首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Although recent data suggests that osteoblasts play a key role within the hematopoietic stem cell (HSC) niche, the mechanisms underpinning this remain to be fully defined. The studies described herein examine the role in hematopoiesis of Osteopontin (Opn), a multidomain, phosphorylated glycoprotein, synthesized by osteoblasts, with well-described roles in cell adhesion, inflammatory responses, angiogenesis, and tumor metastasis. We demonstrate a previously unrecognized critical role for Opn in regulation of the physical location and proliferation of HSCs. Within marrow, Opn expression is restricted to the endosteal bone surface and contributes to HSC transmarrow migration toward the endosteal region, as demonstrated by the markedly aberrant distribution of HSCs in Opn-/- mice after transplantation. Primitive hematopoietic cells demonstrate specific adhesion to Opn in vitro via beta1 integrin. Furthermore, exogenous Opn potently suppresses the proliferation of primitive HPCs in vitro, the physiologic relevance of which is demonstrated by the markedly enhanced cycling of HSC in Opn-/- mice. These data therefore provide strong evidence that Opn is an important component of the HSC niche which participates in HSC location and as a physiologic-negative regulator of HSC proliferation.  相似文献   

2.
Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals.  相似文献   

3.
Hematopoietic stem cells (HSC) capable of both self-renewal and differentiation into all blood lineages reside within the bone marrow in specialized microenvironmental niches. While the precise location and composition of these niches largely remains unknown, it is now believed that osteoblasts at the endosteal surface play critical roles. Among the molecules demonstrated to influence the function of these niches are parathyroid hormone (PTH) and the insulin-like growth factors (IGF). Administration of PTH to both mice and men expands the number of bone marrow HSC, and an increase in the number of those cells in peripheral blood following treatment with mobilizing agents. Several molecules downstream of PTH are capable of signaling to HSC, including IGF that appear to regulate both the survival and expansion of hematopoietic stem and progenitor cells. As our current understanding of the role for PTH and IGF in hematopoietic niches is limited, we believe it is important that both their physiological importance and pharmacological potential be more fully investigated.  相似文献   

4.
Organs are composites of tissue types with diverse developmental origins, and they rely on distinct stem and progenitor cells to meet physiological demands for cellular production and homeostasis. How diverse stem cell activity is coordinated within organs is not well understood. Here we describe a lineage-restricted, self-renewing common skeletal progenitor (bone, cartilage, stromal progenitor; BCSP) isolated from limb bones and bone marrow tissue of fetal, neonatal, and adult mice. The BCSP clonally produces chondrocytes (cartilage-forming) and osteogenic (bone-forming) cells and at least three subsets of stromal cells that exhibit differential expression of cell surface markers, including CD105 (or endoglin), Thy1 [or CD90 (cluster of differentiation 90)], and 6C3 [ENPEP glutamyl aminopeptidase (aminopeptidase A)]. These three stromal subsets exhibit differential capacities to support hematopoietic (blood-forming) stem and progenitor cells. Although the 6C3-expressing subset demonstrates functional stem cell niche activity by maintaining primitive hematopoietic stem cell (HSC) renewal in vitro, the other stromal populations promote HSC differentiation to more committed lines of hematopoiesis, such as the B-cell lineage. Gene expression analysis and microscopic studies further reveal a microenvironment in which CD105-, Thy1-, and 6C3-expressing marrow stroma collaborate to provide cytokine signaling to HSCs and more committed hematopoietic progenitors. As a result, within the context of bone as a blood-forming organ, the BCSP plays a critical role in supporting hematopoiesis through its generation of diverse osteogenic and hematopoietic-promoting stroma, including HSC supportive 6C3(+) niche cells.  相似文献   

