首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Abnormalities in brain plasticity, possibly related to abnormal cortical inhibition (CI), have been proposed to underlie the pathophysiology of schizophrenia. Transcranial magnetic stimulation (TMS) provides a dynamic method for non-invasive study of plastic processes in the human brain. We aimed to determine whether patients with schizophrenia would exhibit an abnormal response to repetitive TMS (rTMS) applied to the motor cortex and whether this would relate to deficient cortical inhibition. METHODS: Measures of motor cortical excitability and cortical inhibition were made before and after a single 15-min train of 1-Hz rTMS applied to the motor cortex in medicated and unmedicated patients with schizophrenia as well as healthy controls. RESULTS: All three groups had equal motor cortical excitability prior to rTMS, although both patient groups had a shorter cortical silent period (CSP) and less cortical inhibition than the control group. Cortical excitability, as assessed by motor threshold levels, did not reduce in both medicated and unmedicated patients in response to rTMS as was seen in the control group. Significant differences were also seen between the groups in response to the rTMS for motor-evoked potential (MEP) size and cortical silent period duration. CONCLUSIONS: Both medicated and medication free patients with schizophrenia demonstrated reduced brain responses to rTMS and deficits in cortical inhibition.  相似文献   

2.
The aim of this study was to examine whether the changes of the motor cortex excitability induced by muscle fatigue could be affected by prior or subsequent intervention protocol supposed to induce opposing excitability changes. For this purpose we used paired associative stimulation (PAS) method, where peripheral nerve stimuli were associated with transcranial magnetic stimulation (TMS) of the motor cortex at a fixed interstimulus interval of 25 ms. The PAS protocol used is known to produce a long lasting, long-term potentiation (LTP) like change of cortical plasticity manifested by significant increase in motor evoked potentials (MEPs) amplitude. In this study, we confirmed significant MEP size reduction following fatigue, which had been already reported in the literature. When PAS was applied either immediately before or after muscle fatigue protocol, the excitability changes were largely occluded and MEP sizes remained close to baseline levels. However, in spite of the effects on cortical excitability, conditioning with PAS did not cause any change in target fatigue measure, the endurance point, which remained the same as when fatiguing protocol was applied alone. The present results demonstrate that fatigue-related changes in cortical excitability can be modulated by either prior or subsequent excitability promoting activity. They also suggest that muscle fatigue associated changes in motor cortical excitability probably represent non-specific activity-related plasticity, rather than a direct expression of the so-called central fatigue.  相似文献   

3.
BACKGROUND AND PURPOSE: A review of the literature shows that the transcranial magnetic stimulation (TMS) is a useful neurophysiological tool to investigate the pathophysiology of the restless legs syndrome (RLS). In this study we used TMS to define motor cortical excitability in RLS subjects. PATIENTS AND METHODS: Six RLS patients and two healthy control subjects underwent TMS (single and paired) examination using two protocols: (1) the evaluation of motor cortical excitability changes occurring at various times after a repetitive finger movement task; (2) the evaluation of the time course of intracortical motor activity tested with pairs of magnetic stimuli applied at inter-stimulus intervals of 1-6 ms. RESULTS: Subjects affected by RLS do not show the normal fluctuations of motor cortical excitability usually found after a bimanual finger movement task. The intracortical inhibition was reduced in RLS subjects. CONCLUSIONS: These results compared with the other studies suggest a modification in the central circuits and suppose a reduction or alteration in the cortical plasticity.  相似文献   

