首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4‐dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three‐hour DNP infusions induced elevations in extracellular concentrations of lactate, pyruvate and adenosine, as well as increases in non‐REM sleep during the following night. Sleep was not affected when DNP was administered to adjacent brain areas, although the metabolic changes were similar. The amount and the timing of the increase in non‐REM sleep, as well as in the concentrations of lactate, pyruvate and adenosine with 0.5–1.0 mm DNP infusion, were comparable to those induced by 3 h of sleep deprivation. Here we show that energy depletion in localized brain areas can generate sleep. The energy depletion model of sleep induction could be applied to in vitro research into the cellular mechanisms of prolonged wakefulness.  相似文献   

2.
The sleep disorder narcolepsy may now be considered a neurodegenerative disease, as there is a massive reduction in the number of neurons containing the neuropeptide, hypocretin (HCRT). Most narcoleptic patients have low to negligible levels of HCRT in the cerebrospinal fluid (CSF), and such measurements serve as an important diagnostic tool. However, the relationship between HCRT neurons and HCRT levels in CSF in human narcoleptics is not known and cannot be directly assessed. To identify this relationship in the present study, the neurotoxin, hypocretin-2-saporin (HCRT2-SAP), was administered to the lateral hypothalamus (LH) to lesion HCRT neurons. CSF was extracted at circadian times (ZT) 0 (time of lights-on) or ZT8 at various intervals (2, 4, 6, 12, 21, 36, 60 days) after neurotoxin administration. Compared to animals given saline in the LH, rats with an average loss of 73% of HCRT neurons had a 50% decline in CSF HCRT levels on day 60. The decline in HCRT levels was evident by day 6 and there was no recovery or further decrease. The decline in HCRT was correlated with increased REM sleep. Lesioned rats that were kept awake for 6 h were not able to release HCRT to match the output of saline rats. As most human narcoleptics have more than 80% reduction of CSF HCRT, the results from this study lead us to conclude that in these patients, virtually all of the HCRT neurons might be lost. In those narcoleptics where CSF levels are within the normal range, it is possible that not all of the HCRT neurons are lost and that the surviving HCRT neurons might be increasing output of CSF HCRT.  相似文献   

3.
Sleep homeostasis is the process by which recovery sleep is generated by prolonged wakefulness. The molecular mechanisms underlying this important phenomenon are poorly understood. We have previously shown that nitric oxide (NO) generation increases in the basal forebrain (BF) during sleep deprivation (SD). Moreover, both NO synthase (NOS) inhibition and a NO scavenger prevented recovery sleep induction, while administration of a NO donor during the spontaneous sleep-wake cycle increased sleep, indicating that NO is necessary and sufficient for the induction of recovery sleep. Next we wanted to know which NOS isoform is involved in the production of recovery sleep. Using in vivo microdialysis we infused specific inhibitors of NOS into the BF of rats during SD, and found that an inhibitor of inducible NOS (iNOS), 1400W, prevented non-rapid eye movement (NREM) recovery, while an inhibitor of neuronal NOS (nNOS), L-N-propyl-arginine, decreased REM recovery but did not affect NREM recovery. Using immunoblot analysis we found that iNOS was not expressed during the spontaneous sleep-wake cycle, but was induced by prolonged wakefulness (increased by 278%). A known iNOS inducer, lipopolysaccharide, evoked an increase in sleep that closely resembled recovery sleep, and its effects were abolished by 1400W. These results suggest that the elevation of NO produced by induction of iNOS in the BF during prolonged wakefulness is a specific mechanism for producing NREM recovery sleep and that the two NOS isoforms have a complementary role in NREM and REM recovery induction.  相似文献   