5.
The characteristics of hematopoietic progenitor and stem cell (HPC/HSC) populations in mammals vary according to their ontogenic stage. In humans, HPC/HSCs from umbilical cord blood (CB) are increasingly used as an alternative to HPC/HSCs from adult bone marrow (BM) for the treatment of various hematologic disorders. How the hematopoietic activity of progenitor and stem cells in CB differs from that in adult BM remains unclear, however. We compared CD34+ cells, a hematopoietic cell population, in CB with those in adult BM using phenotypic subpopulations analyzed by flow cytometry, the colony-forming activity in methylcellulose clonal cultures, and the repopulating ability of these cells in NOD/Shi-scid (NOD/SCID) mice. Although the proportion of CD34+ cells was higher in adult BM than in CB mononuclear cells, the more immature subpopulations, CD34+ CD33- and CD34+ CD38- cells, were present in higher proportions in CD34+ CB cells. Clonal culture assay showed that more multipotential progenitors were present in CD34+ CB cells. When transplanted into NOD/SCID mice. CD34+ adult BM cells could not reconstitute human hematopoiesis in recipient BM, but CD34+ CB cells achieved a high level of engraftment, indicating that CD34+ CB cells possess a greater repopulating ability. These results demonstrated that human hematopoiesis changes with development from fetus to adult. Furthermore, CD34+ CB cells contained a greater number of primitive hematopoietic cells, including HSCs, than did adult BM, suggesting the usefulness of CD34+ CB cells not only as a graft for therapeutic HSC transplantation but also as a target cell population for ex vivo expansion of transplantable HSCs and for gene transfer in gene therapy.  相似文献   

6.
OBJECTIVE: Many studies suggest that growth hormone (GH) is important for hematopoietic stem cell (HSC) function. The objective of this study is to determine if the genetic absence of GH reduces hematopoietic function and recovery, by testing various points in hematopoiesis, from numbers and functional abilities of primitive stem cells to the maintenance of normal numbers of differentiated cells. MATERIALS AND METHODS: Analyses were conducted on blood and bone marrow to compare GH-deficient C57BL/6J-Ghrhr(lit) / Ghrhr(lit) (lit/lit) mice with their normal (lit/+) littermates. Flow cytometric analysis was used to measure numbers of HSC and progenitor cells based on antigenic markers. Spleen colony-forming units (CFU-S) were examined to determine function of common myeloid progenitor (CMP) cells. Competitive repopulation assays were conducted to test whether normally functional HSCs are produced and supported in the lit/lit hematopoietic environment. RESULTS: The lit/lit mutant mice produced HSC and progenitor cells at least as well as their lit/+ control littermates. In CFU-S assays, the CMP from the lit/lit mice functioned as well as those from the lit/+ controls. Marrow cells from lit/lit mice repopulated irradiated recipients long-term better than did marrow cells from C57BL/6J(+/+) controls; thus, HSC produced in the absence of GH can replenish irradiated recipients. When lit/lit mice were used as irradiated recipients, they supported HSC function as well as lit/+ control recipients did; thus, the lit/lit hematopoietic environment can support normal hematopoiesis.  相似文献   

7.
Studies in vitro implicate transforming growth factor beta (TGF-beta) as a key regulator of hematopoiesis with potent inhibitory effects on progenitor and stem cell proliferation. In vivo studies have been hampered by early lethality of knock-out mice for TGF-beta isoforms and the receptors. To directly assess the role of TGF-beta signaling for hematopoiesis and hematopoietic stem cell (HSC) function in vivo, we generated a conditional knock-out model in which a disruption of the TGF-beta type I receptor (T beta RI) gene was induced in adult mice. HSCs from induced mice showed increased proliferation recruitment when cultured as single cells under low stimulatory conditions in vitro, consistent with an inhibitory role of TGF-beta in HSC proliferation. However, induced T beta RI null mice show normal in vivo hematopoiesis with normal numbers and differentiation ability of hematopoietic progenitor cells. Furthermore HSCs from T beta RI null mice exhibit a normal cell cycle distribution and do not differ in their ability long term to repopulate primary and secondary recipient mice following bone marrow transplantation. These findings challenge the classical view that TGF-beta is an essential negative regulator of hematopoietic stem cells under physiologic conditions in vivo.  相似文献   

