首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pivotal role of DCs in initiating immune responses led to their use as vaccine vectors. However, the relationship between DC subsets involved in antigen presentation and the type of elicited immune responses underlined the need for the characterization of the DCs generated in vitro. The phenotypes of tissue-derived APCs from a cynomolgus macaque model for human vaccine development were compared with ex vivo-derived DCs. Monocyte/macrophages predominated in bone marrow (BM) and blood. Myeloid DCs (mDCs) were present in all tested tissues and were more highly represented than plasmacytoid DCs (pDCs). As in human skin, Langerhans cells (LCs) resided exclusively in the macaque epidermis, expressing CD11c, high levels of CD1a and langerin (CD207). Most DC subsets were endowed with tissue-specific combinations of PRRs. DCs generated from CD34(+) BM cells (CD34-DCs) were heterogeneous in phenotype. CD34-DCs shared properties (differentiation and PRR) of dermal and epidermal DCs. After injection into macaques, CD34-DCs expressing HIV-Gag induced Gag-specific CD4(+) and CD8(+) T cells producing IFN-γ, TNF-α, MIP-1β, or IL-2. In high responding animals, the numbers of polyfunctional CD8(+) T cells increased with the number of booster injections. This DC-based vaccine strategy elicited immune responses relevant to the DC subsets generated in vitro.  相似文献   

2.
《Human immunology》2021,82(12):976-981
Dendritic cells (DCs) with capacity of antigen cross-presentation are of key interest for immunotherapy against cancer as they can induce antigen-specific cytotoxic T lymphocyte (CTL) responses. This study describes frequencies of DC subtypes in human tonsils and lymph nodes, and phenotypic aspects that may be targeted by adjuvant measures.From human tonsils and neck lymph nodes, DCs were identified through flow cytometry, and subsets of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were investigated. Maturity status was assessed and surface receptors with CTL-promoting potentials were studied.CD123+ pDCs as well as CD1c+, CD141+, and CD1c-CD141- mDCs were detected in tonsils and lymph nodes. Both sites featured a similar presence of DC subsets, with CD123+ pDC being dominant and CD141+ mDCs least frequent. Based on CD80/CD86 expression, all DC subtypes featured a low degree of maturation. Expression of pattern recognition receptors (PRRs) CD206, CD207, DC-SIGN, TLR2, and TLR4, as well as the chemokine receptor XCR1, indicated DC subset-specific receptor profiles.We conclude that tonsils and lymph nodes share common features in terms of DC subset frequency and maturation as well as PRR and XCR1 expression pattern. Our work suggests that both sites may be considered for vaccine deposition in DC-mediated immunotherapy.  相似文献   

3.
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function.This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays.The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets.These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo.  相似文献   

4.
Chen M  Huang L  Shabier Z  Wang J 《Molecular immunology》2007,44(10):2558-2565
The lifespan of dendritic cells (DCs) can potentially influence immune responses by affecting the duration of DCs in stimulating lymphocytes. Significant differences in the lifespan have been reported for various DC subsets, however, the molecular mechanisms for regulating such differences between DC subsets remain unclear. In this study, we compared the apoptosis signaling molecules in two major DC subjects, the myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). We observed a lower ratio between anti-apoptotic Bcl-2/Bcl-xL and pro-apoptotic Bax/Bak in shorter-lived myeloid DCs (mDCs) than in longer-lived plasmacytoid DCs (pDCs) or T cells. Transfection with Bcl-2 or Bcl-xL prolonged the survival of mouse primary mDCs in vitro, while deletion of Bcl-2 accelerated DC turnover in vivo. In addition, the ratios between anti-apoptotic Bcl-2/Bcl-xL and pro-apoptotic Bax/Bak could be regulated in DCs. Signaling from toll-like receptors (TLRs) up-regulated Bcl-xL and improved DC survival. Our data suggest that differential expression of apoptosis signaling molecules regulates the lifespan of different DC subsets.  相似文献   

