In kidney, nitric oxide (NO) synthesized by nitric oxide synthase (NOS) regulates sodium and water excretion, and renal medullary blood flow. The expression of constitutive NOS, endothelial NOS (eNOS) and neuronal NOS (nNOS), were assessed in kidney of the spontaneously hypertensive rat (SHR) and the normotensive Wistar Kyoto (WKY) rat by Western blot analysis and immunocytochemistry. Neuronal NOS expression was observed in the cortex and eNOS was detected only in theinner medulla of both WKY and SHR. In SHR, expression of eNOS was attenuated to 35.1 +/- 10.8%, while expression of nNOS was only 57.5 +/- 5.7% of the levels seen in WKY rat. Immunocytochemical studies revealed decreased staining of nNOS in the macula densa, collecting ducts and in the glomerulus of SHR compared to WKY rat. Endothelial NOS immunoreactivity was restricted to vascular structures of the inner intima cells and smooth muscle cells, and was markedly reduced in the vasculature of SHR. The decreased renal blood flow observed in SHR may be linked to a diminished expression of eNOS and nNOS, underscoring the importance of these enzymes in the pathophysiology and maintenance of genetic hypertension.  相似文献   

5.
Despite originally identified in neurones, the neuronal type of nitric oxide synthase (nNOS) is present also in cardiac and skeletal myocytes. Whether nNOS is functionally expressed in human endothelial cells--as the endothelial enzyme (eNOS)--is unknown. Human umbilical vein endothelial cells (HUVEC) were studied under control culture conditions and after 48 h treatment with cytomix (human tumour necrosis factor-alpha, interferon-gamma and E. coli endotoxin). We tested: (i) localisation and expression of nNOS and eNOS proteins by immunostaining and immunoblotting; (ii) activity of nNOS and eNOS by measuring L-arginine to L-citrulline conversion with 1-(2-trifluoromethylphenyl)imidazole (TRIM), a specific nNOS antagonist, in sub-cellular fractions; (iii) intracellular cGMP levels, as a marker for nitric oxide production, after TRIM pre-treatment, by radioimmunoassay. nNOS protein was expressed in the cytosolic fraction and immunolocalised in cultured HUVEC, and co-localised with the eNOS protein in frozen sections of the human umbilical cord. nNOS protein contributed to total L-citrulline production as TRIM selectively and dose-dependently reduced L-citrulline synthesis in the cytosolic but not particulate fraction of HUVEC. Similarly, TRIM reduced intracellular cGMP content both at baseline and after stimulation with a calcium ionophore. Cytomix down-regulated the expression and function of both nNOS and eNOS while no inducible NOS (iNOS) was detected. In conclusion, a functional neuronal type of NOS is co-expressed with the endothelial NOS type in HUVEC, suggesting a possible role for nNOS in regulation of blood flow.  相似文献   

6.
Distribution of nitric oxide synthase in stomach myenteric plexus of rats   总被引:11,自引:0,他引:11  
AIM:To study the distribution of nitdc oxide synthese(NOS)in rat stomach myenteric plexus.METHODS:The distribution of NOS in gastric wall wasstudied in quantity and location by the NADPH-diaphorase(NDP)histochemical staining method and whole mountpreperation technique.RESULTS:NOS was distributed in whole stomach wall,mostof them were located In myenteric plexus,and distributed insubmucosal plexus.The shape of NOS positive neuronswas baslcally similar,most of them being round and oval inshape.But their density,size and staining intensity variedgreatly in the different parts of stomach.The density was 62±38 cells/mm~2(antrum),43±32 cells/mm~2(body),and 32±28 cells/mm~2(fundus),respectively.The size andstaining intensity of NOS positive neurons in the funduswere basically the same,the neurons being large and darkstained,while they were obviously different in antrum.Inthe body of the stomach,the NOS positive neurons were inan Intermediate state from fundus to antrum.There weresome beedlike structures which were strung together byNOS positiva varicosities in nerve fibers,some were closelyadherent to the outer walls of blood vessels.CONCLUSION:Nitric oxide might he involved in themodulation of motility,secretion and blood circulation ofthe stomach,and the significant difference of NOS positiveneurons in different parts of stomach myenteric plexus maybe related to the physiologic function of stomach.  相似文献   

