首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skinned fibres from porcine ventricles exhibited a higher Ca2+ sensitivity (pCa50, i.e. -log10 Ca2+ concentration required for half-maximal activation, for force generation) than atrial fibres. The thiadiazinone derivative EMD 53998 increased Ca2+ sensitivity and Ca2+ efficacy in both preparations. The drug effect depended on the isoform of troponin (Tn). Using the vanadate method TnI and TnC could be partly extracted and replaced by foreign tropin or by the TnI subunit of added foreign troponins. We investigated the relationship between pCa and force development before and after replacement of TnI with foreign troponin (bovine ventricular troponin, cTn, or rabbit skeletal muscle troponin, sTn) in the presence and absence of EMD 53998. Substitution with bovine cTn increased Ca2+ sensitivity to a value characteristic of bovine ventricular skinned fibres (pCa50=5.4) and was further increased by EMD 53998. Substitution with sTn also increased Ca2+ sensitivity, but subsequent addition of EMD 53998 caused little further increase in Ca2+ sensitivity. Following extraction of TnI with vanadate, skinned fibres contracted in a Ca2+-independent manner and failed to relax at a pCa of 8. Relaxation could be induced, however, by bovine ventricular TnI and rabbit skeletal muscle recombinant TnI. This relaxation could be reversed by EMD 53998 (100 M). The Ca2+-independent force of contracted fibres could also be depressed by a TnI inhibitory peptide, (cTnI 137–148) and, in addition, this effect was antagonized by EMD 53998. These results suggest that EMD 53998 antagonizes the inhibitory action of TnI, possibly by interfering with the interaction of the TnI inhibitory region with actin.  相似文献   

2.
Ca2+-activated maxi K+ channels were studied in inside-out patches from smooth muscle cells isolated from either porcine coronary arteries or guinea-pig urinary bladder. As described by Groschner et al. (Pflügers Arch 417:517, 1990), channel activity (NP o) was stimulated by 3 M [Ca2+]c (1 mM Ca-EGTA adjusted to a calculated pCa of 5.5) and was suppressed by the addition of 1 mM Na2ATP. The following results suggest that suppression of NP o by Na2ATP is due to Ca2+ chelation and hence reduction of [Ca2+]c and reduced Ca2+ activation of the channel. The effect was absent when Mg ATP was used instead of Na2ATP. The effect was diminished by increasing the [EGTA] from 1 to 10 mM. The effect was absent when [Ca2+]c was buffered with 10 mM HDTA (apparent pK Ca 5.58) instead of EGTA (pK Ca 6.8). A Ca2+-sensitive electrode system indicated that 1 mM Na2ATP reduced [Ca2+]c in 1 mM Ca-EGTA from 3 M to 1.4 M. Na2ATP, Na2GTP, Li4AMP-PNP and NaADP reduced measured [Ca2+]c in parallel with their suppression of NP o. After the Na2ATP-induced reduction of [Ca2+]c was re-adjusted by adding either CaCl2 or MgCl2, the effect of Na2ATP on NP o disappeared. In vivo, intracellular [Mg2+] exceeds free [ATP4–], hence ATP modulation of maxi K+ channels due to Ca2+ chelation is without biological relevance.  相似文献   

3.
The mechanism of contraction in rabbit fast-twitch, and bovine and rabbit cardiac muscle was examined using functionally skinned fibers, ATPase activity of myofibrils, and cardiac or skeletal troponintropomyosin regulated actin heavy meromyosin. The Ca2+ and Sr2+ activation properties for the different measures of contraction were evaluated. (1) Tension in rabbit and bovine cardiac skinned fibers and rabbit cardiac myofibrillar ATPase were activated equally well by either Ca2+ or Sr2+. By contrast, rabbit adductor magnus (fast-twitch) skinned fibers required substantially higher [Sr2+] than [Ca2+] for activation, as did rabbit myofibrils from back muscle (fast-twitch). (2) Substantially more Sr2+ than Ca2+ was also required for activation of skeletal muscle actin heavy meromyosin ATPase, controlled by either the skeletal or cardiac troponin-tropomyosin complex, similar to the activation of fast-twitch muscle. (3) The absence of correlation between the divalent cation selectivity properties of actin heavy meromyosin ATPase controlled by cardiac troponin-tropomyosin and cardiac muscle tension or myofibrillar ATPase activation by Ca2+ and Sr2+ suggests that troponin, if primarily responsible for the activation of cardiac muscle, has very different in vivo and in vitro binding properties. (4) The close correlation between percentage of maximal Ca2+- and Sr2+-activated myofibrillar ATPase and tension in skinned fibers strongly justifies the use of myofibrillar ATPase, in contrast to a reconstituted troponin-tropomyosin actin heavy meromyosin ATPase system, as a biochemical measure of contraction.  相似文献   