5.
Analysis of peripheral blood dendritic cells (PBDCs) is increasingly reaching clinical relevance in a wide range of pathologies, in which investigating the capacity of DC subsets to respond adequately to specific stimuli may aid the comprehension of underlying immunopathologic mechanisms. The evaluation of PBDC responses directly challenged in whole blood (WB) samples offers many advantages over other methods that require DC isolation and culture, but it is limited in multiparametric analysis, currently based on 3- or 4-color assays. Therefore, in this study we developed a 6-color assay dedicated to the analysis of PBDC responses upon WB stimulation. We incubated WB samples with ligands to toll-like receptors (TLRs) with a clear-cut distribution on myeloid DCs (mDCs) or plasmacytoid (pDCs) and analyzed DC responses in terms of upregulation of activation/maturation markers, as well as production of a wide range of regulatory cytokines. Four colors were used to gate on mDCs and pDCs that were identified as lineage-/HLA-DR+/CD11c+ and lineage-/HLA-DR+/CD123+, respectively, and two further colors were used to analyze either the surface expression of CD80, CD86, CD40 or CD83, or the intracellular accumulation of IL-12, tumor-necrosis factor (TNF)-alpha, interferon (IFN)-alpha, IL-6, IL-10 or IL-4. With this method, we could directly compare in the same flow cytometric tube the responses of mDCs and pDCs to TLR stimulation, and investigate the reciprocal coexpression of distinct activation markers or regulatory cytokines. We suggest that the 6-color WB assay presented here may represent a novel tool for investigating the complex biology of DCs.  相似文献   

6.
To date, little is known about the unique contributions of specialized human DC subsets to protection against tuberculosis (TB). Here, we focus on the role of human plasmacytoid (p)DCs and myeloid (m)DCs in the immune response to the TB vaccine bacille Calmette‐Guérin (BCG). Ex vivo DC subsets from human peripheral blood were purified and infected with BCG expressing GFP to distinguish between infected and noninfected cells. BDCA‐1+ myeloid DCs were more susceptible than BDCA‐3+ mDCs to BCG infection. Plasmacytoid DCs have poor phagocytic activity but are equipped with endocytic receptors and can be activated by bystander stimulation. Consequently, the mutual interaction of the two DC subsets in response to BCG was analyzed. We found that pDCs were activated by BCG‐infected BDCA‐1+ mDCs to upregulate maturation markers and to produce granzyme B, but not IFN‐α. Reciprocally, the presence of activated pDCs enhanced mycobacterial growth control by infected mDCs and increased IL‐1β availability. The synergy between the two DC subsets promoted BCG‐specific CD8+ T‐cell stimulation and the role of BCG‐infected BDCA‐1+ mDCs could not be efficiently replaced by infected BDCA‐3+ mDCs in the crosstalk with pDCs. We conclude that mDC–pDC crosstalk should be exploited for rational design of next‐generation TB vaccines.  相似文献   

7.
Dendritic cells (DCs) are a subset of antigen-presenting cells (APCs) that are involved in the initiation and control of the immune response to antigens present at the interface with the environment. A limited number of groups have studied DCs in human and animal conjunctiva but no data is available concerning the different DC subsets present in the conjunctival tissue. The aims of this study are to characterize the phenotypes and numbers of DCs present in the murine model of allergic conjunctivitis using the technique of immunohistochemistry so as to aid the understanding of the mechanisms involved in allergic eye disease. A double immunofluorescence method was used to analyze the phenotypic distribution and density of DC subsets in the mouse conjunctival tissues of the allergic model using a panel of antibodies: CD11c, as a general marker of DCs, coupled with another DC subset marker such as Langerin for Langerhans cells (LCs), CD11b for myeloid DCs (mDCs) and mPDCA-1 for plasmacytoid DCs (pDCs). In the na?ve conjunctiva, mDCs were consistently detected in the subepithelial layer and substantia propria. In the epithelium and the subepithelial layer, very few LCs and virtually no pDCs were observed. Following allergen challenge, there was a marked influx of mDCs and pDCs, but no LCs, into the subepithelial layer and throughout the substantia propria. These results indicate that conjunctival DC subsets may play an important role in the immune-regulatory processes involved in the inflammatory component of allergic conjunctivitis.  相似文献   