4.
Sleep-related neuronal discharge in the basal forebrain of cats   总被引:8,自引:0,他引:8  
Although evidence suggests that the basal forebrain contains a hypnogenic mechanism, putative sleep-promoting neural elements within this area have not been identified. We examined basal forebrain neuronal activity during waking, non-rapid-eye-movement (NREM) sleep, REM sleep and various transition states. Based on state-related discharge rates. 3 cell types were defined. Thirty-nine of 83 cells were classified as waking-active, i.e. waking discharge rates were greater than 2 times NREM sleep rates. Twenty-three of 82 cells were classified as state-indifferent (waking and NREM rates differed by a factor of less than 2). NREM sleep discharge rates of the remaining 20 cells were greater than 2 times waking rates. These were labeled sleep-active cells. Discharge rates of these cells during epochs of alert waking were low, averaging less than 1 spike/s. Maximal discharge rates occurred during NREM sleep, averaging 9.44 spikes/s. Increased discharge of sleep-active cells anticipated sleep onset; cells had an average discharge rate of 6.60 spikes/s during transitions between waking and NREM sleep. Sleep-active cells were confined to the ventral basal forebrain, in the horizontal limb of the diagonal bands of Broca, substantia innominata, entopeduncular nucleus and ventral globus pallidus. These areas overlap, in part, with those where chemical, thermal and electrical stimulations evoke sleep, and where lesions suppress sleep. Based on location and discharge pattern we consider sleep-active cells candidates for mediating some of the sleep-promoting functions of the basal forebrain.  相似文献   

5.
The medial septum (MS) of the basal forebrain contains cholinergic neurons that project to the hippocampus, support cognitive function, and are implicated in age-related cognitive decline. Hypothalamic orexin/hypocretin neurons innervate and modulate basal forebrain cholinergic neurons and provide direct inputs to the hippocampus. However, the precise role of orexin in modulating hippocampal cholinergic transmission--and how these interactions are altered in aging--is unknown. Here, orexin A was administered to CA1 and the MS of young (3-4 months) and aged (27-29 months) Fisher 344/Brown Norway rats, and hippocampal acetylcholine efflux was analyzed by in vivo microdialysis. At both infusion sites, orexin A dose-dependently increased hippocampal acetylcholine in young, but not aged rats. Moreover, immunohistochemical characterization of the MS revealed no change in cholinergic cell bodies in aged animals, but a significant decrease in orexin fiber innervation to cholinergic cells. These findings indicate that: (1) Orexin A modulates hippocampal cholinergic neurotransmission directly and transsynaptically in young animals, (2) Aged animals are unresponsive to orexin A, and (3) Aged animals undergo an intrinsic reduction in orexin innervation to cholinergic cells within the MS. Alterations in orexin regulation of septohippocampal cholinergic activity may contribute to age-related dysfunctions in arousal, learning, and memory.  相似文献   

6.
The present study examined whether the activities of the rostral basal forebrain neurons alter the activities of the orexin (also known as hypocretin) neurons in the tuberal part of the hypothalamus in rats. We performed microdialysis perfusion of the ventromedial portion of the rostral basal forebrain with the GABAA receptor agonist muscimol to inhibit focally the neuronal activities in the rostral basal forebrain. Then, we monitored sleep/wake behaviour and investigated the pattern of activities of orexin neurons by examining the expression of FOS as an indicator of cellular activation. Bilateral perfusion with muscimol (5, 15, and 50 micro m) produced a dose-dependent decrease in the amount of sleep. This perfusion with muscimol at 50 micro m produced FOS-like immunoreactivity in 37% of the orexin neurons located in the tuberal part of the hypothalamus, whereas the FOS-like immunoreactivity was sparse in orexin neurons of the sleeping control rats (P = 0.001 by Mann-Whitney U-test). Unilateral perfusion with muscimol (50 micro m) also suppressed sleep. In this case, FOS-like immunoreactivity was seen in 40% of the orexin neurons on the side ipsilateral to the perfusion site but only in 10% of orexin neurons on the contralateral side (P = 0.018 by Wilcoxon signed rank test). These functional data suggested that a sleep-generating element in the ventromedial part of the rostral basal forebrain provides an inhibitory influence on the activities of the orexin neurons in the tuberal part of the hypothalamus.  相似文献   