7.
AIM:To study the cell-type specific subcellular distribution of the three isoforms of nitric oxide synthase(NOS) in the rat duodenum.METHODS:Postembedding immunoelectronmicroscopy was performed,in which primary antibodies for neuronal NOS(nNOS),endothelial NOS(eNOS),and inducible NOS(iNOS),were visualized with protein A-gold-conjugated secondary antibodies.Stained ultrathin sections were examined and photographed with a Philips CM10 electron microscope equipped with a MEGAVIEW II camera.The specificity of t...  相似文献   

8.
BACKGROUND: Nitric oxide (NO), synthesized by neuronal (nNOS), endothelial (eNOS), and inducible (iNOS) nitric oxide synthases, plays an essential role in the physiological functions of the gastrointestinal (GI) tract. Chronic ethanol intake has been shown to interfere with several of these physiological functions, leading to the pathological alterations observed in alcoholic individuals. Our aim therefore was to investigate the effects of chronic ethanol consumption on NOS isoforms in different GI segments. METHODS: Rats received either 20% aqueous ethanol solution or water for 8 weeks. Tissue samples of the duodenum, jejunum, ileum, and colon of the rats were used for measurement of the NOS activity, protein content, and nNOS immunohistochemistry. Anti-HuC/D immunohistochemistry was used to determine the total number of neurons. RESULTS: Measurement of the physiological constitutive NOS (cNOS) activity revealed a 20 times higher activity in the colon than in the small intestine and after chronic ethanol treatment demonstrated a significant decrease in the jejunum, ileum, and colon, while in the duodenum it remained unchanged compared with the control group. The physiological iNOS activity was higher in the ileum and colon than in the duodenum and jejunum, and these levels were not significantly affected by ethanol. Neuronal nitric oxide synthase immunohistochemistry revealed a significant decrease in the numbers of immunostained cells in all investigated intestinal segments, while the total number of myenteric neurons remained constant. The nNOS protein content measured by Western blotting indicated a significant decrease in the colon after ethanol consumption, while in other intestinal segments change was not detectable. CONCLUSIONS: This study has demonstrated for the first time that chronic ethanol consumption has a differential effect on NOS activity, NOS protein content, and the number of nitrergic neurons in different intestinal segments, suggesting that chronic ethanol administration affects the NO pathways in the enteric nervous system.  相似文献   

9.
应激对大鼠结肠神经系统nNOS表达的影响   总被引:1,自引:0,他引:1  
目的:探讨应激对大鼠结肠神经系统nNOS表达的影响. 方法:SD大鼠30只随机分为对照组,应激组和L-NAME 组,采用水浸-束缚应激(WRS)动物模型,用免疫组织化学ABC法检测nNOS在大鼠结肠黏膜下神经丛和肌间神经丛的表达,应用计算机图像分析系统对其表达进行定量分析.结果:与对照组比较,应激组黏膜下神经丛和肌间神经丛的nNOS阳性神经元的灰度值明显减少(P=0.02或P =0.005),阳性神经元细胞数的平均密度增加(P=0.04 或P=0.01),表达增强,且在黏膜上皮细胞、固有层淋巴细胞也有nNOS表达.L-NAME组黏膜下神经丛和肌间神经丛的nNOS阳性神经元的灰度值较应激组增加 (P=0.04),平均密度下降(P=0.04或P=0.03),表达减弱,而与对照组比较均无明显差异(P>0.05).结论:应激可引起大鼠结肠神经系统nNOS表达增强, 提示一氧化氮(NO)在应激所致的结肠功能失调中可能起重要作用.  相似文献   