8.
Dendritic cells (DCs) comprise distinct functional subsets including CD8? and CD8(+) classical DCs (cDCs) and interferon-secreting plasmacytoid DCs (pDCs). The cytokine Flt3 ligand (Flt3L) controls the development of DCs and is particularly important for the pDC and CD8(+) cDC and their CD103(+) tissue counterparts. We report that mammalian target of rapamycin (mTOR) inhibitor rapamycin impaired Flt3L-driven DC development in vitro, with the pDCs and CD8(+)-like cDCs most profoundly affected. Conversely, deletion of the phosphoinositide 3-kinase (PI3K)-mTOR negative regulator Pten facilitated Flt3L-driven DC development in culture. DC-specific Pten targeting in vivo caused the expansion of CD8(+) and CD103(+) cDC numbers, which was reversible by rapamycin. The increased CD8(+) cDC numbers caused by Pten deletion correlated with increased susceptibility to the intracellular pathogen Listeria. Thus, PI3K-mTOR signaling downstream of Flt3L controls DC development, and its restriction by Pten ensures optimal DC pool size and subset composition.  相似文献   

9.
In rheumatoid arthritis (RA), T cells have been proposed either as a main actor or as an epiphenomenon in such a primarily synoviocyte-driven disease. A major issue remains the remarkable paradox between the T cell infiltrate and the relative failure to detect definite markers of their activity. To determine the Th1/Th2 cytokine profile in RA synovium, we used a single cell flow cytometric assay for interleukin-2 (IL-2), interferon-gamma (IFN-gamma), IL-4 and IL-10 in paired peripheral blood (PB) and synovial tissue (ST) lymphocytes from RA and osteoarthritis (OA) patients and PB lymphocytes from healthy controls. Cytokines were undetectable in unstimulated PB and ST lymphocytes. More stimulated PB and ST CD4(+)lymphocytes produced IFN-gamma than IL-4, for all individuals tested. RA PB CD4(+)lymphocytes showed the same Th1 cytokine pattern as normal controls. No increase of such a Th1 profile was observed for ST lymphocytes. A specific recruitment of T CD4(+)lymphocytes in the rheumatoid inflamed synovium could not be concluded on the basis of these results.  相似文献   

10.
Murine CD11c(+)CD8alpha(-) and CD11c(+)CD8alpha(+) dendritic cells (DCs) differentially regulate T cell responses. Although specific chemokines that recruit immature (i) or mature (m) CD8alpha(-) DCs have been identified, little is known about the influence of chemokines on CD8alpha(+) DCs. iDCs and mDCs isolated from spleens of fms-like tyrosine kinase 3 ligand-treated B10 mice were compared directly for migratory responses to a panel of CC chemokines or following local or systemic administration. In vitro assays were performed using Transwell(R) chambers. iDCs did not respond to any CC chemokines tested. Both subsets of mDCs migrated to CCL19 and CCL21, with consistently lower percentages of CD8alpha(+) DCs migrating. Chemokine receptor mRNA and protein expression were analyzed, but no correlation between expression and function was demonstrated. In vivo trafficking of fluorochrome-labeled DCs (B10; H2(b)) was assessed by immunohistochemistry and by rare-event flow cytometric analysis of allogeneic recipient (BALB/c; H2(d)) draining lymph node (DLN) and spleen cells. Twenty-four hours after intravenous injection, chloromethylfluorescein diacetate-positive CD8alpha(+) and CD8alpha(-) mDCs were detected by immunohistochemistry in spleens in similar numbers (that decreased over time). Following subcutaneous injection, both DC subsets were detected in DLN at 24 h, but only CD8alpha(-) DCs were evident by flow analysis at 48 h. Although CD8alpha(+) DCs migrate from peripheral tissues to T cell areas of (allogeneic) secondary lymphoid organs, they appear to mobilize as mDCs and less efficiently than CD8alpha(-) mDCs.  相似文献   

