首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Tang AC  Liu JY  Sutherland MT 《NeuroImage》2005,28(2):507-519
Second-order blind identification (SOBI) is a blind source separation (BSS) algorithm that has been applied to MEG and EEG data collected during a range of sensory, motor, and cognitive tasks. SOBI can decompose mixtures of electric or magnetic signals by utilizing detailed temporal structures present in the continuously recorded signals. Successful decomposition critically depends on the choice of temporal delay parameters used for computing multiple covariance matrices. Here, we present empirical findings from high-density EEG data (128 channels) to show that SOBI's ability to recover correlated neuronal sources critically depends on the appropriate use of these temporal delay parameters. Specifically, we applied SOBI to EEG data collected during correlated activation of the left and right primary somatosensory cortices (SI). We show that separation of signals originating from the left and right SI is better achieved by using a large number and a wide range of temporal delays between a few and several hundred milliseconds when compared to results using various subsets of these delays. The paper also offers non-mathematician/engineer users a gentle introduction to the inner workings of SOBI.  相似文献   

2.
Sutherland MT  Tang AC 《NeuroImage》2006,33(4):1042-1054
In non-human primates, a bilateral representation of unilaterally presented somatosensory information can be found at the lowest level of cortical processing as indicated by the presence of neurons with bilateral receptive fields in the hand region of primary somatosensory (SI) cortex. In humans, such bilateral activation of SI is considered controversial due to highly variable detection rates for the much weaker ipsilateral response across different studies (ranging from 3% to 100%). Second-order blind identification (SOBI) is a blind source separation algorithm that has been successfully used to isolate neuronal signals from functionally distinct brain regions, including the left- and right-SI. SOBI-aided extraction of left- and right-SI responses to median nerve stimulation from high-density EEG has been previously validated against the fMRI and MEG literature. Here, we applied SOBI to EEG data and examined whether relatively weaker ipsilateral activations could be reliably detected across subjects. In single subject analysis, statistically significant somatosensory evoked potentials (SEPs) in response to unilateral stimulation were detected from both SI contralateral to and SI ipsilateral to the side of stimulation. Furthermore, these ipsilateral responses were observed in both the left and right hemispheres of all 10 subjects studied. Together these results demonstrate that unilateral stimulation of the median nerve, whether applied to the left or right wrist, can activate both the left- and right-SI, raising the possibility that in humans, unilateral sensory input may be bilaterally represented at the lowest level of cortical processing.  相似文献   

3.
Werecently demonstrated that second-order blind identification (SOBI), an independent component analysis (ICA) method, can separate the mixture of neuronal and noise signals in magnetoencephalographic (MEG) data into neuroanatomically and neurophysiologically meaningful components. When the neuronal signals had relatively higher trial-to-trial variability, SOBI offered a particular advantage in identifying and localizing neuronal source activations with increased source detectability (A. C. Tang et al., 2002, Neural Comput. 14, 1827-1858). Here, we explore the utility of SOBI in the analysis of temporal aspects of neuromagnetic signals from MEG data. From SOBI components, we were able to measure single-trial response onset times of neuronal populations in visual, auditory, and somatosensory modalities during cognitive and sensory activation tasks, with a detection rate as high as 96% under optimal conditions. Comparing the SOBI-aided detection results with those obtained directly from the sensors, we found that with SOBI preprocessing, we were able to measure, among a greater proportion of trials, single-trial response onset times that are above background neuronal activity. We suggest that SOBI ICA can improve our current capability in measuring single-trial responses from human subjects using the noninvasive brain imaging method MEG.  相似文献   

