首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的:构建一种含有重组免疫毒素DT390-mRantes(白喉杆菌外毒素390片段-活化T细胞表达与分泌调节因子)的真核表达质粒,并用于治疗小鼠实验性自身免疫性脑脊髓炎(EAE)。方法:利用自提的MBP诱导C57BL/6小鼠产生EAE,将mRantes导入含有DT390的真核表达质粒SRα中,经阳离子纳米脂质体包被后,治疗小鼠EAE,同时对其临床症状、脑部病理改变、外周血相关细胞因子及T/B细胞比例进行检测,了解该重组免疫毒素的治疗效果。结果:成功构建真核表达质粒DT390-mRantes-SRα,治疗组小鼠临床症状减轻,脑部特异性淋巴细胞浸润减少,外周T细胞相关细胞因子表达降低,T/B细胞比例降低。结论:新型重组免疫毒素DT390-mRantes治疗小鼠EAE有较为明显的效果,为治疗人的多发性硬化(MS)提供有益的借鉴。  相似文献   

2.
目的:构建一种新型免疫毒素DT390-mIP10(白喉杆菌毒素390-小鼠γ干扰素诱导性蛋白10)基因的真核表达质粒,并对其功能进行初步研究.方法:通过RT-PCR扩增mIP10基因,并插入到含有DT390基因片段的真核质粒SRα中,构建重组质粒.以PolyFect脂质体转染NIH3T3细胞,用免疫荧光检测重组质粒的表达;用MTT比色法测定重组免疫毒素质粒的生物学活性.结果:构建了DT390-mIP10的真核表达载体SRα-DT390-mIP10,并在NIH3T3细胞中获得表达.表达的DT390-mIP10在体外能有效地杀伤活化的T细胞.结论:免疫毒素基因重组真核表达载体DT390-mIP10的构建成功并在真核细胞中表达,为其在肿瘤及自身免疫性疾病治疗方面的进一步应用研究奠定了基础.  相似文献   

3.
研究重组免疫毒素杀伤活化T细胞后,对实验性变态反应性脑脊髓炎(EAE)的发生和发展产生的抑制作用。利用含有编码重组免疫毒素IP10-DT390的真核质粒,直接导入动物肌肉,使IP10-DT390在骨骼肌内表达,通过IP10-DT390对活化T细胞的选择性杀伤,探索对EAE的治疗效果。实验结果显示,这种新型免疫毒素核酸制剂可以减轻EAE模型鼠的发病症状、选择性的减少中枢系统自身活化的T淋巴细胞浸润、降低外周血T细胞数量,而对免疫反应的其他成分影响不明显。该免疫毒素核酸制剂可能成为治疗有关自身免疫性疾病的一种新的有效方法。  相似文献   

4.
Latta M  Mohan K  Issekutz TB 《Immunology》2007,121(4):555-564
Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4-6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6(+) T cells to 35-50% and anti-T-cell receptor (TCR) activation to 60-80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6(+) T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6(+) in virus-induced peritoneal exudates (approximately 47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6(+), whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6(+), but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge.  相似文献   

5.
CD25(+)CD4(+) regulatory T cells inhibit the activation of autoreactive T cells in vitro and in vivo, and suppress organ-specific autoimmune diseases. The mechanism of CD25(+)CD4(+) T cells in the regulation of experimental autoimmune encephalomyelitis (EAE) is poorly understood. To assess the role of CD25(+)CD4(+) T cells in EAE, SJL mice were immunized with myelin proteolipid protein (PLP)(139-151) to develop EAE and were treated with anti-CD25 mAb. Treatment with anti-CD25 antibody following immunization resulted in a significant enhancement of EAE disease severity and mortality. There was increased inflammation in the central nervous system (CNS) of anti-CD25 mAb-treated mice. Anti-CD25 antibody treatment caused a decrease in the percentage of CD25(+)CD4(+) T cells in blood, peripheral lymph node (LN) and spleen associated with increased production of IFN-gamma and a decrease in IL-10 production by LN cells stimulated with PLP(130-151) in vitro. In addition, transfer of CD25(+)CD4(+) regulatory T cells from naive SJL mice decreased the severity of active EAE. In vitro, anti-CD3-stimulated CD25(+)CD4(+) T cells from naive SJL mice secreted IL-10 and IL-10 soluble receptor (sR) partially reversed the in vitro suppressive activity of CD25(+)CD4(+) T cells. CD25(+)CD4(+) T cells from IL-10-deficient mice were unable to suppress active EAE. These findings demonstrate that CD25(+)CD4(+) T cells suppress pathogenic autoreactive T cells in actively induced EAE and suggest they may play an important natural regulatory function in controlling CNS autoimmune disease through a mechanism that involves IL-10.  相似文献   