11.
12.
The hygiene hypothesis has suggested an inhibitory effect of infections on allergic diseases, but the related mechanism remains unclear. We recently reported that DCs played a critical role in Mycobacterium bovis Bacille Calmette-Guérin (BCG)-mediated inhibition of allergy, which depended on IL-12 and IL-10-related mechanisms. Here, we tested the hypothesis that BCG infection could modulate the function of DC subsets, which might in turn inhibit allergic responses through different mechanisms. We sorted CD8α(+) and CD8α(-) DCs from BCG-infected mice and tested their ability to modulate Th2-cell responses to ovalbumin (OVA) using in vitro and in vivo approaches. We found that both DC subsets could inhibit the allergic Th2-cell response in both a DC:T-cell co-culture system and after adoptive transfer. These subsets exhibited different co-stimulatory marker expression and cytokine production patterns and were different in inducing Th1 and Treg cells. Specifically, we found that CD8α(+) DCs produced higher IL-12, inducing higher Th1 cell response, while CD8α(-) DCs expressed higher ICOS-L and produced higher IL-10, inducing CD4(+) CD25(+) FoxP3(+) Treg cells with IL-10 production and membrane-bound TGF-β expression. The finding suggests that one infection may inhibit allergy by both immune deviation and regulation mechanisms through modulation of DC subsets.  相似文献   

13.
We have previously shown that interleukin-2 (IL-2) inhibits dendritic cell (DC) development from mouse bone marrow (BM) precursors stimulated with the ligand for FMS-like tyrosine kinase 3 receptor (Flt3L), and have provided evidence that this inhibition occurs at the monocyte DC precursor stage of DC development. Here, we explored the mechanism of IL-2-mediated inhibition of DC development. First, we showed that these in vitro cultures accurately model DCs that develop in vivo by comparing gene and protein expression of the three main Flt3L-induced DC subsets from the BM, CD11b+ and CD24+ conventional DCs (cDCs) and plasmacytoid DCs (pDCs) with their respective ex vivo spleen DC subsets (CD11b+, CD8+ and pDCs). Next, gene expression changes were quantified in Flt3L DC subsets that developed in the presence of IL-2. These changes included increased expression of Bcl2l11, which encodes the apoptosis-inducing protein Bim, and decreased expression of Flt3 (CD135), the receptor that initiates DC development. Interleukin-2 also significantly reduced Flt3 protein expression on all three Flt3L DC subsets, and attenuated Flt3L-induced STAT3 phosphorylation in DCs. Based on these data, we hypothesized that decreased Flt3 signalling may divert BM precursors down monocyte and macrophage lineages. Indeed, addition of IL-2 led to increases in Flt3 cells, including cKit+ Ly6C+ CD11b populations consistent with the recently identified committed monocyte/macrophage progenitor. Therefore, IL-2 can inhibit DC development via decreased signalling through Flt3 and increased monocyte/macrophage development.  相似文献   