4.
Tang A  Sutherland M  Wang Y 《NeuroImage》2006,29(1):335-346
Contrasting event-related potentials (ERPs) generated under different experimental conditions and inferring differential brain responses is widely practiced in cognitive neuroscience research. Traditionally, these contrasts and subsequent inferences have proceeded directly from ERPs measured at the scalp. For certain tasks, it is not unusual that ERPs from a subset of channels are given particular emphasis in data analysis, such as the channels displaying the maximum peak amplitude in regions of interest ("best sensors") or channels showing the largest averaged ERP waveform differences. With the aid of a blind source separation (BSS) algorithm, second-order blind identification (SOBI), which has been recently validated for its ability to recover correlated neuronal sources, we show that single-trial ERPs from previously validated neuronal sources were more distinguishable among different experimental manipulations than the single-trial ERPs measured at the comparable "best sensors". This suggests that by using validated SOBI-recovered neuronal sources, ERP researchers can improve the ability to detect differences in neuronal responses induced by experimental manipulations. Critically, our observations were made at the level of single trials, as opposed to the averaged ERP. Therefore, our conclusions are particularly relevant to phenomena involving trial-to-trial changes in brain activation, for example, rapid induction of brain plasticity and perceptual learning, as well as to the development of brain-computer interfaces. Similar advantages would also apply to analogous situations with magnetoencephalography (MEG).  相似文献   

5.
The ability of magnetoencephalography (MEG) to accurately localize neuronal currents and obtain tangential components of the source is largely due to MEG's insensitivity to the conductivity profile of the head tissues. However, MEG cannot reliably detect the radial component of the neuronal current. In contrast, the localization accuracy of electroencephalography (EEG) is not as good as MEG, but EEG can detect both the tangential and radial components of the source. In the present study, we investigated the conductivity dependence in a new approach that combines MEG and EEG to accurately obtain, not only the location and tangential components, but also the radial component of the source. In this approach, the source location and tangential components are obtained from MEG alone, and optimal conductivity values of the EEG model are estimated by best-fitting EEG signal, while precisely matching the tangential components of the source in EEG and MEG. Then, the radial components are obtained from EEG using the previously estimated optimal conductivity values. Computer simulations testing this integrated approach demonstrated two main findings. First, there are well-organized optimal combinations of the conductivity values that provide an accurate fit to the combined MEG and EEG data. Second, the radial component, in addition to the location and tangential components, can be obtained with high accuracy without needing to know the precise conductivity profile of the head. We then demonstrated that this new approach performed reliably in an analysis of the 20-ms component from human somatosensory responses elicited by electric median-nerve stimulation.  相似文献   

6.
Hironaga N  Ioannides AA 《NeuroImage》2007,34(4):1519-1534
A family of methods, collectively known as independent component analysis (ICA), has recently been added to the array of methods designed to decompose a multi-channel signal into components. ICA methods have been applied to raw magnetoencephalography (MEG) and electroencephalography (EEG) signals to remove artifacts, especially when sources such as power line or cardiac activity generate strong components that dominate the signal. More recently, successful ICA extraction of stimulus-evoked responses has been reported from single-trial raw MEG and EEG signals. The extraction of weak components has often been erratic, depending on which ICA method is employed and even on what parameters are used. In this work, we show that if the emphasis is placed on individual "independent components," as is usually the case with standard ICA applications, differences in the results obtained for different components are exaggerated. We propose instead the reconstruction of regional brain activations by combining tomographic estimates of individual independent components that have been selected by appropriate spatial and temporal criteria. Such localization of individual area neuronal activity (LIANA) allows reliable semi-automatic extraction of single-trial regional activations from raw MEG data. We demonstrate the new method with three different ICA algorithms applied to both computer-generated signals and real data. We show that LIANA provides almost identical results with each ICA method despite the fact that each method yields different individual components.  相似文献   