6.
Abstract Chemokines regulate lymphocyte trafficking under physiologic and pathologic conditions. In this study, we have investigated the role of CXCR3 and CXCR4 in the activation of T lymphocytes and their migration to the central nervous system (CNS) using novel mutant chemokines to antagonize CXCR3 and CXCR4 specifically. A series of truncation mutants of CXCL11, which has the highest affinity for CXCR3, were synthesized, and an antagonist, CXCL11((4-79)), was obtained. CXCL11((4-79)) strongly inhibited the migration of activated mouse T cells in response to all three high-affinity CXCR3 ligands, CXCL9, 10 and 11. CXCL12((P2G2)), while exhibiting minimal agonistic activity, potently inhibited the migration of activated mouse T cells in response to CXCL12. Interfering with the action of CXCR3 and CXCR4 with these synthetic receptor antagonists inhibited experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis and reduced the accumulation of CD4(+) T cells in the CNS. Further investigation demonstrated that CXCL12((P2G2)) inhibited the sensitization phase, whereas CXCL11((4-79)) inhibited the effector phase of the immune response. Our data suggest that simultaneous targeting of CXCR4 and CXCR3 may be of benefit in the treatment of the CNS autoimmune disease.  相似文献   

7.
Infectious agents have been proposed to influence susceptibility to autoimmune diseases such as multiple sclerosis. We induced a Th1-mediated central nervous system (CNS) autoimmune disease, experimental autoimmune encephalomyelitis (EAE) in mice with an ongoing infection with Mycobacterium bovis strain bacillus Calmette-Guérin (BCG) to study this possibility. C57BL/6 mice infected with live BCG for 6 weeks were immunized with myelin oligodendroglial glycoprotein peptide (MOG(35-55)) to induce EAE. The clinical severity of EAE was reduced in BCG-infected mice in a BCG dose-dependent manner. Inflammatory-cell infiltration and demyelination of the spinal cord were significantly lessened in BCG-infected animals compared with uninfected EAE controls. ELISPOT and gamma interferon intracellular cytokine analysis of the frequency of antigen-specific CD4(+) T cells in the CNS and in BCG-induced granulomas and adoptive transfer of MOG(35-55)-specific green fluorescent protein-expressing cells into BCG-infected animals indicated that nervous tissue-specific (MOG(35-55)) CD4(+) T cells accumulate in the BCG-induced granuloma sites. These data suggest a novel mechanism for infection-mediated modulation of autoimmunity. We demonstrate that redirected trafficking of activated CNS antigen-specific CD4(+) T cells to local inflammatory sites induced by BCG infection modulates the initiation and progression of a Th1-mediated CNS autoimmune disease.  相似文献   

8.
Multiple sclerosis (MS) is an incurable autoimmune neurodegenerative disease. Environmental factors may be key to MS prevention and treatment. MS prevalence and severity decrease with increasing sunlight exposure and vitamin D(3) supplies, supporting our hypothesis that the sunlight-dependent hormone, 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2) D(3) ), inhibits autoimmune T-cell responses in MS. Moreover, 1,25-(OH)(2) D(3) inhibits and reverses experimental autoimmune encephalomyelitis (EAE), an MS model. Here, we investigated whether 1,25-(OH)(2) D(3) inhibits EAE via the vitamin D receptor (VDR) in T lymphocytes. Using bone marrow chimeric mice with a disrupted VDR only in radio-sensitive hematopoietic cells or radio-resistant non-hematopoietic cells, we found that hematopoietic cell VDR function was necessary for 1,25-(OH)(2) D(3) to inhibit EAE. Furthermore, conditional targeting experiments showed that VDR function in T cells was necessary. Neither 1,25-(OH)(2) D(3) nor T-cell-specific VDR targeting influenced CD4(+) Foxp3(+) T-cell proportions in the periphery or the CNS in these studies. These data support a model wherein 1,25-(OH)(2) D(3) acts directly on pathogenic CD4(+) T cells to inhibit EAE.  相似文献   

