首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Their glycolytic metabolism imposes an increased acid load upon tumour cells. The surplus protons are extruded by the Na+/H+ exchanger (NHE) which causes an extracellular acidification. It is not yet known by what mechanism extracellular pH (pHe) and NHE activity affect tumour cell migration and thus metastasis. We studied the impact of pHe and NHE activity on the motility of human melanoma (MV3) cells. Cells were seeded on/in collagen I matrices. Migration was monitored employing time lapse video microscopy and then quantified as the movement of the cell centre. Intracellular pH (pHi) was measured fluorometrically. Cell–matrix interactions were tested in cell adhesion assays and by the displacement of microbeads inside a collagen matrix. Migration depended on the integrin α2β1. Cells reached their maximum motility at pHe∼7.0. They hardly migrated at pHe 6.6 or 7.5, when NHE was inhibited, or when NHE activity was stimulated by loading cells with propionic acid. These procedures also caused characteristic changes in cell morphology and pHi. The changes in pHi, however, did not account for the changes in morphology and migratory behaviour. Migration and morphology more likely correlate with the strength of cell–matrix interactions. Adhesion was the strongest at pHe 6.6. It weakened at basic pHe, upon NHE inhibition, or upon blockage of the integrin α2β1. We propose that pHe and NHE activity affect migration of human melanoma cells by modulating cell–matrix interactions. Migration is hindered when the interaction is too strong (acidic pHe) or too weak (alkaline pHe or NHE inhibition).  相似文献   

2.
Adenosine regulates Na+ homeostasis by its acute effects on renal Na+ transport. We have shown in heterologously transfected A6/C1 cells (renal cell line from Xenopus laevis ) that adenosine-induced natriuresis may be effected partly via A2 adenosine receptor-mediated inactivation of the renal brush border membrane Na+-H+ exchanger NHE3. In this study we utilized A6/C1 cells stably expressing wild-type as well as mutated forms of NHE3 to assess the molecular mechanism underlying A2-dependent control of NHE3 function. Cell surface biotinylation combined with immunoprecipitation revealed that NHE3 is targeted exclusively to the apical domain and that the endogenous Xenopus NHE is located entirely on the basolateral side of A6/C1 transfectants. Stimulation of A2-adenosine receptors located on the basolateral side for 15 min with CPA ( N 6-cyclopentyladenosine) acutely decreased NHE3 activity (microspectrofluorimety). This effect was mimicked by 8-bromo-cAMP and entirely blocked by pharmacological inhibition of PKA (with H89) or singular substitution of two PKA target sites (serine 552 and serine 605) on NHE3. Downregulation of NHE3 activity by CPA was attributable to a reduction of NHE3 intrinsic transport activity without change in surface NHE3 protein at 15 min. At 30 min, the decrease in transport activity was associated with a decrease in apical membrane NHE3 antigen. In conclusion, two highly conserved target serine sites on NHE3 determine NHE3 modulation upon A2-receptor activation and NHE3 inactivation by adenosine proceeds via two phases with distinct mechanisms.  相似文献   

3.
The Na+–HCO3 cotransporter NBCn1 (SLC4A7) has multiple variants depending upon splice domains in the cytoplasmic amino- and carboxy-termini of the protein. In this study, we examined the role of the amino-terminal splice domain containing 123 amino acids (cassette II) in the regulation of NBCn1 function and expression. Polymerase chain reaction detected NBCn1 mRNAs containing cassette II in a variety of tissues. Two variants, NBCn1-B containing cassette II and NBCn1-E lacking cassette II, were expressed in Xenopus oocytes and assessed by two-electrode voltage clamp to measure the ionic current mediated by the transporters. The two variants showed similar current–voltage ( I – V ) relations when measured 3–4 days after RNA injection. Replacment of Cl with gluconate did not affect the I – V relations. When exposed to solutions containing 20–50 m m Na+, the current produced by NBCn1-B was slightly more positive than that produced by NBCn1-E. The two currents were similar at 100 m m Na+. The slope conductances for the two variants were progressively increased at higher Na+ levels, and the increases were parallel and superimposed. Measured at different time points after RNA injection, NBCn1-B produced lower conductance than NBCn1-E at 24–48 h. Protein expression of NBCn1-B was also low at these time points as determined by immunoblot of oocyte membrane preparation. Expressed in opossum kidney (OK) cells, NBCn1-E caused a 1.5-fold increase in ouabain-sensitive production of p -nitrophenol from p -phenyl phosphate compared with control preparations, whereas NBCn1-B had negligible effect. We conclude that the primary function of cassette II is to reduce NBCn1 protein expression.  相似文献   

