首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
CONTEXT: Family and twin data suggest that, in addition to susceptibility genes specific for bipolar disorder or schizophrenia, genes exist that contribute to susceptibility across the traditional kraepelinian divide. Several studies have provided evidence that variation at the neuregulin 1 (NRG1) gene on chromosome 8p12 influences susceptibility to schizophrenia. The most consistent finding has been that one particular haplotype (the "core" haplotype) is overrepresented in cases compared with control subjects. OBJECTIVE: To investigate the possible role of NRG1 in bipolar disorder. DESIGN: Genetic case-control association analysis. SETTING: Subjects were unrelated and ascertained from general psychiatric inpatient and outpatient services. PARTICIPANTS: Five hundred twenty-nine patients with DSM-IV bipolar I disorder and 1011 controls from the United Kingdom (100% white). METHODS: We genotyped the markers constituting the NRG1 core haplotype in cases and controls and reanalyzed our existing data from 573 DSM-IV schizophrenia cases with this larger set of controls. RESULTS: We found a significant difference in haplotype distribution between bipolar cases and controls globally (P = .003) and specifically for the core haplotype. Frequencies were 10.2% for bipolar cases and 7.8% for controls (effect size, as measured by odds ratio [OR], 1.37; 95% confidence interval [CI], 1.03-1.80; P = .04). The effect size in our bipolar sample was similar to that in our schizophrenia sample (OR, 1.22; 95% CI, 0.92-1.61). In the bipolar cases with predominantly mood-incongruent psychotic features (n = 193), the effect was greater (OR, 1.71; 95% CI, 1.29-2.59; P = .009), as was the case in the subset of schizophrenia cases (n = 27) who had experienced mania (OR, 1.64; 95% CI, 0.54-5.01). CONCLUSIONS: Our findings suggest that neuregulin 1 plays a role in influencing susceptibility to bipolar disorder and schizophrenia and that it may exert a specific effect in the subset of functional psychosis that has manic and mood-incongruent psychotic features.  相似文献   

2.
Trace amines and their receptors may be implicated in the pathogenesis of psychiatric disorders. Previous studies have reported association of the trace amine associated receptor 6 (TAAR6) gene with susceptibility to schizophrenia and bipolar disorder but results have not been consistent. The purpose of this study was to examine these associations in Korean patients and also to test for association of TAAR6 with susceptibility to major depressive disorder (MDD). A case control sample consisting of 281 patients with schizophrenia, 190 patients with bipolar disorder, 187 patients with MDD and 288 psychiatrically healthy control subjects, was examined. Patients with schizoaffective disorder were not included in any of the psychiatric samples. Five single nucleotide polymorphisms (SNPs: rs4305745; rs8192625; rs7452939; rs6903874 and rs6937506) were genotyped in the TAAR6 gene and in the 3' regulatory region, using pyrosequencing. SNP rs6903874 was significantly associated with schizophrenia (p = 0.012) and bipolar disorder (p = 0.004). A three SNP haplotype consisting of alleles GCT from SNPs rs7452939, rs6903874 and rs6937506, respectively, was significantly over-represented in patients with schizophrenia (p = 0.0003) and bipolar disorder (p = 0.00002). A second three SNP haplotype (GTT) derived from the same SNPs was significantly under-represented in patients with bipolar disorder (p = 0.001). The GTT haplotype associations withstand the most rigorous corrections for multiple testing. These findings strongly support association of the TAAR6 gene with susceptibility to both schizophrenia and bipolar disorder in Korean patients. Further studies are needed to confirm these findings in this and other populations and to identify functional variants in TAAR6 that may be implicated in pathogenesis.  相似文献   

3.
OBJECTIVE: Converging evidence has demonstrated an association between variants in the dysbindin gene (DTNBP1) and schizophrenia. Recently, a DTNBP1 risk haplotype, associated with both schizophrenia and neurocognitive dysfunction, has been identified. Because neurocognitive dysfunction is commonly accompanied by negative symptoms (avolition, alogia, and affective flattening) in schizophrenia, the authors hypothesized that the presence of the risk haplotype would be significantly associated with negative symptoms. METHOD: The authors tested for an association between a DTNBP1 risk haplotype and a lifetime history of negative symptoms in 181 Caucasian patients with schizophrenia. RESULTS: A significant association was found between the presence of the risk haplotype and negative symptoms. CONCLUSIONS: These data suggest that the effect of DTNBP1 genetic variation may be associated with negative symptoms in patients with schizophrenia.  相似文献   