4.
Neural plasticity plays a critical role in learning, memory, and recovery from injury to the nervous system. Although much is known about the physical and physiological determinants of plasticity, little is known about the influence of cognitive factors. In this study, we investigated whether selective attention plays a role in modifying changes in neural excitability reflecting long-term potentiation (LTP)-like plasticity. We induced LTP-like effects in the hand area of the human motor cortex using transcranial magnetic stimulation (TMS). During the induction of plasticity, participants engaged in a visual detection task with either low or high attentional demands. Changes in neural excitability were assessed by measuring motor-evoked potentials in a small hand muscle before and after the TMS procedures. In separate experiments plasticity was induced either by paired associative stimulation (PAS) or intermittent theta-burst stimulation (iTBS). Because these procedures induce different forms of LTP-like effects, they allowed us to investigate the generality of any attentional influence on plasticity. In both experiments reliable changes in motor cortex excitability were evident under low-load conditions, but this effect was eliminated under high-attentional load. In a third experiment we investigated whether the attentional task was associated with ongoing changes in the excitability of motor cortex, but found no difference in evoked potentials across the levels of attentional load. Our findings indicate that in addition to their role in modifying sensory processing, mechanisms of attention can also be a potent modulator of cortical plasticity.  相似文献   

5.
The sensory and motor cortical representation corresponding to the affected limb is altered in patients with complex regional pain syndrome (CRPS). Transcranial magnetic stimulation (TMS) represents a useful non‐invasive approach for studying cortical physiology. If delivered repetitively, TMS can also modulate cortical excitability and induce long‐lasting neuroplastic changes. In this review, we performed a systematic search of all studies using TMS to explore cortical excitability/plasticity and repetitive TMS (rTMS) for the treatment of CRPS. Literature searches were conducted using PubMed and EMBASE. We identified 8 articles matching the inclusion criteria. One hundred fourteen patients (76 females and 38 males) were included in these studies. Most of them have applied TMS in order to physiologically characterize CRPS type I. Changes in motor cortex excitability and brain mapping have been reported in CRPS‐I patients. Sensory and motor hyperexcitability are in the most studies bilateral and likely involve corresponding regions within the central nervous system rather than the entire hemisphere. Conversely, sensorimotor integration and plasticity were found to be normal in CRPS‐I. TMS examinations also revealed that the nature of motor dysfunction in CRPS‐I patients differs from that observed in patients with functional movement disorders, limb immobilization, or idiopathic dystonia. TMS studies may thus lead to the implementation of correct rehabilitation strategies in CRPS‐I patients. Two studies have begun to therapeutically use rTMS. This non‐invasive brain stimulation technique could have therapeutic utility in CRPS, but further well‐designed studies are needed to corroborate initial findings.  相似文献   

6.
Clinical and research methods for evaluating cortical excitability.   总被引:8,自引:0,他引:8  
The evaluation of motor cortical output after transcranial magnetic stimulation (TMS) is a means of investigating how the motor cortex reacts to external stimuli (i.e., a method to assess the excitability of the motor cortex). The recording of the descending volleys at the surface of the spinal cord provides a direct measure of the motor cortical output. However, this approach is highly invasive and can be used only during particular conditions. On the other hand, electromyographic recordings of the motor phenomena induced by TMS provide a completely painless, noninvasive, indirect measure of the cortical output, with these phenomena obviously reflecting the excitability of the spinal motoneurons as well as that of the muscle itself. The authors review how the electromyographic activity induced by TMS can provide valuable information about motor cortical excitability for use in clinical practice and research.  相似文献   

7.
BACKGROUND: Transcranial magnetic stimulation (TMS) provides a noninvasive method of examining cortical inhibitory and excitatory processes and cortical excitability in awake subjects. There is evidence from clinical and electroencephalographic (EEG) data that cortical excitability may be abnormal in some psychiatric populations. Chronic cocaine abuse influences a number of neurotransmitters that are involved in the excitatory/inhibitory balance of the cerebral cortex. This pilot study was conducted to ascertain the possible utility of TMS in examining cortical excitability in a population of chronic cocaine abusers. METHODS: The right and left motor thresholds of ten cocaine-dependent subjects, according to DSM-IV, and ten normal control subjects were examined using single pulse TMS. RESULTS: The resting motor thresholds resulting from stimulation of the right or the left motor cortical regions were significantly elevated in cocaine-dependent subjects compared with matched control subjects. CONCLUSIONS: These pilot data suggest that chronic cocaine use significantly alters cortical excitability in the direction of increased inhibition or decreased excitability. We hypothesize that this observation reflects adaptation to those effects of cocaine intoxication that promote cortical excitability and seizures.  相似文献   