14.
Human blood myeloid DCs can be subdivided into CD1c (BDCA-1)(+) and CD141 (BDCA-3)(+) subsets that display unique gene expression profiles, suggesting specialized functions. CD1c(+) DCs express TLR4 while CD141(+) DCs do not, thus predicting that these two subsets have differential capacities to respond to Escherichia coli. We isolated highly purified CD1c(+) and CD141(+) DCs and compared them to in vitro generated monocyte-derived DCs (MoDCs) following stimulation with whole E. coli. As expected, MoDCs produced high levels of the proinflammatory cytokines TNF, IL-6, and IL-12, were potent inducers of Th1 responses, and processed E. coli-derived Ag. In contrast, CD1c(+) DCs produced only low levels of TNF, IL-6, and IL-12 and instead produced high levels of the anti-inflammatory cytokine IL-10 and regulatory molecules IDO and soluble CD25. Moreover, E. coli-activated CD1c(+) DCs suppressed T-cell proliferation in an IL-10-dependent manner. Contrary to their mouse CD8(+) DC counterparts, human CD141(+) DCs did not phagocytose or process E. coli-derived Ag and failed to secrete cytokines in response to E. coli. These data demonstrate substantial differences in the nature of the response of human blood DC subsets to E. coli.  相似文献   

15.
Recently, a new player in the cytokine network has been described that is produced by monocytes and can be detected in the rheumatoid synovium: interleukin-15 (IL-15). Since this cytokine may play a role in the accumulation and activation of T-cells, B-cells, and natural killer (NK) cells characteristic of synovial tissue (ST) from patients with rheumatoid arthritis (RA), the expression of IL-15 was studied in ST from RA patients in comparison with ST from patients with reactive arthritis (ReA) and osteoarthritis (OA) and the phenotype of IL-15-positive cells was determined. IL-15 expression was investigated by immunohistochemical analysis of ST from ten patients with RA, ten patients with Yersinia enterocolitica-induced ReA, and nine patients with OA. The immunohistological findings were quantified and the results obtained in the different patient groups were compared. To determine the phenotype of IL-15-expressing cells, double-labelling immunofluorescence was performed. The expression of IL-15 was significantly higher in ST from patients with RA than in ST from patients with ReA or OA. In double-label experiments, co-expression was observed with markers for macrophages, T-cells, and NK cells. The composition of the cellular infiltrate in the synovium of patients with RA might be partly explained by the specific increase in expression of IL-15 in rheumatoid ST. It can be speculated that IL-15 production by inflammatory cells other than macrophages may occur in the rheumatoid synovium. © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
To investigate the role of CD8alpha(+) DCs in the development of collagen-induced arthritis (CIA). The immunogenic properties of CD8alpha(+) and CD8alpha(-) DC subsets were investigated by mixed-lymphocyte reaction and cytokine enzyme-linked immunoassay. CII-pulsed CD8alpha(+) DCs or CD8alpha(-) DCs with CD4(+) T cells from CIA mice were adoptively transferred onto the hind footpad of DBA mice. The onset of arthritis and the arthritis index were examined for 14 weeks after adoptive transfer. Expression of MHC-II and CD80 but not CD86 and CD40 was higher in CD8alpha(+) DCs than in CD8alpha(-) DCs from the spleens of CIA mice. Culturing CD8alpha(+) DCs with CD4(+) T cells significantly increased the proliferative response of CD4(+) T cells in the presence of CII. The production of interleukin (IL)-12p70, IL-17, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha was slightly increased in CD8alpha(+) DCs than in CD8alpha(-) DCs. DBA/1 mice that were adoptively transferred with CII-pulsed CD8alpha(+) DCs and CD4(+) T cells into the footpads showed accelerated onset of CIA compared to control group. By contrast, CD8alpha(-) DCs showed a partial inhibitory effect on CIA. These findings show that CD8alpha(+) DCs accelerated the onset of CIA when aoptively transferred with CD4(+) T cells and that CD8alpha(+) DCs provoke the development of CIA probably by stimulating the immune responses of CII-reactive CD4(+) T cells and by increasing the production of inflammatory cytokines.  相似文献   