4.
CONTEXT: Recent research suggests that variation in the gene encoding dystrobrevin binding protein (DTNBP1) confers susceptibility to schizophrenia. Thus far, no specific risk haplotype has been identified in more than 1 study. OBJECTIVES: To confirm DTNBP1 as a schizophrenia susceptibility gene, to identify and replicate specific risk and protective haplotypes, and to explore relationships between DTNBP1 and the phenotype. DESIGN: Genetic association study based on mutation detection and case-control analysis. SETTING: All subjects were unrelated and ascertained from general (secondary care) psychiatric inpatient and outpatient services. PARTICIPANTS: The Cardiff, Wales, sample included 708 white subjects from the United Kingdom and Ireland (221 females) who met DSM-IV criteria for schizophrenia and were individually matched for age, sex, and ethnicity to 711 blood donor controls (233 females). Mean +/- SD age at first psychiatric contact for cases was 23.6 +/- 7.7 years; mean age at ascertainment was 41.8 +/- 13.5 years. The Dublin, Ireland, sample included 219 white subjects from the Republic of Ireland who met DSM-III-R criteria for schizophrenia or schizoaffective disorder and 231 controls. The mean age of the Irish cases was 46.0 +/- 8.5 years; mean age at first psychiatric contact was 25.2 +/- 12.4 years. MAIN OUTCOME MEASURE: Evidence for association between the DTNBP1 locus and schizophrenia. RESULTS: In the Cardiff sample, there was no evidence for association with previously implicated haplotypes but strong evidence for association with multiple novel haplotypes. Maximum evidence was found for a novel 3-marker haplotype (global P<.001), composed of 1 risk haplotype (P =.01) and 2 protective haplotypes, 1 common (P =.006) and 1 rare (P<.001). Specific risk and protective haplotypes were replicated in the Dublin sample (P =.02,.047, and.006, respectively). The only phenotypic variable associated with any haplotype was between the common protective haplotype and higher educational achievement (P =.02, corrected for multiple tests). CONCLUSIONS: DTNBP1 is a susceptibility gene for schizophrenia. Specific risk and protective haplotypes were identified and replicated. Association with educational achievement may suggest protection mediated by IQ, although this needs to be confirmed in an independent data set.  相似文献   

5.
Summary. Genome-scans performed in schizophrenia families have provided evidence for region 6p24-21 where variability may confer susceptibility to schizophrenia. Recent studies have implicated that gene DTNBP1 (dysbindin) in this region is strongly associated with schizophrenia. In a family based association study we investigated three markers located in the untranslated region of the DTNBP1 gene: rs909706, rs1047631 and rs742106. The sample size of our study is 117 families. No biased transmission towards the disorder was detected by haplotype analysis using TRANSMIT.  相似文献   

6.
BACKGROUND: The gene encoding the dystrobrevin binding protein (DTNBP1) has been implicated in the pathogenesis of schizophrenia by several association studies. We tried to replicate these findings in a sample of 488 parent-proband trios recruited in Bulgaria. Probands had a diagnosis of schizophrenia (n = 441) or schizoaffective disorder (n = 47). METHODS: We genotyped eight single nucleotide polymorphisms within the gene, four of which had been reported in previous studies, and four identified as informative by our group through direct screening of the gene and genotyping in a sample of cases and control subjects. RESULTS: A significant excess of transmissions was observed for two of the markers, p1635 and p1757, (p =.0009 and.0013, respectively). Analysis of two-, three-, and four-marker haplotypes produced numerous positive results, with six (4% of the total combinations) at p <.001. CONCLUSIONS: These results provide strong support for DTNBP1 as a susceptibility gene for schizophrenia; however, different haplotypes seem to be associated in different studies.  相似文献   