8.
Hematopoietic stem and progenitor cells reside in vascular and endosteal niches in the bone marrow. Factors affecting bone remodeling were reported to influence numbers and mobilization of hematopoietic stem cells. We therefore analyzed the effects of estradiol acting anabolic on bone integrity. Here we observe that estradiol increases progenitor cell numbers in the vascular but not in the endosteal compartment independent of its estrogen receptor α-dependent anabolic bone effects. Hematopoietic progenitors capable of reconstituting lethally irradiated mice are increased by enhanced cell cycle entry, leading to a diminished long-term reconstitution potential after serial transplantation. We demonstrate that estradiol action on stromal cells potently favors hematopoietic progenitor/stem cell frequency accompanied by enhanced expression of cell adhesion molecules. Finally, estradiol treatment enhances retention of hematopoietic stem cells in the vascular niche of the bone marrow. We describe for the first time the mechanism of estrogen action on hematopoietic stem and progenitor cells.  相似文献   

9.
Definitive hematopoietic stem and progenitor cells (HSCs/Ps) originating from the yolk sac and/or para-aorta-splanchno-pleura/aorta-gonad-mesonephros are hypothesized to colonize the fetal liver, but mechanisms involved are poorly defined. The Rac subfamily of Rho GTPases has been shown to play essential roles in HSC/P localization to the bone marrow following transplantation. Here, we study the role of Rac1 in HSC/P migration during ontogeny and seeding of fetal liver. Using a triple-transgenic approach, we have deleted Rac1 in HSCs/Ps during very early embryonic development. Without Rac1, there was a decrease in circulating HSCs/Ps in the blood of embryonic day (E) 10.5 embryos, while yolk sac definitive hematopoiesis was quantitatively normal. Intraembryonic hematopoiesis was significantly impaired in Rac1-deficient embryos, culminating with absence of intra-aortic clusters and fetal liver hematopoiesis. At E10.5, Rac1-deficient HSCs/Ps displayed decreased transwell migration and impaired inter-action with the microenvironment in migration-dependent assays. These data suggest that Rac1 plays an important role in HSC/P migration during embryonic development and is essential for the emergence of intraembryonic hematopoiesis.  相似文献   

10.
Granulocyte colony-stimulating factor (G-CSF) is widely used in clinical settings to mobilize hematopoietic stem cells (HSC) into the circulation for HSC harvesting and transplantation. However, whether G-CSF directly stimulates HSC to change their cell cycle state and fate is controversial. HSC are a heterogeneous population consisting of different types of HSC, such as myeloid-biased HSC and lymphoid-biased HSC. We hypothesized that G-CSF has different effects on different types of HSC. To verify this, we performed serum-free single-cell culture and competitive repopulation with cultured cells. Single highly purified HSC and hematopoietic progenitor cells (HPC) were cultured with stem cell factor (SCF), SCF + G-CSF, SCF + granulocyte/macrophage (GM)-CSF, or SCF + thrombopoietin (TPO) for 7 days. Compared with SCF alone, SCF + G-CSF increased the number of divisions of cells from the lymphoid-biased HSCenriched population but not that of cells from the My-bi HSC-enriched population. SCF + G-CSF enhanced the level of reconstitution of lymphoidbiased HSC but not that of myeloid-biased HSC. Clonal transplantation assay also showed that SCF + G-CSF did not increase the frequency of myeloid-biased HSC. These data showed that G-CSF directly acted on lymphoid- biased HSC but not myeloid-biased HSC. Our study also revised the cytokine network at early stages of hematopoiesis: SCF directly acted on myeloid-biased HSC; TPO directly acted on myeloid-biased HSC and lymphoid- biased HSC; and GM-CSF acted only on HPC. Early hematopoiesis is controlled differentially and sequentially by a number of cytokines.  相似文献   

