首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro activities of voriconazole, posaconazole, ravuconazole and micafungin were compared with those of fluconazole, itraconazole, ketoconazole, flucytosine and amphotericin B against 164 candidaemia isolates recovered from cancer patients in two Canadian centres. The MIC(50) results for ravuconazole, voriconazole, posaconazole and micafungin were 0.01, 0.03, 0.12 and 0.25 mg/L, respectively. The new antifungal agents showed substantial activity against isolates demonstrating in vitro resistance to fluconazole and itraconazole. These results suggest that the newer antifungal agents possess promising activity against invasive Candida isolates, particularly against those with reduced susceptibility to fluconazole and itraconazole.  相似文献   

2.
The in vitro activity of the novel triazole antifungal agent posaconazole (Noxafil; SCH 56592) was assessed in 45 laboratories against approximately 19,000 clinically important strains of yeasts and molds. The activity of posaconazole was compared with those of itraconazole, fluconazole, voriconazole, and amphotericin B against subsets of the isolates. Strains were tested utilizing Clinical and Laboratory Standards Institute broth microdilution methods using RPMI 1640 medium (except for amphotericin B, which was frequently tested in antibiotic medium 3). MICs were determined at the recommended endpoints and time intervals. Against all fungi in the database (22,850 MICs), the MIC(50) and MIC(90) values for posaconazole were 0.063 microg/ml and 1 mug/ml, respectively. MIC(90) values against all yeasts (18,351 MICs) and molds (4,499 MICs) were both 1 mug/ml. In comparative studies against subsets of the isolates, posaconazole was more active than, or within 1 dilution of, the comparator drugs itraconazole, fluconazole, voriconazole, and amphotericin B against approximately 7,000 isolates of Candida and Cryptococcus spp. Against all molds (1,702 MICs, including 1,423 MICs for Aspergillus isolates), posaconazole was more active than or equal to the comparator drugs in almost every category. Posaconazole was active against isolates of Candida and Aspergillus spp. that exhibit resistance to fluconazole, voriconazole, and amphotericin B and was much more active than the other triazoles against zygomycetes. Posaconazole exhibited potent antifungal activity against a wide variety of clinically important fungal pathogens and was frequently more active than other azoles and amphotericin B.  相似文献   

3.
The in-vitro susceptibilities of 120 clinical isolates of yeasts to liposomal nystatin were compared with those to amphotericin B lipid complex (ABLC), liposomal amphotericin B (LAB), amphotericin B cholesteryl sulphate (ABCD), amphotericin B desoxycholate, nystatin, fluconazole and itraconazole. Yeast isolates examined included strains of Candida albicans, Candida parapsilosis, Candida glabrata, Candida krusei, Candida guilliermondii, Candida tropicalis, Candida kefyr, Candida viswanathii, Candida famata, Candida rugosa, Rhodotorula rubra, Trichosporon spp., Cryptococcus laurentii and Cryptococcus neoformans. The mean MICs for all strains examined were: liposomal nystatin 0.96 mg/L; nystatin 0.54 mg/L; ABLC 0.65 mg/L; LAB 1.07 mg/L; ABCD 0.75 mg/L; amphotericin B 0.43 mg/L; fluconazole 5.53 mg/L; and itraconazole 0.33 mg/L. No significant differences were seen between the activity of liposomal nystatin and the polyene drugs or itraconazole, but liposomal nystatin was more active than fluconazole. MICs were lower than the reported blood concentrations following therapeutic doses of this drug, indicating the potential for a therapeutic use of liposomal nystatin in humans. These results indicate good activity in vitro against medically important yeasts, which compares favourably with the activities of other currently available antifungal drugs. Liposomal nystatin may have a role in the treatment of disseminated and systemic mycoses.  相似文献   