4.
The Ca2+-gated Ca2+ release channel of aortic sarcoplasmic reticulum (SR) was partially purified and reconstituted into planar lipid bilayers. Canine and porcine aorta microsomal protein fractions were solubilized in the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulphonate (CHAPS) in the presence and absence of 3[H]-ryanodine and centrifuged through linear sucrose gradients. A single 3[H]-ryanodine receptor peak with an apparent sedimentation coefficient of 30 s was obtained. Upon reconstitution into planar lipid bilayers, the unlabelled 30 s protein fraction induced the formation of a Ca2+- and monovalent-ion-conducting channel (110 pS in 100 mM Ca2+, 360 pS in 250 mM K+). The channel was activated by micromolar Ca2+, modulated by millimolar adenosine triphosphate, Mg2+ and the Ca2+-releasing drug caffeine, and inhibited by micromolar ruthenium red. Micro- to millimolar concentrations of the plant alkaloid ryanodine induced a permanently closed state of the channel. Our results suggest that smooth muscle SR contains a Ca2+-gated Ca2+ release pathway, with properties similar to those observed for the skeletal and cardiac ryanodine receptor/Ca2+ release channel complexes.  相似文献   

5.
The effects of the stable thromboxane analogue U46619, the 1-adrenergic agent phenylephrine and depolarization with high K+ on cytoplasmic Ca2+ ([Ca2+]i) and force development were determined in rabbit pulmonary artery smooth muscle. Following stimulation with each of the excitatory agents, the time course of the [Ca2+]i/force relationship described counter-clockwise hysteresis loops with the rise and fall in [Ca2+]i leading, respectively, contraction and relaxation. The rank order of the force/[Ca2+]i ratios evoked by the different methods of stimulation was: U46619 > phenylephrine high K+. The difference between the actions of U46619 and phenylephrine was due to the lesser Ca2+-releasing and greater Ca2+-sensitizing action of U46619. Both U46619 and phenylephrine also released intracellular Ca2+ in intact (non-permeabilized) preparations. The effects of the two agonists on force, at constant free cytoplasmic [Ca2+] maintained with EGTA, were also determined in preparations permeabilized with staphylococcal -toxin, in which intracellularly stored Ca2+ was eliminated with A23187. Sensitization of the contractile response to Ca2+ by agonists was indicated by the contractile responses of permeabilized muscles to U46619 and to phenylephrine, in the presence of constant, highly buffered [Ca2+]i. These contractions were inhibited by GDP[S] and could also be elicited by GTP. We conclude that, in addition to changing [Ca2+]i, pharmacomechanical coupling can also modulate contraction by altering the sensitivity of the regulatory/contractile apparatus of smooth muscle to [Ca2+]i, through a G-protein-coupled mechanism.  相似文献   