4.
Deoxygenation of ferret erythrocytes stimulates Na+–K+–2Cl cotransport by 111% ( s.d. , 46) compared to controls in air. Half-maximal activation occurs at a P O2 of 24 mmHg ( s.d. , 2) indicating that physiological changes in oxygen tension can influence cotransport function. Approximately 25–35% of this stimulation can be attributed to the rise of intracellular free magnesium concentration that occurs on deoxygenation (from 0.82 ( s.d. , 0.07) to 1.40 m m ( s.d. , 0.17)). Most of the stimulation is probably caused by activation of a kinase which can be prevented or reversed by treating cells with the kinase inhibitors PP1 or staurosporine, or by reducing cell magnesium content to submicromolar levels. Stimulation by deoxygenation is comparable with that caused by calyculin A or sodium arsenite, compounds that cause a 2- to 3-fold increase in threonine phosphorylation of the cotransporter which can be detected with phospho-specific antibodies. However, the same approach failed to detect significant changes in threonine phosphorylation following deoxygenation. The results suggest that deoxygenation causes activation of a kinase that either phosphorylates the transporter, but probably not on threonine, or phosphorylates another protein that in turn influences cotransporter behaviour. They also indicate that more than one kinase and phosphatase are involved in cotransporter phosphorylation.  相似文献   

5.
The intestinal and renal proximal tubule brush border (BB) Na+–H+ exchanger NHE3 binds to members of the NHERF (Na+–H+ exchanger regulatory factor) family. These are four proteins (current most used names include NHERF1, NHERF2, PDZK1 and IKEPP) which are related to each other, are present in locations in or close to the BB, and scaffold a variable series of proteins in NHE3-containing complexes in a dynamic manner that is altered by changes in signal transduction which affects NHE3 activity. The specific roles of these proteins in terms of NHE3 regulation as well as interactions with each other and with their many other substrates are only now being defined. Specificity for only one member of the NHERF family in one example of NHE3 regulation, inhibition by elevation in cGMP, is used to describe how NHERF family proteins are involved in NHE3 complex formation and its regulation. In this case, NHERF2 directly binds cGKII in the brush border to form an NHE3 complex, with cGKII also associating with the BB via its myristoylation.  相似文献   

6.
The orphan cotransport protein expressed by the SLC5A8 gene has been shown to play a role in controlling the growth of colon cancers, and the silencing of this gene is a common and early event in human colon neoplasia. We expressed this protein in Xenopus laevis oocytes and have found that it transports small monocarboxylic acids. The electrogenic activity of the cotransporter, which we have named SMCT (sodium monocarboxylate transporter), was dependent on external Na+ and was compatible with a 3 : 1 stoichiometry between Na+ and monocarboxylates. A portion of the SMCT-mediated current was also Cl dependent, but Cl was not cotransported. SMCT transports a variety of monocarboxylates (similar to unrelated monocarboxylate transport proteins) and most transported monocarboxylates demonstrated K m values near 100 μ m , apart from acetate and d -lactate, for which the protein showed less affinity. SMCT was strongly inhibited by 1 m m probenecid or ibuprofen. In the absence of external substrate, a Na+-independent leak current was also observed to pass through SMCT. SMCT activity was strongly inhibited after prolonged exposure to high external concentrations of monocarboxylates. The transport of monocarboxylates in anionic form was confirmed by the observation of a concomitant alkalinization of the cytosol. SMCT, being expressed in colon and kidney, represents a novel means by which Na+, short-chain fatty acids and other monocarboxylates are transported in these tissues. The significance of a Na+–monocarboxylate transporter to colon cancer presumably stems from the transport of butyrate, which is well known for having anti-proliferative and apoptosis-inducing activity in colon epithelial cells.  相似文献   