7.
The orexigenic peptides hypocretin (orexin) and melanin-concentrating hormone (MCH) are involved in the control of food intake and in other homeostatic functions including sleep and arousal. In this article we study the distribution of these peptides in the brain of the goldfish (Carassius auratus), focusing on those regions particularly related to feeding, sleep, and arousal. Although the general distribution of these peptides in goldfish shows many similarities to those described previously in other species, we observed some noteworthy differences. As in other vertebrates, the peptidergic somata lie in the anterolateral hypothalamus. In goldfish, both hypocretin and MCH immunoreactive cell bodies project fibers to the ventral telencephalon, thalamus, and hypothalamus. At mesencephalic levels fibers reach the deep layers of the optic tectum and also course sparsely through the mesencephalic tegmentum. In contrast to the strong innervation of locus coeruleus and raphe in mammal, the MCH and hypocretin systems in goldfish barely innervate these aminergic populations related to the regulation of sleep and arousal. MCH, but not hypocretin, immunoreactive fibers terminate substantially in the sensory layer of the vagal gustatory lobe of goldfish, while both peptidergic systems distribute to the primary visceral sensory areas of the medulla and pons. The strong involvement of these peptidergic systems with the hypothalamus and general visceral nuclei, but not with locus coeruleus or raphe nuclei support the view that these peptides originally played a role in regulation of energy balance and evolved secondarily to influence sleep-wakefulness systems in amniote vertebrates.  相似文献   

8.
Hypocretin/orexin neurons give rise to an extensive projection system, portions of which innervate multiple regions associated with the regulation of behavioral state. These regions include the locus coeruleus, medial septal area, medial preoptic area, and substantia innominata. Evidence indicates that hypocretin modulates behavioral state via actions within each of these terminal fields. To understand better the circuitry underlying hypocretin-dependent modulation of behavioral state, the present study characterized the degree to which there exists: 1) lateralization of hypocretin efferents to basal forebrain and brainstem arousal-related regions, 2) topographic organization of basal forebrain- and brainstem-projecting hypocretin neurons, and 3) collateralization of individual hypocretin neurons to these arousal-related terminal fields. These studies utilized combined immunohistochemical identification of hypocretin neurons with single or double retrograde tracing from the locus coeruleus, medial preoptic area, medial septal area, and substantia innominata. Results indicate that approximately 80% of hypocretin efferents to basal forebrain regions project ipsilaterally, whereas projections to the locus coeruleus are more bilateral (65%). There was a slight preference for basal forebrain-projecting hypocretin neurons to be distributed within the medial half of the hypocretin cell group. In contrast, hypocretin neurons projecting to the locus coeruleus were located primarily within the dorsal half of the hypocretin cell group. Finally, a large proportion of hypocretin neurons appear to project simultaneously to at least two of the examined terminal fields. These latter observations suggest coordinated actions of hypocretin across multiple arousal-related regions.  相似文献   

9.
Here we report a hypersomnolent girl with extensive hypothalamic damage after removal of a craniopharyngioma. The presence of a short sleep latency, sleep onset REM periods during a multiple sleep latency test (MSLT) and negative HLA DQB1*0602 typing suggested a diagnosis of symptomatic narcolepsy. Low cerebrospinal fluid hypocretin-1 level indicated destruction of hypocretin-producing neurons in the hypothalamus. An increased amount of REM sleep and a lack of REM sleep cyclicity documented by all-night polysomnography were different findings from previous reports of hypocretin-deficient idiopathic symptomatic narcolepsy. A more global hypothalamic lesion demonstrated by brain magnetic resonance imaging (MRI) after surgery seemed to cause marked disinhibition of REM sleep as well as hypersomnolence in this patient.  相似文献   