8.
Transcranial magnetic stimulation (TMS) is a useful tool to induce and measure plasticity in the human brain. However, the cortical effects are generally indirectly evaluated with motor‐evoked potentials (MEPs) reflective of modulation of cortico‐spinal excitability. In this study, we aim to provide direct measures of cortical plasticity by combining TMS with electroencephalography (EEG). Continuous theta‐burst stimulation (cTBS) was applied over the primary motor cortex (M1) of young healthy adults, and we measured modulation of (i) MEPs, (ii) TMS‐induced EEG evoked potentials (TEPs), (iii) TMS‐induced EEG synchronization and (iv) eyes‐closed resting EEG. Our results show the expected cTBS‐induced decrease in MEP size, which we found to be paralleled by a modulation of a combination of TEPs. Furthermore, we found that cTBS increased the power in the theta band of eyes‐closed resting EEG, whereas it decreased single‐pulse TMS‐induced power in the theta and alpha bands. In addition, cTBS decreased the power in the beta band of eyes‐closed resting EEG, whereas it increased single‐pulse TMS‐induced power in the beta band. We suggest that cTBS acts by modulating the phase alignment between already active oscillators; it synchronizes low‐frequency (theta and/or alpha) oscillators and desynchronizes high‐frequency (beta) oscillators. These results provide novel insight into the cortical effects of cTBS and could be useful for exploring cTBS‐induced plasticity outside of the motor cortex.  相似文献   

9.
Several Transcranial Magnetic Stimulation (TMS) techniques can be applied to noninvasively measure cortical excitability and brain plasticity in humans. TMS has been used to assess neuroplastic changes in Alzheimer's disease (AD), corroborating findings that cortical physiology is altered in AD due to the underlying neurodegenerative process. In fact, many TMS studies have provided physiological evidence of abnormalities in cortical excitability, connectivity, and plasticity in patients with AD. Moreover, the combination of TMS with other neurophysiological techniques, such as high‐density electroencephalography (EEG), makes it possible to study local and network cortical plasticity directly. Interestingly, several TMS studies revealed abnormalities in patients with early AD and even with mild cognitive impairment (MCI), thus enabling early identification of subjects in whom the cholinergic degeneration has occurred. Furthermore, TMS can influence brain function if delivered repetitively; repetitive TMS (rTMS) is capable of modulating cortical excitability and inducing long‐lasting neuroplastic changes. Preliminary findings have suggested that rTMS can enhance performances on several cognitive functions impaired in AD and MCI. However, further well‐controlled studies with appropriate methodology in larger patient cohorts are needed to replicate and extend the initial findings. The purpose of this paper was to provide an updated and comprehensive systematic review of the studies that have employed TMS/rTMS in patients with MCI and AD.  相似文献   

10.
Introduction: Changes in cortical excitability are considered to play an important role in promoting brain plasticity both in healthy people and in neurological diseases. Hydrocephalus is a brain development disorder related to an excessive accumulation of cerebrospinal fluid (CSF) in the ventricular system. The functional relevance of cortical structural changes described in this disease is largely unexplored in human. We investigated cortical excitability using multimodal transcranial magnetic stimulation (TMS) in a case of congenital hydrocephalus with almost no neurological signs. Methods: A caucasian 40 years old, ambidextrous and multilingual woman affected by occult spina bifida and congenital symmetrical hydrocephalous underwent a TMS study. The intracortical and interhemispheric paired pulse paradigms were used, together with the mapping technique. Results: No significant differences were found in the resting motor thresholds between the two hemispheres. Instead, the intracortical excitability curves were statistically different between the two hemispheres (with short intracortical inhibition (SICI) being strongly reduced and intracortical facilitation (ICF) enhanced in the right one), and the interhemispheric curves showed a general hyper-excitability on the right hemisphere (when conditioned by the left one) and a general hypo-excitability in the left hemisphere (when conditioned by the right one). It is noteworthy that an asymmetric right hemisphere (RH) change of excitability was observed by means of mapping technique. Conclusion: We hypothesize that in this ambidextrous subject, the observed RH hyper-excitability could represent a mechanism of plasticity to preserve functionality of specific brain areas possibly devoted to some special skills, such as multilingualism.  相似文献   