7.
The recent availability of activators of the mitochondrial Ca2+ uniporter allows direct testing of the influence of mitochondrial Ca2+ uptake on the overall Ca2+ homeostasis of the cell. We show here that activation of mitochondrial Ca2+ uptake by 4,4',4"-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) or kaempferol stimulates histamine-induced Ca2+ release from the endoplasmic reticulum (ER) and that this effect is enhanced if the mitochondrial Na+–Ca2+ exchanger is simultaneously inhibited with CGP37157. This suggests that both Ca2+ uptake and release from mitochondria control the ability of local Ca2+ microdomains to produce feedback inhibition of inositol 1,4,5-trisphosphate receptors (InsP3Rs). In addition, the ability of mitochondria to control Ca2+ release from the ER allows them to modulate cytosolic Ca2+ oscillations. In histamine stimulated HeLa cells and human fibroblasts, both PPT and kaempferol initially stimulated and later inhibited oscillations, although kaempferol usually induced a more prolonged period of stimulation. Both compounds were also able to induce the generation of Ca2+ oscillations in previously silent fibroblasts. Our data suggest that cytosolic Ca2+ oscillations are exquisitely sensitive to the rates of mitochondrial Ca2+ uptake and release, which precisely control the size of the local Ca2+ microdomains around InsP3Rs and thus the ability to produce feedback activation or inhibition of Ca2+ release.  相似文献   

8.
We have investigated the role of changes of intracellular pH (pHi) in the effects of metabolic blockade (cyanide plus 2-deoxyglucose) on Ca2+ release from the sarcoplasmic reticulum (SR) in rat ventricular myocytes. pHi and cell length were measured simultaneously. Metabolic blockade decreased the frequency of Ca2+ waves, an effect previously shown to be due to inhibition of Ca2+ release from the SR. This was accompanied by an intracellular acidification. Intracellular acidification was produced in the absence of metabolic inhibition by application of sodium butyrate. A maintained intracellular acidosis produced a decrease of wave frequency. A hysteresis between pHi and wave frequency was observed such that during the onset of the acidification the wave frequency decreased more than in the steady state. Comparison of the steady state relationship between pHi and wave frequency showed that the decrease of wave frequency produced by metabolic blockade was greater than could be accounted for simply by the accompanying decrease of pHi. In other experiments the buffering power of the solution was increased. Under these conditions, metabolic blockade produced no change of pHi but the decrease of wave frequency persisted. We conclude that, although intracellular acidification occurs during metabolic blockade, it is not responsible for most of the inhibition of Ca2+ release from the SR.  相似文献   

9.
Migration and morphology of human melanoma cells (MV3) depend on extracellular pH (pHe) and the activity of the Na+/H+ exchanger NHE1. To distinguish effects of NHE1 activity per se from effects of pHe we compared an NHE1-deficient mutant with rescued and wild-type cells. Time lapse video microscopy was used to investigate migratory and morphological effects caused by pHe and NHE1 activity, and a membrane-bound fluorescein conjugate was employed for ratiometric pH measurements at the outer leaflet of the cell membrane. As long as NHE1 remained inactive due to deficiency or inhibition by cariporide (HOE642) neither migration nor morphology was affected by changes in pHe. Under these conditions pH at the outer leaflet of the plasma membrane was uniform all over the cell surface. The typical pH dependence of MV3 cell migration and morphology could be reconstituted by restoring NHE1 activity. At the same time the proton gradient at the outer leaflet of the plasma membrane with the higher proton concentration at the leading edge and the lower one at the cell rear was re-established as well. Hence, NHE1 activity generates a proton gradient at the cell surface accompanied by the cells' ability to respond to changes in pHe (bulk pH). We conclude that NHE1 activity contributes to the generation of a well-defined cell surface pH by creating a proton gradient at the outer leaflet of the plasma membrane that is needed for (i) the development of a variety of morphologies including a distinct polarity and (ii) migration. A missing proton gradient at the cell surface cannot be compensated for by varying pHe.  相似文献   