7.
Schizophrenia is a common psychiatric disorder characterized by disturbances of cognition, emotion and social functioning. There are few studies investigating a possible genetic basis for the underlying mechanism of cognitive dysfunctions. A genetic variation in the dysbindin gene (DTNBP1: dystrobrevin binding protein 1), a susceptibility gene for schizophrenia, has been reported to be associated with general cognitive ability and cognitive decline in patients with schizophrenia. Although profound disturbances of memory performance are observed in schizophrenia, only one study has reported a relationship between this gene and spatial working memory in a Caucasian population. We examined a possible association between a protective haplotype of DTNBP1 for developing schizophrenia and memory performance measured by the Wechsler Memory Scale-Revised (WMS-R) and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) in 165 healthy volunteers and 70 patients with schizophrenia in a Japanese population. Healthy controls that carry the protective haplotype showed higher performance in several memory domains measured by the WMS-R than those who did not. Genotype effect on memory performance was not observed in patients with schizophrenia. This haplotype did not affect IQ and its sub-scores as measured by the Wechsler Adult Intelligence Scale-Revised in both groups. These data suggest that DTNBP1 may have impact on parts of memory functions.  相似文献   

8.
9.
CONTEXT: Variation at the DAOA/G30 locus has been described to be associated with both schizophrenia and bipolar disorder, but there is little consistency between studies of the tested polymorphisms or variants showing association. OBJECTIVES: To obtain a stringent replication of association in large samples of both disorders using consistent clinical and laboratory methods, and to test the hypothesis that association at DAOA/G30 identifies an underlying domain of psychopathological abnormalities that cuts across traditional diagnostic categories. DESIGN: A systematic study of polymorphisms at DAOA/G30 using genetic case-control association analysis. SETTING: Subjects were unrelated and ascertained from general psychiatric inpatient and outpatient services. PARTICIPANTS: White persons from the United Kingdom meeting criteria for DSM-IV schizophrenia (n = 709) or bipolar I disorder (n = 706) and 1416 ethnically matched controls. METHODS: Nine polymorphisms that tag common genetic variations at DAOA/G30 were genotyped in all of the individuals, and comparisons were made between affected and unaffected individuals. RESULTS: We identified significant association (P = .01-.047) between 3 single-nucleotide polymorphisms and bipolar disorder but failed to find association with schizophrenia. Analyses across the traditional diagnostic categories revealed significant evidence (P = .002-.02) for association with 4 single-nucleotide polymorphisms in the subset of cases (n = 818) in which episodes of major mood disorder had occurred (gene-wide P = .009). We found a similar pattern of association in bipolar cases and in schizophrenia cases in which individuals had experienced major mood disorder. In contrast, we found no evidence for association in the subset of cases (n = 1153) in which psychotic features occurred (all P>.08). CONCLUSIONS: Despite being originally described as a schizophrenia susceptibility locus, our data suggest that variation at the DAOA/G30 locus does not primarily increase susceptibility for prototypical schizophrenia or psychosis. Instead, our results imply that variation at the DAOA/G30 locus influences susceptibility to episodes of mood disorder across the traditional bipolar and schizophrenia categories.  相似文献   

10.
Recent reports indicate that DAO, DAOA, DTNBP1, NRG1 and RGS4 are some of the most-replicated genes implicated in susceptibility to schizophrenia. Also, the functions of these genes could converge in a common pathway of glutamate metabolism. The aim of this study was to evaluate if each of these genes, or their interaction, was associated with schizophrenia. A case-control study was conducted in 589 Spanish patients having a diagnosis of schizophrenia, and compared with 617 equivalent control subjects. Several single nucleotide polymorphisms (SNPs) in each gene were determined in all individuals. SNP and haplotype frequencies were compared between cases and controls. The interaction between different SNPs at the same, or at different gene, loci was analyzed by the multifactor dimensionality reduction (MDR) method. We found a new schizophrenia risk and protective haplotypes in intron VII of DTNBP1; one of the most important candidate genes for this disorder, to-date. However, no association was found between DAO, DAOA, NRG1 and RGS4 and schizophrenia. The hypothesis that gene-gene interaction in these five genes could increase the risk for the disorder was not confirmed in the present study. In summary, these results may provide further support for an association between the dysbindin gene (DTNBP1) and schizophrenia, but not between the disease and DAO, DAOA, NRG1 and RGS4 or with the interaction of these genes. In the light of recent data, these results need to be interpreted with caution and future analyses with dense genetic maps are awaited.  相似文献   