11.
12.
Osteolineage niche cells initiate hematopoietic stem cell mobilization   总被引:2,自引:0,他引:2  
Mayack SR  Wagers AJ 《Blood》2008,112(3):519-531
Recent studies have implicated bone-lining osteoblasts as important regulators of hematopoietic stem cell (HSC) self-renewal and differentiation; however, because much of the evidence supporting this notion derives from indirect in vivo experiments, which are unavoidably complicated by the presence of other cell types within the complex bone marrow milieu, the sufficiency of osteoblasts in modulating HSC activity has remained controversial. To address this, we prospectively isolated mouse osteoblasts, using a novel flow cytometry–based approach, and directly tested their activity as HSC niche cells and their role in cyclophosphamide/granulocyte colony-stimulating factor (G-CSF)–induced HSC proliferation and mobilization. We found that osteoblasts expand rapidly after cyclophosphamide/G-CSF treatment and exhibit phenotypic and functional changes that directly influence HSC proliferation and maintenance of reconstituting potential. Effects of mobilization on osteoblast number and function depend on the function of ataxia telangiectasia mutated (ATM), the product of the Atm gene, demonstrating a new role for ATM in stem cell niche activity. These studies demonstrate that signals from osteoblasts can directly initiate and modulate HSC proliferation in the context of mobilization. This work also establishes that direct interaction with osteolineage niche cells, in the absence of additional environmental inputs, is sufficient to modulate stem cell activity.  相似文献   

13.
Bianco P 《Endocrinology》2011,152(8):2957-2962
Long known to be home to hematopoietic stem cells (HSC), the bone/bone marrow organ and its cellular components are directly implicated in regulating hematopoiesis and HSC function. Over the past few years, advances on the identity of HSC "niche" cells have brought into focus the role of cells of osteogenic lineage and of marrow microvessels. At the same time, the identity of self-renewing multipotent skeletal progenitors (skeletal stem cells, also known as mesenchymal stem cells) has also been more precisely defined, along with the recognition of their own microvascular niche. The two sets of evidence converge in delineating a picture in which two kinds of stem cells share an identical microanatomical location in the bone/bone marrow organ. This opens a new view on the manner in which the skeleton and hematopoiesis can cross-regulate via interacting stem cells but also a novel view of our general concept of stem cell niches.  相似文献   

14.
The bone marrow contains specific microenvironmental stem cell niches that maintain haemopoiesis. CXCL12-expressing mesenchymal stromal cells are closely associated with the bone marrow sinusoidal endothelia, forming key elements of the haemopoietic stem cell niche, yet their ability to regulate endothelial function is not clearly defined. Given that the murine nestin(+) cell line, MS-5, provides a clonal surrogate bone marrow stromal niche capable of regulating both murine and human primitive haemopoietic stem/progenitor cell (HSC/HPC) fate in vitro, we hypothesized that MS-5 cells might also support new blood vessel formation and function. Here, for the first time, we demonstrate that this is indeed the case. Using proteome arrays, we identified HSC/HPC active angiogenic factors that are preferentially secreted by haemopoietic supportive nestin(+) MS-5 cells, including CXCL12 (SDF-1), NOV (CCN3), HGF, Angiopoietin-1 and CCL2 (MCP-1). Concentrating on CXCL12, we confirmed its presence in MS-5 conditioned media and demonstrated that its antagonist in receptor binding, AMD-3100, which mobilizes HSC/HPCs and endothelial progenitors from bone marrow, could significantly reduce MS-5 mediated human vasculogenesis in vitro, principally by regulating human endothelial cell migration. Thus, the clonal nestin(+) MS-5 murine bone marrow stromal cell line not only promotes human haemopoiesis but also induces human vasculogenesis, with CXCL12 playing important roles in both processes.  相似文献   