10.
N-type  voltage-dependent  Ca2+ channels (N-VDCCs) play important roles in neurotransmitter release and certain postsynaptic phenomena. These channels are modulated by a number of intracellular factors, notably by Gβγ subunits of G proteins, which inhibit N-VDCCs in a voltage-dependent (VD) manner. Here we show that an increase in intracellular Na+ concentration inhibits N-VDCCs  in hippocampal pyramidal neurones and in Xenopus oocytes. In acutely dissociated hippocampal neurones, Ba2+ current via N-VDCCs was inhibited by Na+ influx caused by the activation of NMDA receptor channels. In Xenopus oocytes expressing N-VDCCs, Ba2+ currents were inhibited by Na+ influx and enhanced by depletion of Na+, after incubation in a Na+-free extracellular solution. The Na+-induced inhibition was accompanied by the development of  VD facilitation, a hallmark of a Gβγ-dependent process. Na+-induced regulation of N-VDCCs is Gβγ dependent, as suggested by the blocking of Na+ effects by Gβγ scavengers and by excess Gβγ, and may be mediated by the Na+-induced dissociation of Gαβγ heterotrimers. N-VDCCs may be novel effectors of Na+ion, regulated by the Na+ concentration via Gβγ.  相似文献   

11.
Adrenal medullary (AM) cells are exposed to high concentrations of cortical hormones, one of which is a ouabain-like substance. Thus, the effects of ouabain on catecholamine secretion and distribution of Na+,K+-ATPase α and β subunits in rat and guinea-pig AM cells were examined using amperometry and immunological techniques. While exposure to 1 μ m ouabain did not have a marked effect on resting secretion, it induced an increase in secretion due to mobilization of Ca2+ ions that were stored during a 4 min interval between muscarine applications. Immunocytochemistry revealed that Na+,K+-ATPase α1 subunit-like and β3 subunit-like immunoreactive (IR) materials were distributed ubiquitously at the cell periphery, whereas α2- and β2-like IR materials were present in restricted parts of the cell periphery. The α1 and α2 subunits were mainly immunoprecipitated from AM preparations by anti-β3 and anti-β2 antisera, respectively. Peripheral BODIPY-FL-InsP3 binding sites were localized below membrane domains with α2- and β2-like IR materials. The results indicate that in AM cells, α1β3 isozymes of Na+,K+-ATPase were present ubiquitously in the plasma membrane, while α2β2 isozymes were in the membrane domain closely associated with peripheral Ca2+ store sites. This close association of the α2β2 isozyme with peripheral Ca2+ store sites may account for the facilitation of mobilization-dependent secretion in the presence of 1 μ m ouabain.  相似文献   