9.
Pathogenesis of neuroimmunologic diseases   总被引:5,自引:0,他引:5  
Animal models of autoimmune diseases have greatly improved our current understanding of the pathogenesis of human autoimmunity and have provided the potential for therapies based on manipulation of the immune system. In our laboratory, we have investigated the immunopathogenesis of autoimmune diseases of the nervous system and muscle. We have developed immune-based approaches for the suppression of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), and experimental autoimmune neuritis (EAN), a model for the Guillain-Barré syndrome (GBS). These approaches included induction of peripheral tolerance, immunotoxin targeting of activated T cells, and cytokine manipulations. In addition, we identified the antigen and characterized immunopathologically an autoimmune inflammatory disease of skeletal muscle, experimental autoimmune myositis (EAM), a model for the human inflammatory muscle disease polymyositis.  相似文献   

10.
Effector Th1 cells perpetuate inflammatory damage in a number of autoimmune diseases, including MS and its animal model EAE. Recently, a self-regulatory mechanism was described in which effector Th1 cells produce the immunomodulatory cytokine IL-10 to dampen the inflammatory response in both normal and autoimmune inflammation. While the presence of TGF-β has been suggested to enhance and stabilize an IFN-γ(+) IL-10(+) phenotype, the molecular mechanism is poorly understood. Additionally, in the context of adoptive transfer EAE, it is unclear whether IL-10 acts on the transferred Th1 cells or on endogenous host cells. In the present study, using myelin-specific TCR-Tg mice, we show that repetitive Ag stimulation of effector Th1 cells in the presence of TGF-β increases the population of IFN-γ(+) IL-10(+) cells, which correlates with a decrease in EAE severity. Additionally, TGF-β signaling causes binding of Smad4 to the IL-10 promoter, providing molecular evidence for TGF-β-mediated IL-10 production from Th1 effector cells. Finally, this study demonstrates that IL-10 not only reduces encephalitogenic markers such as IFN-γ and T-bet on Th1 effector cells expressing the IL-10R but also prevents recruitment of both transferred and host-derived inflammatory T cells. These data establish a regulatory mechanism by which highly activated Th1 effector cells modulate their pathogenicity through the induction of IL-10.  相似文献   

11.
Although it is known that the chemoattractant effect of IFN-gamma inducible protein 10 (IP-10), a CXC chemokine (CXCL10), plays an important role in T cell-mediated antitumor immunity in vivo, whether IP-10 is involved in modulating the proliferation, survival and functional activation of tumor-specific T cells remains poorly investigated. Using an experimental mouse tumor model, we demonstrated that the in vivo growth of 4T1 tumor cells harboring IP-10 gene (4T1-IP-10) was inhibited. Mice inoculated with 4T1-IP-10 tumor cells expressing functional IP-10 survived over 90 days, whereas mice injected with control parental 4T1 cells and mice of control 4T1 cells transduced with control plasmid all succumbed to the tumor by day 38 after tumor inoculation. Mechanical analysis showed that targeted expression of IP-10 in 4T1 tumor cells markedly enhanced the infiltration of tumor-specific T cells into the 4T1-IP-10 tumor. These tumor infiltrating T lymphocytes (TILs) recruited by IP-10 were potent cytolytic killers against 4T1 tumor cells and were able to proliferate and produce high levels of IFN-gamma in response to 4T1 cells. In vivo administration of IP-10-recruited TILs induced vigorous proliferation of these TILs in situ in the 4T1-IP-10 tumor but not in the 4T1-pcDNA3 and parental 4T1 tumors. Furthermore, culture of TILs together with recombinant IP-10 significantly enhanced the proliferation and expansion of IP-10-recruited TILs in response to 4T1 tumor antigens. These results suggest that IP-10 is not only able to chemoattract tumor-specific T cells into the local tissue, but also enhance the proliferation, survival, and functional activation of these TILs, leading to the tumor regression. Thus, targeted expression of IP-10 in vivo will allow for the development of a novel approach for immunotherapy of tumor.  相似文献   