10.
Using antibodies that react selectively with peptide sequences unique to endothelial nitric oxide synthase (eNOS), we demonstrate localizations to neuronal populations in the brain. In some brain regions, such as the cerebellum and olfactory bulb, eNOS and neuronal NOS (nNOS) occur in the same cell populations, though in differing proportions. In the hippocampus, localizations of the two enzymes are strikingly different, with eNOS more concentrated in hippocampal pyramidal cells than in any other brain area, whereas nNOS is restricted to occasional interneurons. In many brain regions NADPH diaphorase staining reflects NOS catalytic activity. Hippocampal pyramidal cells do not stain for diaphorase with conventional paraformaldehyde fixation but stain robustly with glutaraldehyde fixatives, presumably reflecting eNOS catalytic activity. eNOS in hippocampal pyramidal cells may generate the NO that has been postulated as a retrograde messenger of long-term potentiation.  相似文献   

11.
BACKGROUND & AIMS: Recently, a yeast 2-hybrid screen served to identify a new endothelial nitric oxide synthase (eNOS)-interacting protein (NOSIP), which causes redistribution of eNOS from the plasma membrane to intracellular compartments and reduces eNOS activity. Its in situ distribution is unknown and is reported here in comparison with that of eNOS and neuronal NOS for the rat gastrointestinal tract. METHODS: Immunofluorescence was performed on acetone-fixed cryosections by using a polyclonal antiserum raised against a NOSIP-glutathione S-transferase fusion protein; specificity was verified by Western blotting. RESULTS: Cytoplasmic NOSIP immunoreactivity was observed in endothelial cells of some locations, e.g., the hepatic central vein, but it was mainly observed in the striated esophageal muscle; vascular, gastric, and intestinal smooth muscle; and in interstitial cells of Cajal. Nuclear NOSIP immunoreactivity was more widespread, including some myenteric neurons and several epithelial cell types of esophagus, stomach, pancreas, liver, and gut. This cellular distribution matched with that of its potential binding partner eNOS, as determined by immunohistochemistry and reduced nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry, and eNOS, but not neuronal NOS, could be coimmunoprecipitated with NOSIP from small intestine. CONCLUSIONS: NOSIP coimmunoprecipitates and is widely codistributed with eNOS in nonvascular cells in the gastrointestinal tract, suggesting an involvement of eNOS/NOSIP in the regulation of gastrointestinal secretion and motility.  相似文献   

12.
13.
BACKGROUND & AIMS: The pathophysiological role of neuronal nitric oxide synthase (nNOS) in colitis remains unknown. METHODS: We investigated colonic transit, nonadrenergic, noncholinergic (NANC) relaxation, nNOS activity, and nNOS synthesis in the myenteric plexus in dextran sulfate sodium (DSS)-induced colitis in rats. RESULTS: Oral administration of 5% DSS for 7 days induced predominant distal colitis and delayed colonic transit. In the proximal colon, carbachol-, sodium nitroprusside-, and electrical field stimulation (EFS)-induced responses were not different between control and DSS-treated rats. In the distal colon, EFS-evoked cholinergic contraction, NANC relaxation, and orphanin FQ-induced contraction were significantly impaired in DSS-treated rats compared with those in control rats, but carbachol- and sodium nitroprusside-induced responses remained intact in DSS-treated rats. The number of nNOS-immunopositive cells, catalytic activity of NOS, and nNOS synthesis in the colonic wall were significantly reduced in the distal colon of DSS-treated rats. In contrast, the number of PGP 9.5-immunopositive cells and PGP 9.5 synthesis in the colonic wall remained intact in the distal colon of DSS-treated rats. CONCLUSIONS: These results suggest that impaired NANC relaxation in the distal colon is associated with reduced activity and synthesis of nNOS in the myenteric plexus in DSS-induced colitis.  相似文献   