7.
Source current estimation from electromagnetic (MEG and EEG) signals is an ill-posed problem that often produces blurry or inaccurately positioned estimates. The two modalities have distinct factors limiting the resolution, e.g., MEG cannot detect radially oriented sources, while EEG is sensitive to accuracy of the head model. This makes combined EEG + MEG estimation techniques desirable, but different acquisition noise statistics, complexity of the head models, and lack of pertinent metrics all complicate the assessment of the resulting improvements. We investigated analytically the effect of including EEG recordings in MEG studies versus the addition of new MEG channels when computing noise-normalized minimum ℓ2-norm estimates. Three-compartment boundary-element forward models were constructed using structural MRI scans for four subjects. Singular value analysis of the resulting forward models predicted better performance of the EEG + MEG case in the form of higher matrix rank. MNE inverse operators for EEG, MEG and EEG + MEG were constructed using the sensor noise covariance estimated from data. Metrics derived from the resolution matrices predicted higher spatial resolution in EEG + MEG as compared to MEG due to decreased spread (lower spatial dispersion, higher resolution index) with no reduction in dipole localization error. The effect was apparent in all source locations, with increased magnitude for deep areas such as the cingulate cortex. We were also able to corroborate the results for the somatosensory cortex using median nerve responses.  相似文献   

8.
The insula, one of the five cerebral lobes of the brain, is located deep within the brain and lies mainly beneath the temporal lobe. Insular epilepsy can be easily confused and misdiagnosed as temporal lobe epilepsy (TLE) because of the similar clinical symptoms and scalp electroencephalography (EEG) findings due to the insula location and neuronal connections with the temporal lobe. Magnetoencephalography (MEG) has higher sensitivity and spatial resolution than scalp EEG, and thus can often identify epileptic discharges not revealed by scalp EEG. Simultaneous scalp EEG and MEG were performed to detect and localize epileptic discharges in two patients known to have insular epilepsy associated with cavernous angioma in the insula. Epileptic discharges were detected as abnormal spikes in the EEG and MEG findings. In Patient 1, the sources of all MEG spikes detected simultaneously by EEG and MEG (E/M-spikes) were localized in the anterior temporal lobe, similar to TLE. In contrast, the sources of all MEG spikes detected only by MEG (M-spikes) were adjacent to the insular lesion. In Patient 2, the sources of all MEG spikes detected simultaneously by EEG and MEG (E/M-spikes) were localized in the anterior temporal lobe. These findings indicate that MEG allows us to detect insular activity that is undetectable by scalp EEG. In conclusion, simultaneous EEG and MEG are helpful for detecting spikes and obtaining additional information about the epileptic origin and propagation in patients with insular epilepsy.  相似文献   

9.
Nikulin VV  Nolte G  Curio G 《NeuroImage》2011,55(4):1528-1535
Neuronal oscillations have been shown to underlie various cognitive, perceptual and motor functions in the brain. However, studying these oscillations is notoriously difficult with EEG/MEG recordings due to a massive overlap of activity from multiple sources and also due to the strong background noise. Here we present a novel method for the reliable and fast extraction of neuronal oscillations from multi-channel EEG/MEG/LFP recordings. The method is based on a linear decomposition of recordings: it maximizes the signal power at a peak frequency while simultaneously minimizing it at the neighboring, surrounding frequency bins. Such procedure leads to the optimization of signal-to-noise ratio and allows extraction of components with a characteristic "peaky" spectral profile, which is typical for oscillatory processes. We refer to this method as spatio-spectral decomposition (SSD). Our simulations demonstrate that the method allows extraction of oscillatory signals even with a signal-to-noise ratio as low as 1:10. The SSD also outperformed conventional approaches based on independent component analysis. Using real EEG data we also show that SSD allows extraction of neuronal oscillations (e.g., in alpha frequency range) with high signal-to-noise ratio and with the spatial patterns corresponding to central and occipito-parietal sources. Importantly, running time for SSD is only a few milliseconds, which clearly distinguishes it from other extraction techniques usually requiring minutes or even hours of computational time. Due to the high accuracy and speed, we suggest that SSD can be used as a reliable method for the extraction of neuronal oscillations from multi-channel electrophysiological recordings.  相似文献   