4.
OBJECTIVES: The aim of the present study was to expand the MIC database for Candida lusitaniae in order to further determine its antifungal susceptibility pattern. METHODS: The activities of amphotericin B, fluconazole, itraconazole, voriconazole and flucytosine were determined in vitro against 80 clinical isolates of C. lusitaniae. A set of 59 clinical isolates of Candida albicans and of 51 isolates of Candida glabrata was included to compare the susceptibilities to amphotericin B. The MICs were determined by Etest with RPMI 1640 agar, and with both this medium and antibiotic medium 3 (AM3) agar for testing of amphotericin B. RESULTS: All isolates were highly susceptible to fluconazole. The susceptibility to itraconazole was good; only 4% of isolates had dose-dependent susceptibility (MICs 0.25-0.5 mg/L). Voriconazole was very active in vitro (100% of isolates were inhibited at < or =0.094 mg/L). Flucytosine MICs ranged widely (0.004->32 mg/L). The set included 19% of flucytosine-resistant isolates. For amphotericin B, 100% of isolates were inhibited at < or =0.75 mg/L (MIC(50) 0.047 mg/L; MIC(90) 0.19 mg/L) and at < or =4 mg/L (MIC(50) 0.25 mg/L; MIC(90) 0.75 mg/L) on RPMI and on AM3, respectively. A single isolate was categorized as resistant to amphotericin B (MIC 0.75 and 4 mg/L on RPMI and on AM3, respectively). Amphotericin B thus appeared very active in vitro against C. lusitaniae. Whatever the test medium, the level of susceptibility of C. lusitaniae to amphotericin B did not differ much from those of C. albicans and C. glabrata. CONCLUSION: C. lusitaniae appears to be susceptible to amphotericin B, azole antifungal agents, and, to a lesser extent, flucytosine.  相似文献   

5.
OBJECTIVE: Amphotericin B failure is frequently seen in patients with candidaemia caused by Candida rugosa. We evaluated amphotericin B, fluconazole, posaconazole and voriconazole as alternative treatments against infection in mice with two isolates of C. rugosa. METHODS: Neutropenic mice were inoculated intravenously with C. rugosa. Amphotericin B, fluconazole, posaconazole and voriconazole were administered for 7 days after infection. Efficacy of the antifungal treatment was assessed by survival and tissue burden of C. rugosa. RESULTS: All of the four drugs significantly prolonged survival over controls. With both isolates, kidney counts were reduced significantly below controls for amphotericin B, fluconazole and posaconazole. However, voriconazole was less effective than the other antifungals. CONCLUSION: Despite poor clinical response to amphotericin B, in vivo data indicate that amphotericin B increases organ clearance and survival over untreated controls. However, although voriconazole improved survival over controls, increased tissue clearance was not seen. This discrepancy may be caused by rapid clearance of voriconazole in mice. These studies suggest fluconazole, posaconazole or voriconazole may be useful alternatives to amphotericin B in therapy of C. rugosa infection.  相似文献   

6.
OBJECTIVES: The susceptibility of Candida albicans to catechin under varying pH conditions and the synergism of the combination of catechin and antimycotics were evaluated.Method: Antifungal activity was determined by broth dilution and calculation of cfu. RESULTS: The antifungal activity of catechin was pH dependent. The concentration of epigallocatechin gallate (EGCg) causing 90% growth inhibition of tested strains of C. albicans was 2000 mg/L at pH 6.0, 500-1000 mg/L at pH 6.5 and 15.6-250 mg/L at pH 7.0. Among catechins, pyrogallol catechin showed stronger antifungal activity against C. albicans than catechol catechin. The addition of 6.25-25 or 3.12-12.5 mg/L EGCg to amphotericin B 0.125 or 0.25 mg/L (below MIC) at pH 7.0 resulted in enhancement, respectively, of the antifungal effect of amphotericin B against amphotericin B-susceptible or -resistant C. albicans. Combined treatment with 3.12-12.5 mg/L EGCg plus amphotericin B 0.5 mg/L (below MIC) markedly decreased the growth of amphotericin B-resistant C. albicans. When fluconazole-susceptible C. albicans was treated with 25-50 mg/L EGCg and fluconazole 0.125-0.25 mg/L (below MIC), its growth was inhibited by 93.0%-99.4% compared with its growth in the presence of fluconazole alone. The combined use of 12.5 mg/L EGCg and fluconazole 10-50 mg/L (below MIC) inhibited the growth of fluconazole-resistant C. albicans by 98.5%-99.7%. CONCLUSIONS: These results indicate that EGCg enhances the antifungal effect of amphotericin B or fluconazole against antimycotic-susceptible and -resistant C. albicans. Combined treatment with catechin allows the use of lower doses of antimycotics and induces multiple antifungal effects. It is hoped that this may help to avoid the side effects of antimycotics.  相似文献   