11.
After years of frustration, the search for genes impacting on schizophrenia is now undergoing some exciting developments. Several proposals of susceptibility genes have been able to be supported by replications. Thus, there are now at least three very strong candidates: the gene for dysbindin (DTNBP1), the gene for neuregulin-1 (NRG1), and a less well-understood gene locus, G72/G30, which are likely to influence manifestations of schizophrenia. Other "hot" candidates such as the disrupted-in-schizophrenia 1 gene (DISC1) and the gene coding for protein kinase B (AKT1) might also prove to be susceptibility genes in the next future. The clinical implications of these findings are not yet fully visible. However, some first insights are possible: most of the genetic findings lack diagnostic specificity, and are also reproduced in bipolar disorder. Strong associations are also obtained on a symptomatic level, not only on a diagnostic level. The pathophysiological role of these hot candidate genes is currently under intensive study.  相似文献   

12.
OBJECTIVE: Intellectual decline is common in schizophrenia and predicts functional outcome. While many patients undergo intellectual decline that typically predates the onset of symptoms, few studies have investigated the underlying mechanism through which this occurs. The current study assessed the relationship between intellectual decline in schizophrenia and genetic variation in dysbindin-1 (DTNBP1). METHODS: We assessed cognitive decline in 183 Caucasian patients with schizophrenia using a proxy measure of premorbid IQ with which current general cognitive ability (g) was compared. We then tested for a relationship between the risk haplotype identified in previous work (CTCTAC) and intellectual decline. RESULTS: We found that carriers of the CTCTAC haplotype, demonstrated a significantly greater decline in IQ as compared with non-carriers (p=0.05). CONCLUSIONS: These data suggest that DTNBP1 influences the severity of intellectual decline in schizophrenia and may represent one underlying cause for heterogeneity in cognitive course.  相似文献   

13.
CONTEXT: Traditionally, the search for genes involved in predisposition to major psychoses has proceeded with separate studies of schizophrenia and bipolar disorder. However, twin data suggest that, in addition to genes with specificity for these phenotypes, there exist genes that simultaneously influence susceptibility to schizophrenia, bipolar disorder, and schizoaffective disorder. OBJECTIVE: To undertake, to our knowledge, the first systematic search for such loci. DESIGN: Genomewide linkage scan. SETTING: Affected individuals were ascertained in the United Kingdom and Ireland from general psychiatric inpatient and outpatient services. PARTICIPANTS: The families were selected for linkage studies of either schizophrenia or bipolar disorder. Pedigrees were selected for the current analysis where there was at least 1 member with DSM-IV schizoaffective disorder, bipolar type. Within these pedigrees, individuals were coded as affected if they had been diagnosed with DSM-IV schizophrenia, schizoaffective disorder of bipolar type, or bipolar I disorder. A total of 24 pedigrees contributed 35 affected sibling pairs to the sample. METHOD: A 10-centimorgan genome scan using microsatellite markers was analyzed using MAPMAKER/SIBS software. RESULTS: A genomewide significant signal (LOD = 3.54) was observed at chromosome 1q42 (near D1S2800), and suggestive LOD scores were observed at chromosomes 22q11 (LOD = 1.96) and 19p13 (LOD = 1.85). No linkage was observed in these regions in our original schizophrenia or bipolar scans in individuals from the United Kingdom. CONCLUSIONS: Our linkage findings strongly support the existence of loci that influence susceptibility across the functional psychosis spectrum. The DISC1 gene lies within 2.5 megabases of our peak marker on chromosome 1q42 and has been previously implicated in schizophrenia, bipolar disorder, and, recently, schizoaffective disorder. Follow-up of this region should use samples enriched for cases of schizoaffective disorder. Our findings have similar implications for the search for genetic variation on chromosome 22q11 that influences susceptibility to psychosis.  相似文献   