11.
PURPOSE: Transcranial magnetic stimulation (TMS) of the brain allows the pharmacologic effects of anti-convulsant drugs (AEDs) on the excitability of motor corticospinal pathways to be evaluated in patients with epilepsy and normal subjects. However, no study has yet documented the changes in motor excitability in patients treated with lamotrigine (LTG). We aimed to study the effects of loading doses of LTG on TMS recordings in patients with epilepsy at the beginning of their treatment. METHODS: We investigated single-pulse TMS in six patients with complex partial seizures. The TMS recordings were performed in five sessions before and during 5 weeks of treatment. Motor threshold, motor-evoked potential (MEP) amplitude, cortical silent period, and peripheral conduction velocity were used as parameters of evaluation. LTG was started with a dosage of 25 mg/day until a daily maintenance dosage of 200 mg/day was reached. RESULTS: The motor threshold activation of thenar muscles was significantly increased by LTG after 2 weeks of treatment and was increased in a parallel way to the loading dose of the drug at week 3 and 5 of treatment. The MEP size recorded from the thenar muscles did not show significant changes at high- or low-intensity stimulation. The cortical silent period remained unchanged at low- and high-intensity stimulation. The absolute latency of MEPs after cortical and cervical stimulation was unchanged, as was the central motor conduction time. CONCLUSIONS: Our study documents that loading doses of LTG, administered as monotherapy, progressively increases patients' motor thresholds over short periods.  相似文献   

12.
《Clinical neurophysiology》2019,130(4):558-567
Deep brain stimulation (DBS) implanted in different basal ganglia nuclei regulates the dysfunctional neuronal circuits and improves symptoms in movement disorders. However, the understanding of the neurophysiological mechanism of DBS is at an early stage. Transcranial magnetic stimulation (TMS) can be used safely in movement disorder patients with DBS, and can shed light on how DBS works. DBS at a therapeutic setting normalizes the abnormal motor cortical excitability measured with motor evoked potentials (MEP) produced by primary motor cortical TMS. Abnormal intracortical circuits in the motor cortex tested with paired-pulse TMS paradigm also show normalization with DBS. These changes are accompanied with improvements in symptoms after chronic DBS. Single-pulse DBS produces cortical evoked potentials recorded by electroencephalography at specific latencies and modulates motor cortical excitability at certain time intervals measured with MEP. Combination of basal ganglia DBS with motor cortical TMS at stimulus intervals consistent with the latency of cortical evoked potentials delivered in a repetitive mode produces plastic changes in the primary motor cortex. TMS can be used to examine the effects of open and closed loop DBS. Patterned DBS and TMS delivered in a repetitive mode may be developed as a new therapeutic method for movement disorder patients.  相似文献   