14.
To characterize the airway nitric oxide synthase (NOS) activities concurrent with airway hyperresponsiveness (AHR), a common feature of allergic asthma, the NOS activities of airway tissue homogenates from the antigen-induced AHR rats were determined by the ability of tissue homogenates to convert L-arginine to L-citrulline (Cit). A significantly higher level of total NOS activities was found in homogenates from the AHR rats (19.9 +/- 1.3 pmol Cit/min/mg protein) compared to those from sensitized control and normal control groups (9.8 +/- 1.2 and 8.8 +/- 1.2 pmol Cit/min/mg protein, respectively; P < .01). The nitrite concentration in bronchoalveolar lavage fluids, which indicates the in vivo generation of NO in airways, from the AHR rats (7.40 +/- 0.71 microM) was significantly greater than that from nonsensitized normal animals (1.45 +/- 1.12 microM, P < .01). Although the protein levels of endothelial (eNOS) and neuronal type NOS (nNOS) determined by immunoblotting were within normal levels, the amount of inducible NOS (iNOS) protein was markedly and significantly elevated in airway tissue homogenates from the AHR rats. Immunohistochemical staining of airway tissues with specific antibody against iNOS demonstrated a distinct localization of iNOS on epithelial cells and infiltrated inflammatory cells in the bronchi of the hyperresponsive rats, but only negligible staining of epithelia was observed in the nonsensitized normal group. No difference in constitutive NOS (eNOS and nNOS) localization was observed between groups. The present findings indicate that the NOS activities in airway tissues are elevated in antigen-induced AHR rats, which is mainly derived from the induction of iNOS in the airways. Downregulation of constitutive eNOS and nNOS is not found in this animal model of AHR.  相似文献   

15.
目的研究脓毒症时各型一氧化氮合酶(NOS)在心脏中的损伤作用及其机制。方法成年雄性Wistar大鼠腹腔注射脂多糖(LPS)制备脓毒症模型。应用多导生理仪监测大鼠心功能变化;用分光光度计法测定大鼠心肌组织NOS的活性;用RT-PCR和Western blot对大鼠心肌组织各型NOS的表达进行半定量分析。结果给予LPS后6h大鼠心肌收缩和舒张功能受损下降,心肌中iNOS的活性明显升高,eNOS和nNOS(合称cNOS)活性减弱;RT-PCR和Western blot结果显示,给予LPS后cNOS的表达减少,给予LPS后iNOS表达量明显增加。结论脓毒症时,iNOS、nNOS和eNOS的表达和活性发生改变;心肌细胞上iNOS表达及活性升高,这些变化可能在心功能降低中发挥作用。  相似文献   

16.
OBJECTIVES: To study the cellular distribution and the expression of the major isoforms of NO synthase (NOS) and of nitrotyrosine in the kidney in spontaneous hypertension. DESIGN AND METHODS: We have studied by immunohistochemistry the location of the endothelial (eNOS), neuronal (nNOS) and inducible (iNOS) isoforms and nitrotyrosine in kidney slices from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) using specific antibodies. In order to quantify the expression of these proteins, we have analyzed dissected renal cortical and medullary sections by means of Western blot. RESULTS: Tubular cells were immunoreactive to nNOS and more numerous in the renal medulla of the SHR compared with that of the WKY, specifically in the outer medulla and the papillary region. Western blot also showed higher expression of nNOS in the renal medulla, but not the renal cortex of the SHR. In contrast, iNOS and eNOS distribution and expression were similar in the kidneys of WKY rats and SHR. Immunohistochemistry showed immunoreactive cells to nitrotyrosine in a variety of renal cells similarly distributed in SHR and WKY kidneys. Western analysis detected three proteins of 14.5, 23.7 and 39 kDa immunoreactive to nitrotyrosine, showing a higher expression in the renal cortex compared to the renal medulla. CONCLUSIONS: The expression of nNOS is higher in the renal medulla of the SHR, and the distribution of eNOS, iNOS and nitrotyrosine is similar in SHR and WKY rats. It is proposed that the higher expression of the neuronal isoform in the medullary tubular cells is a protective mechanism aimed to improve renal function in spontaneous hypertension.  相似文献   