12.
We have previously reported a topological model of the electrogenic Na+–HCO3 cotransporter (NBC1) in which the cotransporter spans the plasma membrane 10 times with N- and C-termini localized intracellularly. An analysis of conserved amino acid residues among members of the SLC4 superfamily in both the transmembrane segments (TMs) and intracellular/extracellular loops (ILs/ELs) provided the basis for the mutagenesis approach taken in the present study to determine amino acids involved in NBC1-mediated ion transport. Using large-scale mutagenesis, acidic and basic amino acids putatively involved in ion transport mediated by the predominant variant of NBC1 expressed in the kidney (kNBC1) were mutated to neutral and/or oppositely charged amino acids. All mutant kNBC1 cotransporters were expressed in HEK-293T cells and the Na+-dependent base flux of the mutants was determined using intracellular pH measurements with 2',7'-bis-(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Critical glutamate, aspartate, lysine, arginine and histidine residues in ILs/ELs and TMs were detected that were essential for kNBC1-mediated Na+-dependent base transport. In addition, critical phenylalanine, serine, tyrosine, threonine and alanine residues in TMs and ILs/ELs were detected. Furthermore, several amino acid residues in ILs/ELs and TMs were shown to be essential for membrane targeting. The data demonstrate asymmetry of distribution of kNBC1 charged amino acids involved in ion recognition in putative outward-facing and inward-facing conformations. A model summarizing key amino acid residues involved in kNBC1-mediated ion transport is presented.  相似文献   

13.
Lucifer Yellow CH (LY), a membrane-impermeant fluorescent dye, has been used in electrophysiological studies to visualize cell morphology, with little concern about its pharmacological effects. We investigated its effects on TTX-sensitive voltage-gated Na+ channels in mouse taste bud cells and hippocampal neurons under voltage-clamp conditions. LY applied inside cells irreversibly slowed the inactivation of Na+ currents upon exposure to light of usual intensities. The inactivation time constant of Na+ currents elicited by a depolarization to −15 mV was increased by fourfold after a 5 min exposure to halogen light of 3200 lx at source (3200 lx light), and sevenfold after a 1-min exposure to 12 000 lx light. A fraction of the Na+ current became non-inactivating following the exposure. The non-inactivating current was ≈ 20 % of the peak total Na+ current after a 5 min exposure to 3200 lx light, and ≈ 30 % after a 1 min exposure to 12 000 lx light. Light-exposed LY shifted slightly the current-voltage relationship of the peak Na+ current and of the steady-state inactivation curve, in the depolarizing direction. A similar light-dependent decrease in kinetics occurred in whole-cell Na+ currents of cultured mouse hippocampal neurones. Single-channel recordings showed that exposure to 6500 lx light for 3 min increased the mean open time of Na+ channels from 1.4 ms to 2.4 ms without changing the elementary conductance. The pre-incubation of taste bud cells with 1 mM dithiothreitol, a scavenger of radical species, blocked these LY effects. These results suggest that light-exposed LY yields radical species that modify Na+ channels.  相似文献   

14.
The acid-sensitive K+ channel, TASK1 is a member of the K+-selective tandem-pore domain (K2P) channel family. Like many of the K2P channels, TASK1 is relatively insensitive to conventional channel blockers such as Ba2+. In this paper we report the impact of mutating the pore-neighbouring histidine residues, which are involved in pH sensing, on the sensitivity to blockade by Ba2+ and Cs+; additionally we compare the selectivity of these channels to extracellular K+, Na+ and Rb+. H98D and H98N mutants showed reduced selectivity for K+ over both Na+ and Rb+, and significant permeation of Rb+. This enhanced permeability must reflect changes in the structure or flexibility of the selectivity filter. Blockade by Ba2+ and Cs+ was voltage-dependent, indicating that both ions block within the pore. In 100 m m K+, the K D at 0 mV for Ba2+ was 36 ± 10 m m  ( n = 6)  , whilst for Cs+ it was 20 ± 6.0 m m  ( n = 5)  . H98D was more sensitive to Ba2+ than the wild-type (WT); in addition, the site at which Ba2+ appears to bind was altered (WT: δ, 0.64 ± 0.16, n = 6; H98D: δ, 0.16 ± 0.03, n = 5, statistically different from WT; H98N: δ, 0.58 ± 0.09, not statistically different from WT). Thus, the pore-neighbouring residue H98 contributes not only to the pH sensitivity of TASK1, but also to the structure of the conduction pathway.  相似文献   