7.
We have compared the activities of posaconazole and other currently available antifungal agents against a collection of 3,378 clinical isolates of yeasts and filamentous fungi. A total of 1,997 clinical isolates of Candida spp., 359 of other yeast species, 697 strains of Aspergillus spp., and 325 nondermatophyte non-Aspergillus spp. were included. The average geometric means of the MICs of agents that were tested against Candida spp. were 0.23 microg/ml for amphotericin B, 0.29 microg/ml for flucytosine, 0.97 microg/ml for fluconazole, 0.07 microg/ml for itraconazole, 0.04 microg/ml for voriconazole, 0.15 microg/ml for caspofungin, and 0.03 microg/ml for posaconazole. Voriconazole and posaconazole were active in vitro against the majority of isolates, with resistance to fluconazole and itraconazole, and against Cryptococcus neoformans and other Basidiomycota yeasts. Posaconazole was the most active of antifungal agents tested against Aspergillus spp., with an average geometric mean of 0.10 microg/ml. It was active against Paecilomyces spp., Penicillium spp., Scedosporium apiospermum, and some black fungi, such as Alternaria spp. Multiresistant filamentous fungi, such as Scedosporium prolificans, Scopulariopsis brevicaulis, and Fusarium solani, were also resistant to voriconazole, caspofungin, and posaconazole. Amphotericin B and posaconazole were found to be active against most of the Mucorales strains tested. Posaconazole and currently available antifungal agents exhibit a potent activity in vitro against the majority of pathogenic fungal species.  相似文献   

8.
OBJECTIVES: The antifungal drug susceptibilities of 351 isolates of Candida species, obtained through active laboratory-based surveillance in the period January 2002-December 2003, were determined (Candida albicans 51%, Candida parapsilosis 23%, Candida tropicalis 10%, Candida glabrata 9%, Candida krusei 4%). METHODS: The MICs of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and caspofungin were established by means of the broth microdilution reference procedure of the European Committee on Antibiotic Susceptibility Testing. RESULTS AND CONCLUSIONS: Amphotericin B and flucytosine were active in vitro against all strains. A total of 24 isolates (6.8%) showed decreased susceptibility to fluconazole (MIC > or = 16 mg/L) and 43 (12.3%) showed decreased susceptibility to itraconazole (MIC > or = 0.25 mg/L). Voriconazole and caspofungin were active in vitro against the majority of isolates, even those that were resistant to fluconazole.  相似文献   

9.
The activity of five simulated antifungal regimens for eradication of catheter-related bloodstream Candida infection was evaluated with an in vitro pharmacodynamic model. Single-lumen central venous catheters were colonized with Candida species by sequentially incubating central venous catheters in plasma and then in growth medium (RPMI plus morpholinepropanesulfonic acid) containing a standardized suspension (10(5) CFU/ml) of Candida albicans, Candida glabrata, or slime-producing Candida parapsilosis. Colonized central venous catheters were then placed in a one-compartment pharmacodynamic model where five antifungal regimens (plus control) were simulated: amphotericin B, 1.0 mg/kg every 24 h; amphotericin B, 0.5 mg/kg every 24 h; fluconazole, 400 mg every 24 h; fluconazole, 800 mg every 24 h; and voriconazole, 4 mg/kg every 12 h. During exposure to the simulated clinical regimens, samples were serially removed from the model over 48 h for quantitation of viable organisms. All antifungal regimens suppressed fungal counts by both peripheral and catheter sampling versus control (P = 0.001). Overall, antifungal activity ranked amphotericin B (1 mg/kg) > amphotericin B (0.5 mg/kg) > or = voriconazole > fluconazole (800 mg) > or = fluconazole (400 mg). No regimen, however, completely eradicated (by culture and electron microscopy) central venous catheter colonization. Regrowth was noted in the model during therapy against C. glabrata and C. parapsilosis but was not associated with an increase in the MICs for the isolates. Lack of in vitro antifungal activity against biofilm-encased organisms appeared to be the primary reason for mycological failure of antifungal regimens in the model.  相似文献   