15.
Bazil  V; Brandt  J; Tsukamoto  A; Hoffman  R 《Blood》1995,86(2):502-511
Interactions of hematopoietic progenitor cells (HPC) with bone marrow stroma, mediated by adhesion molecules, are assumed to be critically important to the regulation of hematopoiesis. However, the specific roles of individual adhesion molecules involved in these interactions are poorly understood. Here, a monoclonal antibody, MEM-59, recognizing CD43, an adhesion molecule highly expressed on HPC, is shown to induce apoptosis in this cell population. This process operates at the single- cell level, and its initiation requires crosslinking of surface CD43 and the presence of cytokines. In contrast to HPC, more differentiated cells originating from this primitive cell population, as well as peripheral lymphocytes, do not undergo apoptosis in response to the CD43-mediated stimulation. Thus, CD43 may function as a negative regulator of early hematopoietic events, delivering a signal for apoptosis of HPC.  相似文献   

16.
17.
18.
We have previously reported the ability of uncharacterized human bone marrow (BM) cells to engraft into preimmune fetal sheep, thereby creating sheep-human chimera suitable for in vivo examination of the properties of human hematopoietic stem cells (HSC). Adult human bone marrow CD34+ HLA-DR- cells have been extensively characterized in vitro and have been demonstrated to contain a number of primitive hematopoietic progenitor cells (PHPC). However, the capacity of such highly purified populations of human marrow CD34+ HLA-DR- cells to undergo in vivo self-renewal and multipotential lymphohematopoietic differentiation has not been previously demonstrated. To achieve that, human CD34+ HLA-DR- cells were transplanted in utero into immunoincompetent fetal sheep to investigate the BM-populating potential of these cells. Long-term chimerism, sustained human hematopoiesis, and expression of human cells belonging to all human blood cell lineages were demonstrated in two animals for more than 7 months' posttransplantation. Chimeric BM contained erythroid, granulocytic/monocytic, and megakaryocytic hematopoietic progenitor cells, as well as the primitive high proliferative potential colony- forming cell (HPP-CFC). Under a variety of in vitro experimental conditions, chimeric BM cells gave rise to human T cells expressing T- lymphocyte-specific markers, human natural killer (NK) cells, and human IgG-producing B cells. In vivo expansion and possibly self-renewal of transplanted PHPC was confirmed by the detection in chimeric BM 130 days' posttransplantation of CD34+ HLA-DR- cells, the phenotype of human cells constituting the stem-cell graft. These studies demonstrate not only the BM-populating capacity, multipotential differentiation, and most likely self-renewal capabilities of human CD34+ HLA-DR- cells, but also that this BM population contains human HSC. Furthermore, it appears that this animal model of xenogeneic stem-cell transplantation is extremely useful for in vivo examination of human hematopoiesis and the behavioral and functional characteristics of human HSC.  相似文献   

19.
20.
Daria D  Filippi MD  Knudsen ES  Faccio R  Li Z  Kalfa T  Geiger H 《Blood》2008,111(4):1894-1902
The retinoblastoma tumor suppressor protein (RB) plays important roles in the control of the cell division cycle. It is estimated that RB is dysfunctional/inactivated in up to 40% of human leukemias. The consequences of loss of RB on hematopoietic stem and progenitor cell (HSPC) function in vivo are incompletely understood. Here, we report that mice genetically deficient in Rb in all hematopoietic cells (Vav-Cre Rb knockout [KO] animals) showed altered contribution of distinct hematopoietic cell lineages to peripheral blood, bone marrow, and spleen; significantly increased extramedullary hematopoiesis in the spleen; and a 2-fold increase in the frequency of hematopoietic progenitor cells in peripheral blood. Upon competitive transplantation, HSPCs from Vav-Cre Rb KO mice contributed with an at least 4- to 6-fold less efficiency to hematopoiesis compared with control cells. HSPCs deficient in Rb presented with impaired cell-cycle exit upon stress-induced proliferation, which correlated with impaired function. In summary, Rb is critical for hematopoietic stem and progenitor cell function, localization, and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号