13.
Cerebral function revealed by transcranial magnetic stimulation   总被引:2,自引:0,他引:2  
Although transcranial magnetic stimulation (TMS) has been introduced only recently, it is safe and provides a painless, inexpensive noninvasive method for the evaluation of brain function. Determining central motor conduction time (CMCT) permits assessment of the corticospinal pathways. Mapping the central representation of muscles provides a method for investigating the cortical reorganization that follows training, amputation and injury to the central nervous system. Such studies of human plasticity may have important implications for neurorehabilitation. TMS also provides a method whereby cortical excitability can be noninvasively evaluated, which is likely to have important implications in the study of epilepsy, movement disorders and related conditions. TMS is useful in tracking the flow of information from one brain region to another and in investigations of cognition and functional localization, thereby complementing information obtained using functional imaging techniques, which have superior spatial but inferior temporal resolution. Finally, TMS is currently being investigated as a method for establishing cerebral dominance and as a therapeutic tool in the treatment of depression. Investigations for treatment of other neurologic and psychiatric conditions are likely to be undertaken.  相似文献   

14.
Transcranial magnetic stimulation (TMS) can depolarize the neurons directly under the coil when applied to the cerebral cortex, and modulate the neural circuit associated with the stimulation site, which makes it possible to measure the neurophysiological index to evaluate excitability and inhibitory functions. Concurrent TMS and electroencephalography (TMS‐EEG) has been developed to assess the neurophysiological characteristics of cortical regions other than the motor cortical region noninvasively. The aim of this review is to comprehensively discuss TMS‐EEG research in the healthy brain focused on excitability, inhibition, and plasticity following neuromodulatory TMS paradigms from a neurophysiological perspective. A search was conducted in PubMed to identify articles that examined humans and that were written in English and published by September 2018. The search terms were as follows: (TMS OR ‘transcranial magnetic stimulation’) AND (EEG OR electroencephalog*) NOT (rTMS OR ‘repetitive transcranial magnetic stimulation’ OR TBS OR ‘theta burst stimulation’) AND (healthy). The study presents an overview of TMS‐EEG methodology and neurophysiological indices and reviews previous findings from TMS‐EEG in healthy individuals. Furthermore, this review discusses the potential application of TMS‐EEG neurophysiology in the clinical setting to study healthy and diseased brain conditions in the future. Combined TMS‐EEG is a powerful tool to probe and map neural circuits in the human brain noninvasively and represents a promising approach for determining the underlying pathophysiology of neuropsychiatric disorders.  相似文献   

15.
Transcranial magnetic stimulation (TMS) allows non-invasive study and modulation of cortical excitability in humans. Changes in cortical excitability in physiological and pathological conditions can be tracked by measurements such as motor threshold, motor evoked potentials, recruitment curves, intracortical facilitation and inhibition. The central motor conduction time can estimate neural transmission in central motor pathways. Changes in areas of representation in sensorimotor cortex can be studied with cortical mapping. Modulation of cortical processing can be used to evaluate different brain functions. Therapeutic use in depression, Parkinson's disease and epilepsy has raised great interest over the past decade. Non-invasive cortical mapping may be achieved by combining TMS to other neurophysiological/ neuroimaging techniques. TMS has great potential both as an investigational and as a therapeutical tool in Neurology and Psychiatry.  相似文献   

16.
Studies in both human and nonhuman primates indicate that motor and premotor cortical regions participate in auditory and visual perception of actions. Previous studies, using transcranial magnetic stimulation (TMS), showed that perceiving visual and auditory speech increased the excitability of the orofacial motor system during speech perception. Such studies, however, cannot tell us which brain regions mediate this effect. In this study, we used the technique of combining positron emission tomography with TMS to identify the brain regions that modulate the excitability of the motor system during speech perception. Our results show that during auditory speech perception, there is increased excitability of motor system underlying speech production and that this increase is significantly correlated with activity in the posterior part of the left inferior frontal gyrus (Broca's area). We propose that this area "primes" the motor system in response to heard speech even when no speech output is required and, as such, operates at the interface of perception and action.  相似文献   