10.
Carl C  Açık A  König P  Engel AK  Hipp JF 《NeuroImage》2012,59(2):1657-1667
Electro- and magnetoencephalography (EEG/MEG) are the means to investigate the dynamics of neuronal activity non-invasively in the human brain. However, both EEG and MEG are also sensitive to non-neural sources, which can severely complicate the interpretation. The saccadic spike potential (SP) at saccade onset has been identified as a particularly problematic artifact in EEG because it closely resembles synchronous neuronal gamma band activity. While the SP and its confounding effects on EEG have been thoroughly characterized, the corresponding artifact in MEG, the saccadic spike field (SF), has not been investigated. Here we provide a detailed characterization of the SF. We simultaneously recorded MEG, EEG, gaze position and electrooculogram (EOG). We compared the SF in MEG for different saccade sizes and directions and contrasted it with the well-known SP in EEG. Our results reveal a saccade amplitude and direction dependent, lateralized saccadic spike artifact, which was most prominent in the gamma frequency range. The SF was strongest at frontal and temporal sensors but unlike the SP in EEG did not contaminate parietal sensors. Furthermore, we observed that the source configurations of the SF were comparable for regular and miniature saccades. Using distributed source analysis we identified the sources of the SF in the extraocular muscles. In summary, our results show that the SF in MEG closely resembles neuronal activity in frontal and temporal sensors. Our detailed characterization of the SF constitutes a solid basis for assessing possible saccadic spike related contamination in MEG experiments.  相似文献   

11.
Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signals, in order to find more “interesting” sources than with time-domain ICA, and to more meaningfully sort the obtained components. The method is especially useful for finding sources of rhythmic activity. Furthermore, we propose to use a complex mixing matrix to model sources which are spatially extended and have different phases in different EEG/MEG channels. Simulations with artificial data and experiments on resting-state MEG demonstrate the utility of the method.  相似文献   

12.
Modeling functional brain interaction networks using non-invasive EEG and MEG data is more challenging than using intracranial recording data. This is because most interaction measures are not robust to the cross-talk (interference) between cortical regions, which may arise due to the limited spatial resolution of EEG/MEG inverse procedures. In this article, we describe a modified beamforming approach to accurately measure cortical interactions from EEG/MEG data, designed to suppress cross-talk between cortical regions. We estimate interaction measures from the output of the modified beamformer and test for statistical significance using permutation tests. Since the underlying neuronal sources and their interactions are unknown in real MEG data, we demonstrate the performance of the proposed beamforming method in a novel simulation scheme, where intracranial recordings from a macaque monkey are used as neural sources to simulate realistic MEG signals. The advantage of this approach is that local field potentials are more realistic representations of true neuronal sources than simulation models and therefore are more suitable to indicate the performance of our nulling beamforming method.  相似文献   

13.
MEG and EEG data contain additive correlated noise generated by environmental and physiological sources. To suppress this type of spatially coloured noise, source estimation is often performed with spatial whitening based on a measured or estimated noise covariance matrix. However, artifacts that span relatively small noise subspaces, such as cardiac, ocular, and muscle artifacts, are often explicitly removed by a variety of denoising methods (e.g., signal space projection) before source imaging. Here, we introduce a new approach, the spectral signal space projection (S(3)P) algorithm, in which time-frequency (TF)-specific spatial projectors are designed and applied to the noisy TF-transformed data, and whitened source estimation is performed in the TF domain. The approach can be used to derive spectral variants of all linear time domain whitened source estimation algorithms. The denoised sensor and source time series are obtained by the corresponding inverse TF-transform. The method is evaluated and compared with existing subspace projection and signal separation techniques using experimental data. Altogether, S(3)P provides an expanded framework for MEG/EEG data denoising and whitened source imaging in both the time and frequency/scale domains.  相似文献   