6.
Ca2+ release from the sarcoplasmic reticulum (SR) of mammalian cardiac myocytes occuring either due to activation by a depolarization or the resulting transmembrane Ca2+ current (I Ca), or spontaneously due to Ca2+ overload has been shown to cause inward current(s) at negative membrane potentials. In this study, the effects of different intracellular Ca2+ chelating compounds on I Ca-evoked or spontaneous Ca2+-release-dependent inward currents were examined in dialysed atrial myocytes from hearts of adult guinea-pigs by means of whole-cell voltage-clamp. As compared to dialysis with solutions containing only a low concentration of a high affinity ethylene glycol-bis(-aminoethylether) N,N,N,N-tetraacetic acid (EGTA) like chelator (50–200 M), inward membrane currents (at –50 mV) due to evoked Ca2+ release, spontaneous Ca2+ release or Ca2+ overload following long-lasting depolarizations to very positive membrane potentials are prolonged if the dialysing fluid contains a high concentration of a low affinity Ca2+ chelating compound such as citrate or free adenosine 5-triphosphate (ATP). Without such a non-saturable Ca2+ chelator in the dialysing fluid, Ca2+-release-dependent inward currents are often oscillatory and show an irregular amplitude. With a low affinity chelator in a non-saturable concentration, discrete inward currents with constant properties can be recorded. We conclude that the variability in Ca2+-release-dependent inward current seen in single cells arises from spatial inhomogeneities of intracellular Ca2+ concentration ([Ca2+]i) due to localized saturation of endogenous and exogenous high affinity Ca2+ buffers (e.g. [2]). This can be avoided experimentally by addition of a non-saturable buffer to the intracellular solution. This condition might be useful, if properties of Ca2+ release from the SR and/ or the resulting membrane current, like for example arrhythmogenic transient inward current, are to be investigated on the single cell level.  相似文献   

7.
Ca2+-dependent inactivation (CDI) of high-voltage activated (HVA) Ca2+ channels was investigated in acutely isolated and identified thalamocortical relay neurons of the dorsal lateral geniculate nucleus (dLGN) by combining electrophysiological and immunological techniques. The influence of Ca2+-binding proteins, calmodulin and the cytoskeleton on CDI was monitored using double-pulse protocols (a constant post-pulse applied shortly after the end of conditioning pre-pulses of increasing magnitude). Under control conditions the degree of inactivation (34±9%) revealed a U-shaped and a sigmoid dependency of the post-pulse current amplitude on pre-pulse voltage and charge influx, respectively. In contrast to a high concentration (5.5 mM) of EGTA (31±3%), a low concentration (3 µM) of parvalbumin (20±2%) and calbindinD28K (24±4%) significantly reduced CDI. Subtype-specific Ca2+ channel blockers indicated that L-type, but not N-type Ca2+ channels are governed by CDI and modulated by Ca2+-binding proteins. These results point to the possibility that activity-dependent changes in the intracellular Ca2+-binding capacity can influence CDI substantially. Furthermore, calmodulin antagonists (phenoxybenzamine, 22±2%; calmodulin binding domain, 17±1%) and cytoskeleton stabilizers (taxol, 23±5%; phalloidin, 15±3%) reduced CDI. Taken together, these findings indicate the concurrent occurrence of different CDI mechanisms in a specific neuronal cell type, thereby supporting an integrated model of this feedback mechanism and adding further to the elucidation of the role of HVA Ca2+ channels in thalamic physiology.  相似文献   

8.
Propagation of odor-induced Ca(2+) transients from the cilia/knob to the soma in mammalian olfactory receptor neurons (ORNs) is thought to be mediated exclusively by high-voltage-activated Ca(2+) channels. However, using confocal Ca(2+) imaging and immunocytochemistry we identified functional T-type Ca(2+) channels in rat ORNs. Here we show that T-type Ca(2+) channels in ORNs also mediate propagation of odor-induced Ca(2+) transients from the knob to the soma. In the presence of the selective inhibitor of T-type Ca(2+) channels mibefradil (10-15 microM) or Ni(2+) (100 microM), odor- and forskolin/3-isobutyl-1-methyl-xanthine (IBMX)-induced Ca(2+) transients in the soma and dendrite were either strongly inhibited or abolished. The percentage of inhibition of the Ca(2+) transients in the knob, however, was 40-50% less than that in the soma. Ca(2+) transients induced by 30 mM K(+) were partially inhibited by mibefradil, but without a significant difference in the extent of inhibition between the knob and soma. Furthermore, an increase of as little as 2.5 mM in the extracellular K(+) concentration (7.5 mM K(+)) was found to induce Ca(2+) transients in ORNs, and such responses were completely inhibited by mibefradil or Ni(2+). Total replacement of extracellular Na(+) with N-methyl-d-glutamate inhibited none of the odor-, forskolin/IBMX- or 7.5 mM K(+)-induced Ca(2+) transients. Positive immunoreactivity to the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 subunits of the T-type Ca(2+) channel was observed throughout the soma, dendrite and knob. These data suggest that involvement of T-type Ca(2+) channels in the propagation of odor-induced Ca(2+) transients in ORNs may contribute to signal transduction and odor sensitivity.  相似文献   