15.
A comparative study was carried out on the inactivation of Na+ channels in two types of endocrine cells in rats, β-cells and adrenal chromaffin cells (ACCs), using patch-clamp techniques. The β-cells were very sensitive to hyperpolarization; the Na+ currents increased ninefold when the holding potential was shifted from −70 mV to −120 mV. ACCs were not sensitive to hyperpolarization. The half-inactivation voltages were −90 mV (rat β-cells) and −62 mV (ACCs). The time constant for recovery from inactivation at −70 mV was 10.5 times slower in β-cells (60 ms) than in ACCs (5.7 ms). The rate of Na+-channel inactivation at physiological resting potential was more than three times slower in β-cells than in ACCs. Na+ influx through Na+ channels had no effect on the secretory machinery in rat β-cells. However, these 'silent Na+ channels' could contribute to the generation of action potentials in some conditions, such as when the cell is hyperpolarized. It is concluded that the fractional availability of Na+ channels in β-cells at a holding potential of −70 mV is about 15 % of that in ACCs. This value in rat β-cells is larger than that observed in mouse (0 %), but is smaller than those observed in human or dog (90 %).  相似文献   

16.
It has been previously shown that the 'large cell' in the corpus glomerulosum (CG) of a teleost brain has a low-pass temporal filtering property. It fires a single spike only in response to temporally sparse synaptic inputs and thus extracts temporal aspects of afferent activities. To explore the ionic mechanisms underlying this property, we quantitatively studied voltage-gated Na+ channels of the large cell in the CG slice preparation of the marine filefish by means of whole-cell patch clamp recordings in the voltage-clamp mode. Recorded Na+ current was well described using the Hodgkin-Huxley ' m3h ' model. It was revealed that the Na+ channels have a novel feature: remarkably slow recovery from inactivation. In other words, the time constant for the ' h ' gate was extremely large (∼100 ms at −80 to −50 mV). In order to test whether the analysed Na+ current serves as a mechanism for filtering, the behaviour of the membrane model incorporating the Na+ channel was simulated using a computer program called NEURON. In response to current injections, the membrane model displayed low-pass filtering and firing properties similar to those reported in real cells. The present results suggest that slow removal of Na+ channel inactivation serves as a crucial mechanism for the low-pass temporal filtering property of the large cell. The simulation study also suggested that velocity and/or amplitude of a spike propagating though an axon expressing Na+ channels of this type could potentially be modulated depending on the preceding activities of the cells.  相似文献   

17.
Intense motor neuron activity induces a long-term facilitation (LTF) of synaptic transmission at crayfish neuromuscular junctions (NMJs) that is accompanied by an increase in the accumulation of presynaptic Ca2+ ions during a test train of action potentials. It is natural to assume that the increased Ca2+ influx during action potentials is directly responsible for the increased transmitter release in LTF, especially as the magnitudes of LTF and increased Ca2+ influx are positively correlated. However, our results indicate that the elevated Ca2+ entry occurs through the reverse mode operation of presynaptic Na+/Ca2+ exchangers that are activated by an LTF-inducing tetanus. Inhibition of Na+/Ca2+ exchange blocks this additional Ca2+ influx without affecting LTF, showing that LTF is not a consequence of the regulation of these transporters and is not directly related to the increase in [Ca2+]i reached during a train of action potentials. Their correlation is probably due to both being induced independently by the strong [Ca2+]i elevation accompanying LTF-inducing stimuli. Our results reveal a new form of regulation of neuronal Na+/Ca2+ exchange that does not directly alter the strength of synaptic transmission.  相似文献   