14.
PURPOSE: Multiple source analysis of interictal EEG and MEG spikes was used to identify irritative zones in polymicrogyria (PMG). Spike onset times and source localization were compared between both modalities. PMG is characterized by a marked loss of deep cortical fissures. Hence, differences between EEG and MEG were expected since MEG signals are predominantly generated from tangentially orientated neurons in fissures. PATIENTS: We studied 7 children and young adults (age 7.5 to 19 years) with localization-related epilepsy and unilateral polymicrogyria (PMG) as defined from anatomical MRI. METHODS: 122-channel whole-head MEG and 32-channel EEG were recorded simultaneously for 25 to 40 min. Using the BESA program, interictal spikes were identified visually and used as templates to search for similar spatio-temporal spike patterns throughout the recording. Detected similar spikes (r > 0.85) were averaged, high-pass filtered (5 Hz) to enhance spike onset, and subjected to multiple spatio-temporal source analysis. Source localization was visualized by superposition on T1-weighted MRI and compared to the lesion. RESULTS: Nine spike types were identified in seven patients (2 types in 2 patients). Eight out of nine EEG sources and seven MEG sources modeling spike onset were localized within the visible lesion. EEG spike onset preceded MEG significantly in two spike types by 19 and 25 ms. This was related to radial onset activity in EEG while MEG localized propagated activity. In one case, the earliest MEG spike activity was localized to the normal hemisphere while the preceding radial EEG onset activity was localized within the lesion. Distances between EEG and MEG onset sources varied markedly between 9 and 51 mm in the eight spike types with concordant lateralization. CONCLUSION: Interictal irritative zones were localized within the lesion in PMG comparable to other malformations, e.g., FCD. Discrepancies in MEG and EEG were related to the lack of deep fissures in PMG. In two cases, MEG was blind to the onset of radial interictal spike activity and localized propagated spike activity. In two other cases, MEG localized to the more peripheral parts of the irritative zone. Simultaneous EEG recordings with MEG and multiple source analysis are required to avoid problems of MEG interpretation.  相似文献   

15.
Birot G  Albera L  Wendling F  Merlet I 《NeuroImage》2011,56(1):102-113
We propose a new MUSIC-like method, called 2q-ExSo-MUSIC (q ≥ 1). This method is an extension of the 2q-MUSIC (q ≥ 1) approach for solving the EEG/MEG inverse problem, when spatially-extended neocortical sources ("ExSo") are considered. It introduces a novel ExSo-MUSIC principle. The novelty is two-fold: i) the parameterization of the spatial source distribution that leads to an appropriate metric in the context of distributed brain sources and ii) the introduction of an original, efficient and low-cost way of optimizing this metric. In 2q-ExSo-MUSIC, the possible use of higher order statistics (q ≥ 2) offers a better robustness with respect to Gaussian noise of unknown spatial coherence and modeling errors. As a result we reduced the penalizing effects of both the background cerebral activity that can be seen as a Gaussian and spatially correlated noise, and the modeling errors induced by the non-exact resolution of the forward problem. Computer results on simulated EEG signals obtained with physiologically-relevant models of both the sources and the volume conductor show a highly increased performance of our 2q-ExSo-MUSIC method as compared to the classical 2q-MUSIC algorithms.  相似文献   

16.
The 170-ms electrophysiological processing stage (N170 in EEG, M170 in MEG) is considered an important computational step in face processing. Hence its neuronal sources have been modelled in several studies. The current study aimed to specify the relation of the dipolar sources underlying N170 and M170. Whole head EEG and MEG were measured simultaneously during the presentation of unfamiliar faces. An Independent Component Analysis (ICA) was applied to the data prior to localization. N170 and M170 were then modelled with a pair of dipoles in a four-shell ellipse (EEG)/homogeneous sphere (MEG) arranged symmetrically across midline. The dipole locations were projected onto the individual structural MR brain images. Dipoles were localized in fusiform gyri in ten out of eleven individuals for EEG and in seven out of eleven for MEG. N170 and M170 were co-localized in the fusiform gyrus in six individuals. The ICA shifted some of the single-subject dipoles up from cerebellum to fusiform gyrus mainly due to the removal of cardiac activity. The group mean dipole locations were also found in posterior fusiform gyri, and did not differ significantly between EEG and MEG. The result was replicated in a repeated measurement 3 months later.  相似文献   