17.
18.
Constitutive nitric oxide synthases (NOSs) are ubiquitous enzymes that play a pivotal role in the regulation of myocardial function in health and disease. The discovery of both a neuronal NOS (nNOS) and an endothelial NOS (eNOS) isoform in the myocardium and the availability of genetically modified mice with selective eNOS or nNOS gene deletion have been of crucial importance for understanding the role of constitutive nitric oxide (NO) production in the myocardium. eNOS and nNOS are homologous in structure and utilize the same co-factors and substrates; however, they differ in their subcellular localization, regulation, and downstream signaling, all of which may account for their distinct effects on excitation-contraction coupling. In particular, eNOS-derived NO has been reported to increase left ventricular (LV) compliance, attenuate beta-adrenergic inotropy and enhance parasympathetic/muscarinic responses, and mediate the negative inotropic response to β3 adrenoreceptor stimulation via cGMP-dependent signaling. Conversely, nNOS-derived NO regulates basal myocardial inotropy and relaxation by inhibiting the sarcolemmal Ca(2+) current (I(Ca)) and promoting protein kinase A-dependent phospholamban (PLN) phosphorylation, independent of cGMP. By inhibiting the activity of myocardial oxidase systems, nNOS regulates the redox state of the myocardium and contributes to maintain eNOS "coupled" activity. After myocardial infarction, up-regulation of myocardial nNOS attenuates adverse remodeling and prevents arrhythmias whereas uncoupled eNOS activity in murine models of left ventricular pressure overload accelerates the progress towards heart failure. Here we review the evidence in support of the idea that NOS subcellular localization, mode of activation, and downstream signaling account for the diverse and highly specialized actions of NO in the heart. This article is part of a Special Issue entitled "Local Signaling in Myocytes".  相似文献   

19.
In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that either eliminated (P728IeNOS) or incorporated (I958PnNOS) a proline residue unique to the eNOS hinge. Incorporating the nNOS hinge into eNOS increased NO synthesis activity 4-fold, to an activity two-thirds that of nNOS. It also decreased uncoupled NADPH oxidation, increased the apparent K(m)O(2) for NO synthesis, and caused a faster heme reduction. Eliminating the hinge proline had similar, but lesser, effects. Our findings reveal that the hinge is an important regulator and show that differences in its composition restrict the activity of eNOS relative to other NOS enzymes.  相似文献   

20.
BACKGROUND: A substantial amount of data suggesting that endothelial cell nitric oxide synthase (eNOS) plays a cardioprotective role in animal models of ischemia-reperfusion injury has amassed. We have previously demonstrated that eNOS-deficient (-/-) mice exhibit significantly larger myocardial infarcts than do wild-type mice. Few investigations have examined the neuronal form of nitric oxide synthase in the heart. The two constitutive isoforms have been demonstrated to play differing roles in studies of cerebral ischemia-reperfusion. OBJECTIVE: To characterize the role of neuronal nitric oxide synthase (nNOS) in myocardial ischemia-reperfusion injury. METHODS: Wild-type and nNOS -/- mice were subjected to 20 min of coronary artery occlusion and 120 min of reflow. RESULTS: We found no significant difference between the two groups in terms of infarct size. Microscopic cross-sections from both groups were examined for infiltration of polymorphonuclear leukocyte. Hearts of nNOS -/- mice exhibited significantly (P < 0.05) more polymorphonuclear leukocytes than did hearts of wild-type mice. CONCLUSION: Despite the fact that eNOS plays a cardioprotective role in the ischemic-reperfused myocardium, we observed no change in size of myocardial infarcts when nNOS was genetically disrupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号