12.
The persistence of human autoimmune diseases is thought to be mediated predominantly by memory T cells. We investigated the phenotype and migration of memory versus effector T cells in vivo in experimental autoimmune encephalomyelitis (EAE). We found that memory CD4(+) T cells up-regulated the activation marker CD44 as well as CXCR3 and ICOS, proliferated more and produced more interferon-gamma and less interleukin-17 compared to effector T cells. Moreover, adoptive transfer of memory T cells into T cell receptor (TCR)alphabeta(-/-) recipients induced more severe disease than did effector CD4(+) T cells with marked central nervous system inflammation and axonal damage. The uniqueness of disease mediated by memory T cells was confirmed by the differential susceptibility to immunomodulatory therapies in vivo. CD28-B7 T cell costimulatory signal blockade by CTLA4Ig suppressed effector cell-mediated EAE but had minimal effects on disease induced by memory cells. In contrast, ICOS-B7h blockade exacerbated effector T cell-induced EAE but protected from disease induced by memory T cells. However, blockade of the OX40 (CD134) costimulatory pathway ameliorated disease mediated by both memory and effector T cells. Our data extend the understanding of the pathogenicity of autoreactive memory T cells and have important implications for the development of novel therapies for human autoimmune diseases.  相似文献   

13.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated, inflammatory disease with similarities to multiple sclerosis in humans. Intranasal (i.n.) administration of a myelin basic protein (MBP)-derived peptide can protect susceptible mice from EAE. The mechanisms underlying this phenomenon, however, remain unclear. To analyze the phenotypic and functional changes taking place during the induction of tolerance by peptide inhalation, we have studied the fate of CD4(+) T cells after i.n. peptide application using transgenic mice expressing a TCR specific for the N-terminal peptide (Ac1-9) of MBP. Peripheral T cell death was variably observed in TCR transgenic mice after a single i.n. administration of antigenic peptide but was transient and incomplete. Transgenic spleen cells and cervical lymph node cells responded with a cytokine burst to peptide inhalation and hyperproliferation when re-stimulated in vitro. Transfer experiments demonstrated that the duration of peptide administration required to induce tolerance depended on the precursor frequency of T cells in recipient animals. The stringency of i.n. peptide treatment was increased so as to test the efficacy of tolerance induction both in vitro and in vivo in the presence of high precursor frequencies of antigen-specific T cells. Multiple i.n. doses of peptide completely protected TCR transgenic mice from EAE induced with myelin. Such repeated peptide administration resulted in down-regulation of the capacity of antigen-specific CD4(+) T cells to proliferate or to produce IL-2, IFN-gamma and IL-4 but increased the production of IL-10. The role of IL-10 in suppression of EAE in vivo was demonstrated by neutralization of IL-10. This completely restored susceptibility to EAE in mice previously protected by i.n. peptide. Considering the immunosuppressive properties of IL-10, T cells which are resistant to apoptosis might act as regulatory cells and mediate bystander suppression.  相似文献   