17.
In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data.  相似文献   

18.
We have developed a novel probabilistic model that estimates neural source activity measured by MEG and EEG data while suppressing the effect of interference and noise sources. The model estimates contributions to sensor data from evoked sources, interference sources and sensor noise using Bayesian methods and by exploiting knowledge about their timing and spatial covariance properties. Full posterior distributions are computed rather than just the MAP estimates. In simulation, the algorithm can accurately localize and estimate the time courses of several simultaneously active dipoles, with rotating or fixed orientation, at noise levels typical for averaged MEG data. The algorithm even performs reasonably at noise levels typical of an average of just a few trials. The algorithm is superior to beamforming techniques, which we show to be an approximation to our graphical model, in estimation of temporally correlated sources. Success of this algorithm using MEG data for localizing bilateral auditory cortex, low-SNR somatosensory activations, and for localizing an epileptic spike source are also demonstrated.  相似文献   

19.
In understanding and modeling brain functioning by EEG/MEG, it is not only important to be able to identify active areas but also to understand interference among different areas. The EEG/MEG signals result from the superimposition of underlying brain source activities volume conducted through the head. The effects of volume conduction produce spurious interactions in the measured signals. It is fundamental to separate true source interactions from noise and to unmix the contribution of different systems composed by interacting sources in order to understand interference mechanisms. As a prerequisite, we consider the problem of unmixing the contribution of uncorrelated sources to a measured field. This problem is equivalent to the problem of unmixing the contribution of different uncorrelated compound systems composed by interacting sources. To this end, we develop a principal component analysis-based method, namely, the source principal component analysis (sPCA), which exploits the underlying assumption of orthogonality for sources, estimated from linear inverse methods, for the extraction of essential features in signal space. We then consider the problem of demixing the contribution of correlated sources that comprise each of the compound systems identified by using sPCA. While the sPCA orthogonality assumption is sufficient to separate uncorrelated systems, it cannot separate the individual components within each system. To address that problem, we introduce the Minimum Overlap Component Analysis (MOCA), employing a pure spatial criterion to unmix pairs of correlates (or coherent) sources. The proposed methods are tested in simulations and applied to EEG data from human micro and alpha rhythms.  相似文献   

20.
Delorme A  Sejnowski T  Makeig S 《NeuroImage》2007,34(4):1443-1449
Detecting artifacts produced in EEG data by muscle activity, eye blinks and electrical noise is a common and important problem in EEG research. It is now widely accepted that independent component analysis (ICA) may be a useful tool for isolating artifacts and/or cortical processes from electroencephalographic (EEG) data. We present results of simulations demonstrating that ICA decomposition, here tested using three popular ICA algorithms, Infomax, SOBI, and FastICA, can allow more sensitive automated detection of small non-brain artifacts than applying the same detection methods directly to the scalp channel data. We tested the upper bound performance of five methods for detecting various types of artifacts by separately optimizing and then applying them to artifact-free EEG data into which we had added simulated artifacts of several types, ranging in size from thirty times smaller (-50 dB) to the size of the EEG data themselves (0 dB). Of the methods tested, those involving spectral thresholding were most sensitive. Except for muscle artifact detection where we found no gain of using ICA, all methods proved more sensitive when applied to the ICA-decomposed data than applied to the raw scalp data: the mean performance for ICA was higher and situated at about two standard deviations away from the performance distribution obtained on raw data. We note that ICA decomposition also allows simple subtraction of artifacts accounted for by single independent components, and/or separate and direct examination of the decomposed non-artifact processes themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号