10.
OBJECTIVES: To analyse the in vitro antifungal susceptibility of 261 non-albicans Candida bloodstream strains isolated during the European Confederation of Medical Mycology survey of candidaemia performed in Lombardia, Italy (September 1997-December 1999). METHODS: In vitro susceptibility to flucytosine, fluconazole, itraconazole, posaconazole and voriconazole was determined using the broth microdilution method described in the NCCLS M27-A guidelines. Etest strips were used to assess susceptibility to amphotericin B. In vitro findings were correlated with the patient's underlying condition and previous antifungal treatment. RESULTS: MICs (mg/L) at which 90% of the strains were inhibited were, respectively, 2 for flucytosine, 8 for fluconazole, 0.5 for itraconazole, 0.25 for voriconazole and 0.25 for posaconazole. Amphotericin B MIC endpoints were <0.50 mg/L in all the isolates tested. Flucytosine resistance was detected in 19 isolates (7%), mainly among Candida tropicalis strains (30%). Innate or secondary fluconazole resistance was detected in 13 strains (5%). Among the 13 patients with fluconazole-resistant Candida bloodstream infection, three were HIV positive, including one treated with fluconazole for oral candidosis; the four who were HIV negative had received the azole during the 2 weeks preceding the candidaemia. Cross-resistance among fluconazole and other azoles was a rare event. CONCLUSIONS: Resistance is still uncommon in non-albicans Candida species recovered from blood cultures. However, in fungaemias caused by C. tropicalis, Candida glabrata and Candida krusei, there is a high prevalence of resistance to fluconazole and flucytosine. Fluconazole resistance should be suspected in patients treated previously with azoles, mainly those with advanced HIV infection.  相似文献   

11.
Fluconazole (UK-49,858), a new oral bistriazole antifungal agent, was compared with amphotericin B in the treatment of established systemic infection with Candida albicans in normal and diabetic rats. In normal rats, oral fluconazole at 10 mg/kg per day for 7 days reduced Candida colony counts in the kidneys and livers as well as amphotericin B did and was nearly as effective as amphotericin B in a 21-day treatment trial. There was no further reduction in Candida colony counts when normal rats were treated with fluconazole at 40 mg/kg twice a day for 7 days. In streptozotocin-induced diabetic rats, fluconazole at 20 mg/kg per day for either 7 or 21 days compared favorably with amphotericin B in efficacy. Results of our study suggest that oral fluconazole may be useful in the treatment of established disseminated candidiasis in normal as well as diabetic hosts.  相似文献   

12.
The in vitro activity of amphotericin B, 5-fluorocytosine, ketoconazole, fluconazole and itraconazole was tested against 245 yeast strains isolated from clinical specimens (68 Candida albicans, 74 Candida tropicalis, 43 Candida krusei, 28 Candida glabrata, 19 Candida parapsilosis, 8 Candida lusitaniae and 5 Candida guilliermondii). An agar dilution method was employed to carry out testing. Minimal inhibitory concentrations to restrain 90% of isolate growth (MIC90) ranged from 0.12 to 2 mg/l for amphotericin B and for 5-fluorocytosine, from 0.03 to 8 mg/l for ketoconazole, from 0.05 to 50 mg/l for itraconazole and from 0.1 to > 100 mg/l for fluconazole. Among the azole derivatives, the most active was ketoconazole, followed by itraconazole. Only 1 strain of C. albicans was resistant to amphotericin B (MIC > 4 mg/l). Both C. tropicalis and C. krusei responded poorly to fluconazole and the former to itraconazole as well. The species most susceptible to the antifungal agents tested was C. glabrata and the most resistant were C. tropicalis and C. krusei.  相似文献   

13.
Isavuconazole is the active component of the new azole antifungal agent BAL8557, which is entering phase III clinical development. This study was conducted to compare the in vitro activities of isavuconazole and five other antifungal agents against 296 Candida isolates that were recovered consecutively from blood cultures between 1995 and 2004 at a tertiary care university hospital. Microdilution testing was done in accordance with CLSI (formerly NCCLS) guideline M27-A2 in RPMI-1640 MOPS (morpholinepropanesulfonic acid) broth. The antifungal agents tested were amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, and isavuconazole. C. albicans was the most common species, representing 57.1% of all isolates. There was no trend found in favor of non-Candida albicans species over time. In terms of MIC(50)s, isavuconazole was more active (0.004 mg/liter) than amphotericin B (0.5 mg/liter), itraconazole (0.008 mg/liter), voriconazole (0.03 mg/liter), flucytosine (0.125 mg/liter), and fluconazole (8 mg/liter). For isavuconazole, MIC(50)s/MIC(90)s ranged from 000.2/0.004 mg/liter for C. albicans to 0.25/0.5 mg/liter for C. glabrata. Two percent of isolates (C. glabrata and C. krusei) were resistant to fluconazole; C. albicans strains resistant to fluconazole were not detected. There were only two isolates with MICs for isavuconazole that were >0.5 mg/liter: both were C. glabrata isolates, and the MICs were 2 and 4 mg/liter, respectively. In conclusion, isavuconazole is highly active against Candida bloodstream isolates, including fluconazole-resistant strains. It was more active than itraconazole and voriconazole against C. albicans and C. glabrata and appears to be a promising agent against systemic Candida infections.  相似文献   