14.
Lymphocytes in inflamed tissues express numerous chemokine receptors. The relative importance of these receptors for migration in inflammation is unclear. The role of CXCR3 in T cell subset migration was examined using monoclonal antibodies developed to rat CXCR3. CXCR3 was expressed on sixfold more CD8(+) ( approximately 30%) than CD4(+) ( approximately 5%) T cells in spleen, lymph nodes and blood, and on approximately 10% of CD4(+)CD45RC(-) (memory) and approximately 50% of CD8(+)CD45RC(+) spleen T cells. After immunization, CXCR3 increased tenfold on CD4(+) lymph node lymphoblasts ( approximately 55%), and >90% of inflammatory exudate T cells were CXCR3(+). CXCR3(+) T cells migrated significantly better than CXCR3(-) T cells to all dermal inflammatory stimuli tested in vivo, even though these T cells are a minority of the memory T cells. Blocking CXCR3 inhibited recruitment of 60-85% of unstimulated T cells and up to 90% of CD8(+)CD45RC(+) effector T cells, but caused <50% inhibition of CD4(+) and CD8(+) memory (CD45RC(-)) T cells. About 90% of T lymphoblast migration to IFN-gamma, IFN-gamma plus TNF-alpha, polyinosinic polycytidylic acid, lipopolysaccharide, and delayed-type hypersensitivity (DTH)-induced inflammation was inhibited. Blockade also reduced DTH-induced induration. Thus, CXCR3 has a non-redundant role in T cell migration to dermal inflammation and is critical for activated T lymphoblast recruitment, but memory T cells are less dependent on CXCR3 for their infiltration.  相似文献   

15.
T cell co-stimulation through the CD28 receptor on T cells is critical to the induction of experimental autoimmune encephalomyelitis (EAE). In this study, expression of the co-stimulatory ligands B7-1 (CD80) and B7-2 (CD86), as well as the receptors CD28 and CTLA-4, were quantitated in central nervous system (CNS) tissues from mice at various stages of EAE. Immunohistochemistry and flow cytometry of CNS-infiltrating cells revealed a high percentage of infiltrating T cells expressing B7-1 and B7-2 during acute, chronic and relapsing EAE. Of the infiltrating cells 10-20% were CTLA-4(+), most of which were CD4(+) T cells. B7-1 and B7-2 expression within the CNS during active EAE might increase the potential for local activation of autoimmune T cells; however, the high level of expression of B7 molecules may also provide a mechanism for the autoregulation of activated CTLA-4(+) T cells.  相似文献   

16.
Complement per se has been shown to play an important role in demyelinating disease but controversy remains regarding the role of C3 in the development and progression of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In this study, we used C3(-/-) mice to confirm previous findings that C3 is required for full development of EAE. Furthermore, C3(+/-) mice (with serum C3 levels 50% that of wild-type mice) developed EAE with a severity intermediate between wild-type and C3(-/-) mice. Importantly transfer of wild-type encephalitogenic T cells to C3(-/-) mice resulted in attenuated EAE. C3(-/-) mice with EAE had fewer CD4(+) and CD8(+) T cells in the CNS and 50% fewer of these cells produced IFN-gamma compared to wild-type mice. When treated with anti-CD3 antibody, CD4(+) T cells from wild-type and C3(-/-) mice had similar activation profiles as judged by IFN-gamma production and CD25 and CD69 expression, indicating there is no gross or intrinsic defect in T cells from C3(-/-) mice. T cells from primed C3(-/-) mice proliferated comparably to that of control T cells on re-stimulation with MOG peptide. Our results confirm a requirement for C3 for maximal development of EAE and suggest that receptors for C3-derived activation fragments might be a viable therapeutic target for prevention and treatment demyelinating disease.  相似文献   

17.
Foxp3(+) T regulatory (Treg) cells can be induced to produce interleukin (IL)-17 by in vitro exposure to proinflammatory cytokines, drawing into question their functional stability at sites of inflammation. Unlike their splenic counterparts, Treg cells from the inflamed central nervous system (CNS-Treg cells) during EAE resisted conversion to IL-17 production when exposed to IL-6. We show that the highly activated phenotype of CNS-Treg cells includes elevated expression of the Th1-associated molecules CXCR3 and T-bet, but reduced expression of the IL-6 receptor α chain (CD126) and the signaling chain gp130. We found a lack of IL-6 receptor on all CNS CD4(+) T cells, which was reflected by an absence of both classical and trans-IL-6 signaling in CNS CD4(+) cells, compared with their splenic counterparts. We propose that extinguished responsiveness to IL-6 (via down-regulation of CD126 and gp130) stabilizes the regulatory phenotype of activated Treg cells at sites of autoimmune inflammation.  相似文献   