17.
The present paper aims to summarize potential applications of transcranial magnetic stimulation (TMS) combined with functional brain imaging. Transcranial magnetic stimulation is a well-established noninvasive tool for stimulating circumscribed areas of the human cortex. Functional imaging techniques such as positron emission tomography, functional magnetic resonance imaging, and electroencephalographic mapping enable assessment of TMS-related functional brain activation. A combination of TMS and functional imaging can be useful in three principal ways. (1) Brain imaging before TMS is helpful in defining the accurate coil position over a distinct cortical area which is targeted by TMS. Since TMS can be used to interfere with regional cortical function during a given task, the effects of focal TMS on task performance can help to clarify the task-specific functional contribution of a given cortical area which has previously shown task-related activation in a functional imaging study. (2) Imaging the brain during TMS is a promising approach for assessing cortical excitability and intracerebral functional connectivity. (3) By evaluating lasting effects of TMS, brain imaging after TMS can be employed to study the plasticity of the human cortex. Moreover, this approach will help to advance our understanding of therapeutical effects related to TMS.  相似文献   

18.
《Clinical neurophysiology》2010,121(4):464-473
Repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex can produce long-lasting changes in the excitability of the motor cortex to single pulse transcranial magnetic stimulation (TMS). rTMS may increase or decrease motor cortical excitability depending critically on the characteristics of the stimulation protocol. However, it is still poorly defined which mechanisms and central motor circuits contribute to these rTMS induced long-lasting excitability changes. We have had the opportunity to perform a series of direct recordings of the corticospinal volley evoked by single pulse TMS from the epidural space of conscious patients with chronically implanted spinal electrodes before and after several protocols of rTMS that increase or decrease brain excitability. These recordings provided insight into the physiological basis of the effects of rTMS and the specific motor cortical circuits involved.  相似文献   

19.
Several recent reports suggest the possibility of monitoring pharmacological effects on brain excitability through transcranial magnetic stimulation (TMS). In these studies, paired magnetic stimulation has been used in normal subjects and on patients who were taking different antiepileptic drugs. The aim of our study was to investigate motor area excitability on depressed patients after intravenous administration of a single dose of clomipramine, a tricyclic antidepressant. Motor cortex excitability was studied by single and paired transcranial magnetic stimulation (TMS) before and after 4, 8 and 24 h from intravenous administration of 25 mg of clomipramine. Cortical excitability was measured using different TMS parameters: motor threshold (MT), motor evoked potential (MEP) amplitude, duration of cortical silent period (CSP), intracortical inhibition (ICI) and intracortical facilitation (ICF). Spinal excitability and peripheral nerve conduction was measured by F response and M wave. A temporary but significant increase of motor threshold and intracortical inhibition and a decrease of intracortical facilitation were observed 4 h following drug administration. MEP amplitude, cortical silent period, F response and M wave were not significantly affected by drug injection. Our findings suggest that a single intravenous dose of clomipramine can exert a significant but transitory suppression of motor cortex excitability in depressed patients. TMS represents a useful research tool in assessing the effects of motor cortical excitability of neuropsychiatric drugs used in psychiatric disease.  相似文献   

20.
Rationale: An improved understanding of motor dysfunction and recovery after stroke has important clinical implications that may lead to the design of more effective rehabilitation strategies for patients with hemiparesis. Scope: Transcranial magnetic stimulation (TMS) is a safe and painless tool that has been used in conjunction with other existing diagnostic tools to investigate motor pathophysiology in stroke patients. Since TMS emerged more than two decades ago, its application in clinical and basic neuroscience has expanded worldwide. TMS can quantify the corticomotor excitability properties of clinically affected and unaffected muscles and can probe local cortical networks as well as remote but functionally related areas. This provides novel insight into the physiology of neural circuits underlying motor dysfunction and brain reorganization during the motor recovery process. This important tool needs to be used with caution by clinical investigators, its limitations need to be understood, and the results should to be interpreted along with clinical evaluation in this patient population. Summary: In this review, we provide an overview of the rationale, implementation, and limitations of TMS to study stroke motor physiology. This knowledge may be useful to guide future rehabilitation treatments by assessing and promoting functional plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号