10.
The degree of lesion produced by 192 IgG-saporin relative to controls was compared using three independent methods. Microdialyzed acetylcholine (ACh), choline acetyltransferase (ChAT) activity, and the rate of ACh synthesis were compared in the frontal cortex and hippocampus. Microdialysis of rats was performed 1 and 15 weeks post-lesion. In week 16, the rats were sacrificed after an injection of deuterated choline (Ch) for determination of the rate of ACh synthesis. ChAT activity was determined at the same timepoints in a separate set of rats. At 1 week, ChAT activity and microdialyzed ACh showed similar degrees of depletion. At 15 weeks, microdialyzed ACh was significantly lower than the synthesis rate in cortex, but not in hippocampus. A small increase in ChAT activity between 1 and 15 weeks was found in the cortex, but not hippocampus. In the hippocampus, however, the rate of ACh synthesis was significantly greater than ChAT activity. This was true for two doses of immunotoxin; the greater compensation occurring with the lesser lesion. Microdialyzed ACh levels were not different from the other measures in hippocampus. Residual cholinergic terminals in the hippocampus, but not frontal cortex, compensate for a selective cholinergic lesion by increasing the rate of synthesis and may thereby alleviate hippocampus-dependent behavioral deficits.  相似文献   

11.
Using microdialysis and high-performance liquid chromatography, we measured acetylcholine (ACh) release simultaneously from two cortical sites in anesthetized rats. One site was always in the somatosensory cortex, and the other was in either the visual or the motor cortex. After baseline measurements were obtained, selected sites in the basal forebrain (BF) were stimulated to increase ACh release. Some BF sites provoked more release in one microdialysis probe than in the other, suggesting some degree of corticotropic organization of the cholinergic projections from the BF. BF sites optimal for release from the visual cortex were separated from optimal sites for release from the somatosensory cortex by greater distances than were the best sites for release from the somatosensory and the motor cortex. Stimulation of a single BF site often provoked similar release from the latter two cortical areas. Electrical stimulation of the BF also modified cortical neuronal activity. Activation of some BF sites provoked an intense discharge of many neurons in the vicinity of the cortical recording electrode, and the same stimulus site in the BF provoked release of large amounts of ACh in the cortex. Stimulation of other BF sites produced strong inhibition of ongoing cortical activity and no increase in cortical ACh release. When other sites were stimulated, they had no effect or they generated stereotyped bursting patterns in the cortex without any observable effect on ACh release. BF sites that generated inhibition of cortical neural activity were generally located near the sites that activated the cortex and provoked release of ACh. These data suggest an elaborate control of the sensory cortex by a mechanism involving both gamma-aminobutyric acid-containing and cholinergic neurons of the BF. J. Comp. Neurol. 381:53-67, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Hypocretins/orexins are neuropeptides implicated in sleep regulation and the sleep disorder narcolepsy. In order to examine how hypocretin activity fluctuates across 24 h with respect to the sleep-wake cycle, we measured changes in extracellular hypocretin-1 levels in the lateral hypothalamus and medial thalamus of freely moving rats with simultaneous sleep recordings. Hypocretin levels exhibited a robust diurnal fluctuation; levels slowly increased during the dark period (active phase), and decreased during the light period (rest phase). Levels were not correlated with the amount of wake or sleep in each period. Although an acute 4-h light-shift did not alter hypocretin levels, 6-h sleep deprivation significantly increased hypocretin release during the forced-wake period. Hypocretin activity is, thus, likely to build up during wakefulness and decline with the occurrence of sleep. These findings, together with the fact that a difficulty in maintaining wakefulness during the daytime is one of the primary symptoms of hypocretin-deficient narcolepsy, suggest that hypocretin activity may be critical in opposing sleep propensity during periods of prolonged wakefulness.  相似文献   