18.
In order to analyze a putative immunomodulatory effect of NGF in experimental autoimmune encephalomyelitis (EAE) of the Lewis rat, we transduced myelin basic protein (MBP)-specific CD4(+) T cells with a recombinant retrovirus encoding NGF. These T(MBP)NGF cells secreted high levels of NGF, along with an unaltered Th1-like cytokine pattern. Transfer studies showed that T(MBP)NGF cells were unable to mediate clinical EAE, when transferred alone, and, more important, they efficiently suppressed induction of clinical EAE by non-transduced MBP-specific T cells (T(MBP )cells). In contrast, NGF transduced ovalbumin-specific T cells, which secreted high NGF levels, did not affect EAE induction. Suppression of clinical EAE by T(MBP)NGF cells was associated with a general reduction of inflammatory CNS infiltrates, with a most pronounced decrease of the monocyte/macrophage component. Using a culture model of the endothelial blood-brain barrier (BBB), we found that NGF directly acts on blood-derived monocytes via the p75 NGF receptor, thus interfering with monocyte migration through the activated BBB endothelium. Our data establish NGF as an anti-inflammatory mediator interfering with T cell mediated autoimmune disease in the CNS. They further point to monocyte migration through blood vascular endothelium as one possible mechanism of NGF action.  相似文献   

19.
Drugs that block leukocyte trafficking ameliorate multiple sclerosis (MS). Occurrences of opportunistic infection, however, highlight the need for novel drugs that modulate more restricted subsets of T cells. In this context, chemokines and their receptors are attractive therapeutic targets. CXCR3, a Th1‐associated chemokine receptor, is preferentially expressed on T cells that accumulate in MS lesions and central nervous system (CNS) infiltrates of mice with experimental autoimmune encephalomyelitis (EAE). Surprisingly, mice genetically deficient in either CXCR3 or CXCL10 succumb to EAE following active immunization with myelin antigens. EAE is mediated by a heterogeneous population of T cells in myelin‐immunized mice. Hence, disease might develop in the absence of CXCR3 secondary to the compensatory action of encephalitogenic CCR6+ Th17 cells. However, in the current study, we show for the first time that blockade or genetic deficiency of either CXCR3 or of its primary ligand has no impact on clinical EAE induced by the adoptive transfer of highly polarized Th1 effector cells. Our data illustrate the fact that, although highly targeted immunotherapies might have more favorable side effect profiles, they are also more likely to be rendered ineffective by inherent redundancies in chemokine and cytokine networks that arise at sites of neuroinflammation.  相似文献   

20.
Nath N  Prasad R  Giri S  Singh AK  Singh I 《Immunology》2006,118(3):384-391
Experimental autoimmune encephalomyelitis (EAE) is mediated by myelin-specific CD4+ T helper 1 (Th1) cells, while recovery from the disease is associated with the presence of Th2 cells. Here we used animals with targeted deletion of the T-bet gene to determine its role in the progression of EAE. T-bet regulates the production of interferon-gamma (IFN-gamma) in CD4+ and natural killer cells, and CD4+ T cells from T-bet-deficient mice were unable to differentiate into a Th1 phenotype. Moreover BALB/c mice deficient in T-bet were resistant to the induction of EAE disease, with minimal inflammatory infiltrates in the central nervous system. These mice were resistant to EAE induction even when PLP(180-199) peptide specific effector T cells from BALB/c wild type were transferred to BALB/c T-bet-deficient mice. This resistance to EAE is may be caused by the production of the anti-inflammatory cytokine interleukin-10 (IL-10) from the spleen cells upon ex vivo stimulation with PLP(180-199) peptide and in vivo presence in the central nervous system. There was no difference in the recall responses in spleen cells from T-bet-deficient and wild type mice; however, less secretion of IFN-gamma was observed from primed splenocytes. The expression of IFN-gamma was less in the central nervous system of T-bet-deficient mice whereas IL-10 was significantly higher in T-bet-deficient as compared to wild type mice. These data indicate that T-bet genes play a critical role in maintaining the encephalitogenic nature of CD4+ T cells in autoimmune responses during EAE disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号