18.
Waves of calcium-induced calcium release occur in a variety of cell types and have been implicated in the origin of cardiac arrhythmias. We have investigated the effects of inhibiting the SR Ca2+-ATPase (SERCA) with the reversible inhibitor 2',5'-di(tert-butyl)-1,4-benzohydroquinone (TBQ) on the properties of these waves. Cardiac myocytes were voltage clamped at a constant potential between −65 and −40 mV and spontaneous waves evoked by increasing external Ca2+ concentration to 4 m m . Application of 100 μ m TBQ decreased the frequency of waves. This was associated with increases of resting [Ca2+]i, the time constant of decay of [Ca2+]i and the integral of the accompanying Na+–Ca2+ exchange current. There was also a decrease in propagation velocity of the waves. There was an increase of the calculated Ca2+ efflux per wave. The SR Ca2+ content when a wave was about to propagate decreased to 91.7 ± 3.2%. The period between waves increased in direct proportion to the Ca2+ efflux per wave meaning that TBQ had no effect on the Ca2+ efflux per unit time. We conclude that (i) decreased wave frequency is not a direct consequence of decreased Ca2+ pumping by SERCA between waves but, rather, to more Ca2+ loss on each wave; (ii) inhibiting SERCA increases the chance of spontaneous Ca2+ release propagating at a given SR content.  相似文献   

19.
We studied the properties of a voltage-operated Na+ conductance in descending vasa recta (DVR) pericytes isolated from the renal outer medulla. Whole-cell patch-clamp recordings revealed a depolarization-induced, rapidly activating and rapidly inactivating inward current that was abolished by removal of Na+ but not Ca+ from the extracellular buffer. The Na+ current ( I Na) is highly sensitive to tetrodotoxin  (TTX, K d= 2.2 n m )  . At high concentrations, mibefradil (10 μ m ) and Ni+ (1 m m ) blocked I Na. I Na was insensitive to nifedipine (10 μ m ). The L-type Ca+ channel activator FPL-64176 induced a slowly activating/inactivating inward current that was abolished by nifedipine. Depolarization to membrane potentials between 0 and 30 mV induced inactivation with a time constant of ∼1 ms. Repolarization to membrane potentials between −90 and −120 mV induced recovery from inactivation with a time constant of ∼11 ms. Half-maximal activation and inactivation occurred at −23.9 and −66.1 mV, respectively, with slope factors of 4.8 and 9.5 mV, respectively. The Na+ channel activator, veratridine (100 μ m ), reduced peak inward I Na and prevented inactivation. We conclude that a TTX-sensitive voltage-operated Na+ conductance, with properties similar to that in other smooth muscle cells, is expressed by DVR pericytes.  相似文献   

20.
Mexiletine is a class 1b antiarrhythmic drug used for ventricular arrhythmias but is also found to be effective for paramyotonia congenita, potassium-aggravated myotonia, long QT–3 syndrome, and neuropathic pain. This drug elicits tonic block of Na+ channels when cells are stimulated infrequently and produces additional use-dependent block during repetitive pulses. We examined the state-dependent block by mexiletine in human skeletal muscle hNav1.4 wild-type and inactivation-deficient mutant Na+ channels (hNav1.4-L443C/A444W) expressed in HEK293t cells with a β1 subunit. The 50% inhibitory concentrations (IC50) for the inactivated-state block and the resting-state block of wild-type Na+ channels by mexiletine were measured as 67.8 ± 7.0 μ m and 431.2 ± 9.4 μ m , respectively ( n = 5). In contrast, the IC50 for the block of open inactivation-deficient mutant channels at +30 mV by mexiletine was 3.3 ± 0.1 μ m ( n = 5), which was within the therapeutic plasma concentration range (2.8–11 μ m ). Estimated on- and off-rates for the open-state block by mexiletine at +30 mV were 10.4 μ m −1 s−1 and 54.4 s−1, respectively. Use-dependent block by mexiletine was greater in inactivation-deficient mutant channels than in wild-type channels during repetitive pulses. Furthermore, the IC50 values for the block of persistent late hNav1.4 currents in chloramine-T-pretreated cells by mexiletine was 7.5 ± 0.8 μ m ( n = 5) at +30 mV. Our results together support the hypothesis that the in vivo efficacy of mexiletine is primarily due to the open-channel block of persistent late Na+ currents, which may arise during various pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号