13.
To create operational criteria for polygraphic assessments of direct transitions from wake to REM sleep (DREM), as a murine analog of human cataplexy, we have analyzed DREM episodes in congenic lines of orexin/ataxin-3 transgenic [TG] mice and wild-type littermates. The sleep stage of each 10-second epoch was visually scored using our standard criteria. Specificity of DREM for narcoleptic TG mice and sensitivity to detect DREM was evaluated using different DREM criteria. We found that DREM transitions by 10-second epoch scoring are not specific for narcoleptic TG mice and also occur in WT mice during light period. These wake-to-REM transitions in WT mice (also seen in TG mice during light period) were characteristically different from DREM transitions in TG mice during dark period; they tended to occur as brief bouts of wakefulness interrupting extended episodes of REM sleep, suggesting that these transitions do not represent abnormal manifestations of REM sleep. We therefore defined the DREM transitions by requiring a minimum number of preceding wake epochs. Requiring no fewer than four consecutive epochs of wakefulness produced the best combination of specificity (95.9%) and sensitivity (66.0%). By definition, DREM in dark-period is 100% specific to narcolepsy and was 95.9% specific overall. In addition, we found that desipramine, a trycyclic anticataplectic, potently reduces DREM, while two wake-promoting compounds have moderate (d-amphetamine) and no (modafinil) effect on DREM; the effects mirror the anticataplectic effects of these compounds reported in canine and human narcolepsy. Our definition of DREM in murine narcolepsy may provide good electrophysiological measures for cataplexy-equivalent episodes.  相似文献   

14.
Melatonin and l-propranolol, which inhibits melatonin synthesis, were administered to rats at 07.45 h and 19.45 h. Melatonin given in the morning decreased non-REM sleep, but when given at night had no effect on sleep stages. l-propranolol given in the morning had no effect on non-REM sleep, but increased it at night. l-propranolol produced decreased in percentage REM sleep at both times.  相似文献   

15.
The relationship between pain and sleep seems to be reciprocal: if pain may interrupt or disturb sleep, poor sleep can also influence pain perception. However the influence of sleep disturbances on pain sensitivity remain poorly investigated. The aim of this study was to assess the effect of REM sleep deprivation on the reaction of rats subjected to different noxious stimuli. In each experiment 16 Wistar male rats were randomly assigned to two groups: controls (n=8), and REM sleep deprived rats (n=8). REM sleep deprivation was elicited using the ‘inverted flower pot’ technique. Four different experiments were performed to assess the sensitivity to mechanical (vocalization threshold in paw pressure), thermal (tail withdrawal latency in hot water immersion), electrical (envelope of 2nd peep in tail shock test) and chemical (analgesic behavior in formalin test) noxious stimuli. All experiments were performed over a 5-day period with baseline (day 1, day 2) in a dry environment and REM sleep deprivation (day 3, day 4 and day 5) in a wet environment. Under wet conditions, vocalization threshold in the paw pressure test (−20%, P=0.005), and tail withdrawal latency in the hot water immersion test (−21%, P=0.006) were significantly lower, and the envelope of 2nd peep in the tail electrical shock was significantly greater (+78%, P=0.009), in REM sleep deprived rats compared to controls. However, under wet conditions the mean duration of nociceptive behaviors in the formalin test did not differ between the two groups. In conclusion, REM sleep deprivation induces a significant increase in the behavioral responses to noxious mechanical, thermal and electrical stimuli in rats.  相似文献   