17.
BACKGROUND: Dendritic cells (DCs) represent a major portion within the infiltrate of atopic dermatitis (AD) lesions. As antigen-presenting cells they have the ability to regulate both the quantity and quality of T-cell responses and, thus, are likely to play a key role in the pathogenesis of T-cell-dominated skin diseases such as AD. Thus we sought to identify the DC repertoire occurring in AD patients. METHODS: For this purpose, we phenotypically analyzed various defined DC subsets of AD patients and healthy controls in skin biopsies and peripheral blood by immunofluorescence staining. RESULTS: In AD lesions, two inflammation-associated DC subsets with varying expression of costimulatory molecules occurred besides epidermal Langerhans cells (LCs) and dermal myeloid DCs (dmDCs) indigenously residing in normal skin: (1) CD1a+/CD1c+/FcepsilonRI+/IgE+/CD207- myeloid DCs (mDCs) in the epidermis and dermis and (2) CD123+/BDCA-2+/CD45RA+/CD68+ plasmacytoid DCs (pDCs) in the dermis. In the peripheral blood of the patients, these cells exhibited an immature phenotype. Interestingly, we found FcepsilonRI and cell-bound IgE to be expressed not only on myeloid, but also on plasmacytoid DCs from both the skin and peripheral blood of AD patients. CONCLUSIONS: It is tempting to speculate that the disease-regulating role of inflammatory DCs in AD is influenced by both FcepsilonRI occupancy and their degree of maturity.  相似文献   

18.
Dendritic cells (DCs) in tissues and lymphoid organs comprise distinct functional subsets that differentiate in situ from circulating progenitors. Tissue-specific signals that regulate DC subset differentiation are poorly understood. We report that DC-specific deletion of the Notch2 receptor caused a reduction of DC populations in the spleen. Within the splenic CD11b(+) DC subset, Notch signaling blockade ablated a distinct population marked by high expression of the adhesion molecule Esam. The Notch-dependent Esam(hi) DC subset required lymphotoxin beta receptor signaling, proliferated in situ, and facilitated CD4(+) T cell priming. The Notch-independent Esam(lo) DCs expressed monocyte-related genes and showed superior cytokine responses. In addition, Notch2 deletion led to the loss of CD11b(+)CD103(+) DCs in the intestinal lamina propria and to a corresponding decrease of IL-17-producing CD4(+) T cells in the intestine. Thus, Notch2 is a common differentiation signal for T cell-priming CD11b(+) DC subsets in the spleen and intestine.  相似文献   

19.
Two subsets of dendritic cell (DCs), plasmacytoid (p) and myeloid (m) DCs, have been described in humans and mice. These subsets are known to have divergent roles during an immune response, but their developmental course is unclear. Here we report that virus infection induces bone marrow pDCs to differentiate into mDCs, thereby undergoing profound phenotypic and functional changes including the acquisition of enhanced antigen-presenting capacity and the ability to recognize different microbial structures through Toll-like receptor 4. The conversion of pDCs into mDCs is also induced by the injection of double-stranded RNA and requires type I interferons. Our results establish a precursor-product developmental relationship between these two DC subsets and highlight unexpected plasticity of bone marrow pDCs.  相似文献   

20.
Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis in young children. Upon infection both T helper 1 (Th1) and Th2 cytokines are produced. Because RSV-induced Th2 responses have been associated with severe immunopathology and aggravation of allergic reactions, the regulation of the immune response following RSV infection is crucial. In this study we examined the influence of RSV on the activation and function of murine bone marrow-derived dendritic cells (DCs). RSV induced the expression of maturation markers on myeloid DCs (mDCs) in vitro. The mDCs stimulated with RSV and ovalbumin (OVA) enhanced proliferation of OVA-specific T cells, which produced both Th1 and Th2 cytokines. In contrast to mDCs, RSV did not induce the expression of maturation markers on plasmacytoid DCs (pDCs), not did it enhance the proliferation of OVA-specific T cells that were cocultured with pDCs. However, RSV stimulated the production of interferon-alpha (IFN-alpha) by pDCs. Our findings indicate a clear difference in the functional activation of DC subsets. RSV-stimulated mDCs may have immunostimulatory effects on both Th1 and Th2 responses, while RSV-stimulated pDCs have direct antiviral activity through the release of IFN-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号