9.
Intracellular Ca2+ signals in response to inositol 1,4,5-trisphosphate-producing agents often present themselves as Ca2+ oscillations and propagating Ca2+ waves originating at discrete initiation sites. We studied the spatial organization of the Ca2+ signal in single CPAE endothelial cells stimulated with adenosine triphosphate. The long, thin processes presented a higher agonist sensitivity and, for the same agonist concentration, a faster rise in cytoplasmic Ca2+ concentration and rate of wave propagation than the cell body. Ca2+ waves originated preferentially in one of these processes and then invaded the cell body. Removal of external Ca2+ induced a progressive inhibition up to blockade of the response in the process but not in the cell body. These findings suggest that CPAE cells contain many individual store units, each of which has the inherent ability to set the stage for Ca2+ release. A diffusing messenger originating from the initiation zone then coordinates the events leading to Ca2+ release in the individual store units to produce a Ca2+ wave.  相似文献   

10.
Actions of Ca2+ antagonists, verapamil, nicardipine and diltiazem, were investigated on the Ca2+ inward current in the fragmented smooth muscle cell membrane (smooth muscle ball; SMB) obtained from the longitudinal muscle layer of the rabbit ileum, by enzymatic dispersion. All Ca2+ antagonists inhibited the inward current, in a dose-dependent manner. The ID50 value on the maximum amplitude of the inward current of nicardipine was 24 nM, and this value was roughly 50 times lower than values obtained with verapamil and diltiazem, when the inward current was provoked by 0 mV command pulse from the holding potential of –60 mV. Lowering the holding potential to –80 mV shifted the dose-response curve to the right. When depolarizing pulses (100 ms, stepped up to 0 mV from –60 mV or –80 mV) were applied every 20 s, the peak amplitude of the inward current remained unchanged, but nicardipine immediately, and diltiazem and verapamil slowly reduced the peak amplitude. These slow inhibitions by the latter two drugs depended on the frequency or number of stimulations. Nicardipine but not diltiazem and verapamil shifted the voltage-dependent inactivation curve to the left (3 s duration of the conditioning pulse). However, with a longer conditioning pulse (10 s) verapamil and diltiazem shifted the voltage-dependent inactivation curves to the left. Therefore, the inhibitory actions of these Ca2+ antagonists differ. Namely, diltiazem and verapamil inhibit the Ca2+ channels, mainly in a frequency-or use-dependent manner while nicardipine does so in a voltage-dependent manner.  相似文献   

11.
The Ca2+ and Sr2+ activation of tension in functionally skinned chicken fibers of normal and dystrophic skeletal and normal cardiac muscle were studied. The muscles studied can be separated into two groups based upon their Ca2+ and Sr2+ sensitivities: those which are significantly more sensitive to Ca2+ than to Sr2+, pectoralis and posterior latissimus dorsi (PLD), and those which show no Ca2+/Sr2+ sensitivity difference, cardiac and anterior latissimus dorsi (ALD). This suggests that there is more than one type of Ca2+ site involved in Ca2+ control of muscle contraction in different muscle types and suggests that ALD and cardiac muscle may be controlled by a different type of binding site than PLD and pectoralis muscle. Dystrophic ALD and PLD muscles showed little change in their Ca2+ and Sr2+ sensitivities from those of normal muscles in contrast to the pectoralis which showed a decrease in both Ca2+ and Sr2+ sensitivity (approaching that of PLD) with the onset of dystrophy. Similarly, upon SDS polyacrylamide gel electrophoresis, dystrophic ALD and PLD muscles showed no difference in contractile proteins from those of normal muscles, in contrast to pectoralis muscle where the appearance of a 36,000 dalton protein band correlated with the onset of dystrophy and the changes in the Ca2+/Sr2+ activation properties of this muscle. The contractile protein band pattern of normal and dystrophic PLD and dystrophic pectoralis muscle were similar including the presence of the 36,000 dalton protein.  相似文献   