16.
Orexin/hypocretin (Orx) neurons are critical for the maintenance of waking in association with behavioral arousal and postural muscle tone, since with their loss narcolepsy with cataplexy occurs. Given that basal forebrain (BF) neurons project to the hypothalamus and play important diverse roles in sleep/wake states, we sought to determine whether acetylcholine (ACh), glutamate (Glu), and/or GABA-releasing BF neurons innervate and could thereby differentially regulate the Orx neurons. From discrete injections of biotinylated dextran amine (BDA, 10,000 MW) into the magnocellular preoptic nucleus (MCPO) and substantia innominata (SI) in the rat, BDA-labeled fibers projected to the lateral hypothalamus (LH), perifornical area (PF), and dorsomedial hypothalamus (DMH), where approximately 41%, approximately 11%, and 9% of Orx-positive (+) neurons were respectively contacted in each region. Employing triple fluorescent staining for Orx, BDA, and presynaptic vesicular (V) transporters (T), we found that only 4% of the innervated Orx+ neurons in the LH were contacted by BDA+[VAChT+] terminals, whereas approximately 31% and approximately 67% were respectively contacted by BDA+[VGluT2+] and BDA+[VGAT+] terminals. In 3D-rendered and rotated confocal images, we confirmed the latter contacts and examined staining for postsynaptic proteins PSD-95, a marker for glutamatergic synapses, and gephyrin, a marker for GABAergic synapses, that were located on Orx+ neurons facing BDA-labeled terminals in approximately 20% and approximately 50% of contacts, respectively. With such synaptic input, BF glutamatergic neurons can excite Orx neurons and thus act to maintain behavioral arousal with muscle tone, whereas GABAergic neurons can inhibit Orx neurons and thus promote behavioral quiescence and sleep along with muscle atonia.  相似文献   

17.
Evidence suggests that neurotrophins are essential for the survival and phenotypic maintenance of cholinergic basal forebrain (BF) neurons. We evaluated the pattern of programmed cell death in the BF of the rat during development and after ablations of the cerebral cortex, a major target area and source of neurotrophins for BF neurons. We identified dying cells using the TUNEL (terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labelling) method and confirmed their apoptotic morphology with electron microscopy. Moreover, we demonstrated the expression of the apoptotic marker active caspase-3 in cells with features of apoptosis. TUNEL(+) cells were present in the developing BF during the first two postnatal weeks. Their frequency peaked at postnatal day (P)1 and at P5. TUNEL used in conjunction with immunofluorescence for neuronal nuclear protein (NeuN) showed that, at both peak stages, the majority of apoptotic cells were neurons. Extensive lesions of the cerebral cortex at different ages (P0, P7 and P14) did not induce significant changes in the frequency of apoptotic BF neurons. However, they resulted in alterations in the morphological phenotype of choline acetyltransferase (ChAT)-immunoreactive neurons in the BF, and a reduction in their number which was inversely proportional to the age at which the lesions were performed. We suggest that: (i) apoptosis is temporally coordinated with the morphological and neurochemical differentiation of BF neurons and the establishment of connections with their target areas; and (ii) cortical ablations do not affect the survival of BF neurons, but they influence the phenotype of cholinergic BF neurons.  相似文献   

18.
We sought to determine in rat, whether interruption of the major extrathalamic projections to the cerebral cortex originating in and projecting through the basal forebrain (BF), will impair the increase in regional cerebral blood flow (rCBF), but not metabolism, elicited in the cerebral cortex by electrical stimulation of the cerebellar fastigial nucleus (FN). Studies were conducted in anesthetized, paralyzed, ventilated rats, with blood gases controlled and AP maintained in the autoregulated range. Electrolytic lesions were placed unilaterally in the BF at the level of the lateral preoptic region lying in rostral portions of the medial forebrain bundle and resulted in a reduction of up to 47% of the choline acetyltransferase activity in the ipsilateral cerebral cortex. rCBF was measured in homogenates of 9 paired brain regions by the 14C-iodoantipyrine technique. In unlesioned rats, FN stimulation symmetrically and significantly (P less than 0.05) increased rCBF in all brain regions with the greatest increase (to 180%) in the frontal cortex. Two days following a unilateral BF lesion, FN stimulation failed to increase rCBF in the ipsilateral cerebral cortex distal to the BF lesion. In contrast, rCBF was increased to an almost comparable degree in the remainder of the brain. BF lesions alone resulted in a 18-23% reduction in cortical rCBF ipsilaterally (P less than 0.025). BF lesions did not alter the cerebrovascular vasodilation elicited by CO2 nor perturb autoregulation. The cortical vasodilation elicited by FN stimulation is mediated by intrinsic neuronal pathways and depends upon the integrity of neurons, possibly cholinergic, originating in, or passing through, the BF.  相似文献   