14.
We examined the utility of a semi-solid agar antifungal susceptibility screening (SAAS) test in real-time management of eight immunocompromised patients with invasive yeast infections. Tests of amphotericin B and fluconazole concentrations of 0.5 and 2 mg/L and 1, 8 and 40 mg/L, respectively, were performed on Candida albicans (two), Candida tropicalis (two), Candida krusei (one), Candida glabrata (one) and Trichosporon species (spp.) (two). All but the Trichosporon spp. and C. glabrata isolates were resistant to fluconazole at > or = 40 mg/L, and patients were successfully managed accordingly. Real-time antifungal susceptibility screening can assist in clinical management of invasive yeast infections.  相似文献   

15.
A-192411.29 is a novel antifungal agent derived from the structural template of the natural product echinocandin. The in vitro activity of A-192411.29 against common pathogenic yeasts was assessed by National Committee for Clinical Laboratory Standards method M27-A. It demonstrated broad-spectrum, fungicidal activity and was active against the most clinically relevant yeasts, such as Candida albicans, Candida tropicalis, and Candida glabrata, as well as less commonly encountered Candida species; in general, its potency on a weight basis was comparable to that of amphotericin B. It maintained potent in vitro activity against Candida strains with reduced susceptibilities to fluconazole and amphotericin B. The in vitro activity of A-192411.29 against Cryptococcus neoformans was comparable to its activity against Candida spp. However, A-192411.29 did not demonstrate complete growth inhibition of Aspergillus fumigatus by the broth microdilution method used. A-192411.29 possesses an antifungal profile comparable to or better than those of fluconazole and amphotericin B against pathogenic yeasts, including strains resistant to fluconazole or amphotericin B, suggesting that it may be a therapeutically useful new antifungal drug.  相似文献   

16.
目的 了解住院患者深部真菌分离株对4种常用抗真菌药物的耐药状况.方法 采用ATB Expression真菌鉴定和药敏分析系统,对238株临床分离株进行菌种鉴定及耐药性检测.结果 对于192株白色念珠菌,氟康唑的最小抑菌浓度(MIC)≤0.25~64.00 mg/L,敏感162株(84.37%),中度敏感10株(5.20%),耐药20株(10.41%);5-氟胞嘧啶MIC≤0.50~32.00 mg/L,敏感185株(96.30%),中度敏感4株(2.08%),耐药3株(1.56%);两性霉素B MIC≤0.50~2.00 mg/L,全部敏感;伊曲康唑的MIC≤0.13~1.00 mg/L,敏感177株(92.18%),中度敏感6株(3.12%),耐药9株(4.68%).热带念珠菌和光滑念珠菌对5-氟康唑耐药率分别为14.3%和27.3%,对伊曲康唑的耐药率为7.14%和9.09%,其余检出菌株均对5-氟胞嘧啶和两性霉素B敏感.结论 及时合理地应用抗真菌药物是防治深部真菌感染的关键.  相似文献   

17.
In this report we compare the activity of two new antifungal agents, voriconazole (UK-109,496) and LY303366 with the activities of other antifungals including fluconazole, itraconazole, 5-fluorocytosine (5FC) and amphotericin B against 219 oral Candida spp. isolates from HIV-infected patients. We used the broth microdilution method following the guidelines of the NCCLS. The in-vitro activity of voriconazole (UK-109,496) (MIC(90) 0.12 mg/L) and LY303366 (CMI(90) 0.25 mg/L) against clinical isolates of Candida spp. was excellent and comparable with that of amphotericin B (MIC(90) 0.5 mg/L), and better than those of fluconazole (MIC(90) > or = 64 mg/L), itraconazole (MIC(90) 4 mg/L) and 5FC (MIC(90) 1 mg/L).  相似文献   