12.
Cells from connecting tubule and cortical collecting duct of rabbit kidney were isolated by immunodissection with mAb R2G9 and cultured on permeable filters. Confluent monolayers developed an amiloride-sensitive transepithelial potential difference of –50±1 mV (lumen negative) and a transepithelial resistance of 507±18 cm2. Transepithelial Ca2+ transport increased dose-dependently with apical [Ca2+] and, in solutions containing 1 mM Ca2+, the active transcellular Ca2+ transport rate was 92±2 nmol h–1 cm–2. Transcellular Ca2+ transport was dependent on basolateral Na+ (Na b + ). Isoosmotic substitution of Na b + for N-methylglucamine resulted in a concentration-dependent decrease in Ca2+ absorption, with maximal inhibition of 67±5%. A Hill plot of the Na+-dependence yielded a coefficient of 1.9±0.4, indicating more than one Na+ site on a Na+-dependent Ca2+ transport system. In addition, the absence of Ca b 2+ resulted in a significant increase in Ca2+ transport both in the presence and absence of Na b + . Added basolaterally, ouabain (0.1 mM) inhibited Ca2+ transport to the same extent as did Na+-free solutions, while bepridil (0.1 mM), an inhibitor of Na+/Ca2+ exchange, reduced Ca2+ transport by 32±6%. Methoxyverapamil, felodipine, flunarizine and diltiazem (10 M) were without effect. Depolarisation of the basolateral membrane, by raising [K+]b to 60 mM, significantly decreased transcellular Ca2+ transport, which is indicative of electrogenic Na+/Ca2+ exchange. In conclusion, active Ca2+ transport in the collecting system of rabbit kidney is largely driven by basolateral Na+/Ca2+ exchange. However, a residual Ca2+ absorption of about 30% was always observed, suggesting that other Ca2+ transport mechanisms, presumably a Ca2+-ATPase, participate as well.  相似文献   

13.
Caffeine, a well known facilitator of Ca2+-induced Ca2+ release, induced oscillations of cytosolic free Ca2+ ([Ca2+]i) in GH3 pituitary cells. These oscillations were dependent on the presence of extracellular Ca2+ and blocked by dihydropyridines, suggesting that they are due to Ca2+ entry through L-type Ca2+ channels, rather than to Ca2+ release from the intracellular Ca2+ stores. Emptying the stores by treatment with ionomycin or thapsigargin did not prevent the caffeine-induced [Ca2+]i oscillations. Treatment with caffeine occluded phase 2 ([Ca2+]i oscillations) of the action of thyrotropin-releasing hormone (TRH) without modifying phase 1 (Ca2+ release from the intracellular stores). Caffeine also inhibited the [Ca2+]i increase induced by depolarization with high-K+ solutions (56% at 20 mM), suggesting direct inhibition of the Ca2+ entry through voltage-gated Ca2+ channels. We propose that the [Ca2+]i increase induced by caffeine in GH3 cells takes place by a mechanism similar to that of TRH, i.e. membrane depolarization that increases the firing frequency of action potentials. The increase of the electrical activity overcomes the direct inhibitory effect on voltage-gated Ca2+ channels with the result of increased Ca2+ entry and a rise in [Ca2+]i. Consideration of this action cautions interpretation of previous experiments in which caffeine was assumed to increase [Ca2+]i only by facilitating the release of Ca2+ from intracellular Ca2+ stores.  相似文献   