19.
目的探讨orexin-1受体(OX1R)和orexin-2受体(OX2R)拮抗剂对睡眠剥夺(SD)的戊四氮(PTZ)致疒间大鼠癫疒间发作及脑组织病理学变化的影响。方法雄性Wistar大鼠48只,随机分为正常对照(NC)组、PTZ组、SD+PTZ(SD)组、SD+PTZ+二甲基亚砜(DMSO)组、SD+PTZ+OX1R拮抗剂SB334867(SB)组和SD+PTZ+OX2R拮抗剂TCS OX229(TCS)组。采用改良多平台SD法,SD前及SD 48 h分别给予相应组大鼠侧脑室注射DMSO、SB或TCS。SD 72 h给予各组腹腔注射PTZ 50 mg/kg诱导癫疒间发作;观察各组大鼠癫疒间发作的潜伏期、发作等级评分、发作持续时间及死亡率;应用常规染色法观察海马的病理学变化,免疫荧光法(BrdU标记)观察神经细胞增殖的变化。结果 (1)与PTZ组比较,SD组及DMSO组疒间性发作的潜伏期明显缩短,发作等级评分、持续时间及死亡率明显增加(均P<0.001),海马CA3区神经元损害加重,海马齿状回门区和颗粒细胞下层BrdU阳性细胞数显著增多(P<0.001);SD组与DMSO组间差异无统计学意义。(2)与SD组比较...  相似文献   

20.
Summary The effects of cholinergic basal forebrain lesions on the activity of the glutamatergic and GABAergic systems were investigated in the rat frontal cortex and hippocampus. Bilateral quisqualic acid injections in the nucleus basalis magnocellularis (NBM) at the origin of the main cholinergic innervation to the neocortex induced a cholinergic deficit in the cerebral cortex 15 days later, as shown by the marked selective decrease in cortical choline acetyltransferase (CAT) activity observed. Concurrent alterations in the kinetic parameters of high affinity glutamate uptake consisting mainly of a decrease in the V max were observed in the cerebral cortex. These changes presumably reflect a decreased glutamatergic transmission and provide support for the hypothesis that cortical glutamatergic neurons may undergo the influence of cholinergic projections from the NBM. Surprisingly, similar alterations in the glutamate uptake process were found to occur at hippocampal level in the absence of any significant change in the hippocampal cholinergic activity. These data indicate that the NBM may contribute to regulating hippocampal glutamatergic function without interfering with the hippocampal cholinergic innervation that mainly originates in the medial septal area-diagonal band (MSA-DB) complex. No change in parameters of GABAergic activity, namely the glutamic acid decarboxylase (GAD) activity and high affinity GABA uptake, were observed in any of the structures examined. In a second series of experiments involving bilateral intraventricular injections of AF 64 A, marked survival time-dependent decreases in CAT and high affinity choline uptake activities but no significant change in the high affinity glutamate uptake rate were observed in the hippocampus. No significant change in either parameters of cholinergic activity or in the glutamate uptake was concurrently observed in the cerebral cortex. The GABAergic activity was again unaffected whatever the survival time and the structure considered. Taken as a whole, these data suggest that basal forebrain projections originating in the NBM may play a major role in regulating glutamatergic but not GABAergic function in both the cerebral cortex and the hippocampus; whereas the glutamatergic and GABAergic activities in these two structures may not be primarily under the influence of the cholinergic projections from the MSA-DB complex.Abbreviations NBM nucleus basalis magnocellularis - MSA-DB medial septal area-diagonal band - CAT choline acetyltransferase - GAD glutamic acid decarboxylase - GABA gamma-aminobutyric acid Laboratoire associé à l'Université Aix-Marseille II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号