18.
OBJECTIVE: The objective of this study was to determine the speciation and susceptibility patterns of Candida species recovered from Canadian intensive care units (ICUs) during a 1-day point-prevalence study on fungal colonization/infection in Canadian ICUs. METHODS AND SETTING: Blood, urine, respiratory tract, rectal, and wound fungal cultures were performed for 357 patients present at any time during a single-day 24-hour period in 35 Canadian ICUs. Comparative in vitro activities of amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, micafungin, anidulafungin, and aminocandin were determined. RESULTS: Four hundred fifteen yeasts (409 Candida species and 6 non-Candida yeasts) were recovered. Almost 50% of the patients were found to have positive respiratory tract or rectal cultures. Candida albicans accounted for 72% of the Candida species isolated, followed by Candida glabrata (16%), Candida tropicalis (5%), Candida parapsilosis (3%), Candida krusei (2%), and other Candida species or nonspeciated isolates (2%). Minimum inhibitory concentrations (milligrams per liter) at which 90% of the strains were inhibited were 0.06 for micafungin as well as anidulafungin, 0.12 for voriconazole, 0.25 for itraconazole, posaconazole, as well as aminocandin, 1 for amphotericin B, and 4 for fluconazole. Only 4% of the isolates were resistant to fluconazole and/or itraconazole. CONCLUSIONS: Candida albicans is the predominant species colonizing Canadian ICU patients. Overall, the triazoles, both older and new compounds, and the echinocandins have excellent in vitro antifungal activities against Candida species recovered from Canadian ICUs patients.  相似文献   

19.
The effects of amphotericin B and fluconazole on the extracellular and intracellular growth of Candida albicans were studied. With respect to the extracellular growth of C. albicans, antifungal activity was measured in terms of MICs and minimal fungicidal concentrations as well as by determination of the concentration that effectively killed (greater than 99.9%) C. albicans in the absence or presence (amphotericin B only) of serum. Amphotericin B was highly active in terms of killing, even at an increased inoculum size. In the presence of serum, amphotericin B activity was substantially reduced. For fluconazole, activity was restricted to inhibition of fungal growth, even after the inoculum size was reduced. With respect to the intracellular growth of C. albicans, antifungal activity was measured by using monolayers of murine peritoneal macrophages infected with C. albicans and was measured in terms of inhibition of germ tube formation as well as effective killing (greater than 99%) of C. albicans. Amphotericin B was highly active against C. albicans. At an increased ratio of infection, amphotericin B activity was slightly reduced. Fluconazole had no antifungal activity. Neither a reduction in the ratio of infection nor exposure of C. albicans to fluconazole prior to macrophage ingestion resulted in activity against intracellular C. albicans by fluconazole. Previous exposure of C. albicans to amphotericin B resulted in increased intracellular activity of amphotericin B. The intracellular antifungal activity of the combination of fluconazole with amphotericin B was less than that of amphotericin B alone. Amphotericin B showed fungicidal activity against C. albicans growing both extracellularly and intracellularly, whereas fluconazole inhibited growth only of extracellular C. albicans. A slight antagonistic effect between fluconazole and amphotericin B was found with respect to intracellular as well as extracellular C. albicans.  相似文献   

20.
OBJECTIVES: To develop proper treatments for patients who do not respond to current antifungal treatments, we tested new combinations of antifungal drugs for treating disseminated infections by Candida glabrata in a murine model. METHODS: Mice were rendered neutropenic by intraperitoneal cyclophosphamide and intravenous 5-fluorouracil administration. The animals were infected intravenously with 2 x 10(8) cfu of C. glabrata. The efficacies of micafungin combined with amphotericin B, fluconazole or flucytosine, and of amphotericin B combined with fluconazole were evaluated by survival and tissue burden reduction. RESULTS AND CONCLUSIONS: Micafungin plus amphotericin B was the most effective combination at reducing tissue burden. Micafungin at 10 mg/kg combined with amphotericin B at 0.75, 1.5 or 3 mg/kg prolonged survival with respect to the monotherapies, but only the second combination showed a synergistic effect in reducing fungal load in spleen and kidney. Amphotericin B at 1.5 mg/kg combined with micafungin at 5, 10 or 20 mg/kg reduced tissue burden with respect to the monotherapies, but the effects of the three combinations were very similar. These results suggest that amphotericin B in combination with micafungin is promising for the treatment of disseminated C. glabrata infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号