14.
Ca2+ current (L-type) and inward current caused by Ca2+ release from the sarcoplasmic reticulum and carried by electrogenic Na+/Ca2+ exchange have been measured in cultured atrial myocytes from hearts of adult guinea-pigs using whole-cell voltage clamp techniques. The pipette solution, used for internal dialysis of the cells, contained a high concentration, 60 mM or 25 mM, of citrate as a non-saturable low-affinity Ca2+-chelating compound. It has been shown previously that Ca2+-release-dependent inward current under these conditions is carried by electrogenic Na+/Ca2+ exchange. Furthermore, Ca2+-release-dependent inward current (the release signal) can be completely separated from triggering Ca2+ current if brief depolarizations for activating I Ca are used. In the majority of cells that did not produce spontaneous Ca2+ release, conditions could be found that caused the release signal to be split into two components: an early component of variable amplitude and a late component of rather constant amplitude. The delay of the late component with regard to triggering I Ca was inversely related to the amplitude of the first one. Below a certain amplitude of the first component, the second one failed to be elicited. This suggests the second component to be triggered by the first one. Weakly Ca2+-buffered cells produced spontaneous Ca2+ release, resulting in irregular transient inward currents at constant membrane-holding potential. Synchronization by trains of step depolarizations unmasked two components also in the spontaneous release signals. In none of the cells studied was any indication of more than two components of the release signal detected. The results are discussed in terms of two distinct compartments of sarcoplasmic reticulum with different properties of Ca2+ release.Supported by the Deutsche Forschungsgemeinschaft (FG Konzell)  相似文献   

15.
Ca2+ channels are regulated in a variety of different ways, one of which is modulation by the Ca2+ ion itself. In skeletal muscle, Ca2+ release sites are presumably located in the vicinity of the dihydropyridine-sensitive Ca2+ channel. In this study, we have tried to investigate the effects of Ca2+ release from the sarcoplasmic reticulum on the L-type Ca2+ channel in frog skeletal muscle, using the double Vaseline gap technique. We found an increase in Ca2+ current amplitude on application of caffeine, a well-known potentiator of Ca2+ release. Addition of the fast Ca2+ buffer BAPTA to the intracellular solution led to a gradual decline in Ca2+ current amplitude and eventually caused complete inhibition. Similar observations were made when the muscle fibre was perfused internally with the Ca2+ release channel blocker ruthenium red. The time course of Ca2+ current decline followed closely the increase in ruthenium red concentration. This suggests that Ca2+ release from the sarcoplasmic reticulum is involved in the regulation of L-type Ca2+ channels in frog skeletal muscle.  相似文献   

16.
The properties of the Ca2+-activated K+ channel in unfertilized hamster oocytes were investigated at the single-channel level using inside-out excised membrane patches. The results indicate a new type of Ca2+-activated K+ channel which has the following characteristics: (1) single-channel conductance of 40–85 pS for outward currents in symmetrical K+ (150 mM) solutions, (2) inward currents of smaller conductance (10–50 pS) than outward currents, i.e. the channel is outwardly rectified in symmetrical K+ solutions, (3) channel activity dependent on the internal concentration of free Ca+ and the membrane potential, (4) modification of the channel activity by internal adenosine 5 diphosphate (0.1 mM) producing a high open probability regardless of membrane potential.  相似文献   

17.
Ruthenium red has been shown to have a positive inotropic effect on isolated perfused hearts. The cellular mechanism of this action is not clear. Ruthenium red is able to block the Ca2+ release channel in isolated sarcoplasmic reticulum (SR) vesicle and reconstituted channel preparations. However, the effect of ruthenium red on SR Ca2+ release has not been studied in skinned cardiac muscle preparations. In the present study we investigated the actions of ruthenium red on both the characteristics of force generation by the contractile apparatus and Ca2+ release from the SR in chemically skinned rat papillary muscle. Ruthenium red (2 and 10 M) significantly increased the Ca2+ sensitivity of the contractile apparatus (decreasing Ca2+ required for the half-maximal response from 1.56±0.04 M to 1.46±0.05 M) but had no effect on the maximal Ca2+-activated force in triton X-100 treated fibers. This result may suggest one explanation for the positive inotropic effect of ruthenium red on the heart. On the other hand, ruthenium red had no significant effect on either caffeine-induced Ca2+ release or Ca2+-induced Ca2+ release from the SR in saponin-skinned muscle fibers. Lack of a blocking effect on SR Ca2+ release by ruthenium red in skinned fibers suggests that the SR Ca2+ channels in intact preparations have characteristics that are different from those of either vesicular or reconstituted channel preparations.  相似文献   

18.
Transformed Mardin-Darby canine kidney-focus (MDCK-F) cells exhibit spontaneous Ca2+ oscillations from an inositol 1,4,5-trisphosphate-sensitive cytoplasmic Ca2+ store. In this study, Ca2+ entry from the extracellular space and its role in generation of oscillations were investigated by means of Ca2+ video imaging and the Fura-2/Mn2+ quenching technique. Oscillations were dependent on extracellular Ca2+ concentration and were inhibited by extracellularly applied La3+, Co2+ and Ni2+. Depolarization of the cell membrane with high K+ concentrations and the L-type Ca2+ channel blocker nifedipine had no effect on oscillations, indicating the lack of involvement of voltage-gated Ca2+ channels. Mn2+ quenching experiments disclosed significant Ca2+ influx into MDCK-F cells. The rate of this influx was constant between Ca2+ spikes, but markedly increased during the spontaneous Ca2+ spikes. Similar transient increases in Ca2+ entry could be mimicked by agents triggering intracellular Ca2+ release such as bradykinin and thapsigargin. We conclude that the plasma membrane of MDCK-F cells exhibits a marked voltage-independent Ca2+ permeability permitting Ca2+ entry into the cytoplasm. The rate of Ca2+ entry which determines the frequency of oscillations is most likely to be regulated by the cytoplasmic Ca2+ concentration.  相似文献   

19.
Ca2+ channel inactivation was investigated in acutely isolated hippocampal pyramidal neurons from adult rats and found to have a component dependent on intracellular Ca2+. Ca2+-dependent inactivation was identified as the additional inactivation of channel current observed when Ca2+ replaced Ba2+ as the current carrying ion, and was found to be an independent process from that of Ba2+ current inactivation based on three lines of evidence: (1) no correlation between Ca2+-dependent inactivation and Ba2+ current inactivation was found, (2) only Ca2+-dependent inactivation was reduced by intracellular application of Ca2+ chelators, and (3) only Ca2+-dependent inactivation was sensitive to compounds which alter the cytoskeleton. Drugs which stabilize (taxol and phalloidin) and destabilize (colchicine and cytochalasin B) the cytoskeleton altered the development and recovery from Ca2+-dependent inactivation, indicating that the neuronal cytoskeleton may mediate Ca2+ channel sensitivity to intracellular Ca2+. Ca2+-dependent inactivation was not associated with a particular subset of Ca2+ channels, suggesting that all Ca2+ channels in these neurons are inactivated by intracellular Ca2+.  相似文献   

20.
Mitochondrial Ca2+ plays important roles in the regulation of energy metabolism and cellular Ca2+ homeostasis. In this study, we characterized mitochondrial Ca2+ accumulation in Syrian hamster hearts with hereditary cardiomyopathy (strain BIO 14.6). Exposure of isolated mitochondria from 70 nM to 30 μM Ca2+ ([Ca2+]o) caused a concentration-dependent increase in intramitochondrial Ca2+ concentrations ([Ca2+]m). The [Ca2+]m was significantly lower in cardiomyopathic (CMP) hamsters than in healthy hamsters when [Ca2+]o was higher than 1 μM and a decrease of about 52% was detected at [Ca2+]o of 30 μM (916 ± 67 nM vs 1,932 ± 132 nM in control). A possible mechanism responsible for the decreased mitochondrial Ca2+ uptake in CMP hamsters is the depolarization of mitochondrial membrane potential (Δψ m). Using a tetraphenylphosphonium (TPP+) electrode, the measured Δψ m in failing heart mitochondria was −136 ± 1.5 mV compared with −159 ± 1.3 mV in controls. Analyses of mitochondrial respiratory chain demonstrated a significant impairment of complex I and complex IV activities in failing heart mitochondria. In summary, a less negative Δψ m resulting from defects in the respiratory chain may lead to attenuated mitochondrial Ca2+ accumulation, which in turn may contribute to the depressed energy production and myocardial contractility in this model of heart failure. In addition to other known impairments of ion transport in sarcoplasmic reticulum and plasma membrane, results from this paper on mitochondrial dysfunctions expand our understanding of the molecular mechanisms leading to heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号