14.
Previous studies yielded evidence for dysbindin (DTNBP1) to impact the pathogenesis of schizophrenia on the one hand and affective disorders such as bipolar or major depressive disorder (MDD) on the other. Thus, in the present study we investigated whether DTNBP1 variation was associated with psychotic depression as a severe clinical manifestation of MDD possibly constituting an overlapping phenotype between affective disorders and schizophrenia.A sample of 243 Caucasian inpatients with MDD (SCID-I) was genotyped for 12 SNPs spanning 92% of the DTNBP1 gene region. Differences in DTNBP1 genotype distributions across diagnostic subgroups of psychotic (N = 131) vs. non-psychotic depression were estimated by Pearson Chi2 test and logistic regression analyses adjusted for age, gender, Beck Depression Inventory (BDI) and the Global Assessment of Functioning Scale (GAF).Overall, patients with psychotic depression presented with higher BDI and lower GAF scores expressing a higher severity of the illness as compared to depressed patients without psychotic features. Four DTNBP1 SNPs, particularly rs1997679 and rs9370822, and the corresponding haplotypes, respectively, were found to be significantly associated with the risk of psychotic depression in an allele-dose fashion.In summary, the present results provide preliminary support for dysbindin (DTNBP1) gene variation, particularly SNPs rs1997679 and rs9370822, to be associated with the clinical phenotype of psychotic depression suggesting a possible neurobiological mechanism for an intermediate trait on the continuum between affective disorders and schizophrenia.  相似文献   

15.
A recent report showed significant associations between several SNPs in a previously unknown EST cluster with schizophrenia. (1). The cluster was identified as the human dystrobrevin binding protein 1 gene (DTNBP1) by sequence database comparisons and homology with mouse DTNBP1. (2). However, the linkage disequilibrium (LD) among the SNPs in DTNBP1 as well as the pattern of significant SNP-schizophrenia association was complex. This raised several questions such as the number of susceptibility alleles that may be involved and the size of the region where the actual disease mutation(s) could be located. To address these questions, we performed different single-marker tests on the 12 previously studied and 2 new SNPs in DTNBP1 that were re-scored using an improved procedure, and performed a variety of haplotype analyses. The sample consisted of 268 Irish multiplex families selected for high density of schizophrenia. Results suggested a simple structure where the LD in the target region could be explained by 6 haplotypes that together accounted for 96% of haplotype diversity in the whole sample. From these six, a single high-risk haplotype was identified that showed a significant association with schizophrenia and explained the pattern of significant findings in the analyses with individual markers. This haplotype was 30 kb long, had a large effect, could be measured with two tag SNPs only, had a frequency of 6% in our sample, seemed to be of relatively recent origin in evolutionary terms, and was equally distributed over Ireland. Implications of these findings for follow-up and replication studies are discussed.  相似文献   

16.
Genetic vulnerability to psychiatric illness extends across major psychiatric illness. Neuregulin 1 (NRG1) is a large gene on chromosome 8p, that has been identified as a susceptibility factor in bipolar disorder and schizophrenia. In particular, a core at risk haplotype has received considerable attention for a putative role in the pathophysiology of the major psychoses (schizophrenia and bipolar disorder). This core haplotype can be represented by three markers 478B14-848, 420M9-1395, and SNP8NRG221533. We genotyped 312 families with bipolar probands, and 120 families with schizophrenia probands. Association of the core haplotype was tested for with age-at-onset and with three phenotypes: major psychosis, schizophrenia, and bipolar disorder. Neither age of onset (P = 0.893) nor the major psychosis phenotype (P = 0.374) was associated with the core haplotype in the overall sample. Ours was the first study to investigate the NRG1 core haplotype with age of onset of major psychoses, and despite our preliminary negative findings, this area deserves further investigation.  相似文献   

17.
The dystrobrevin-binding protein 1 (DTNBP1) gene on chromosome 6p has emerged as a potential susceptibility gene for schizophrenia. Although a number of attempts to replicate the original association finding have been successful, they have not identified any obvious pathogenic variants or a single at risk haplotype common to all populations studied. In the present study we attempted further replication in an independent sample of 638 nuclear families from the Han Chinese population of Sichuan Province, SW China. We also examined 580 Scottish schizophrenic cases and 620 controls. We genotyped 10 single-nucleotide polymorphisms (SNPs) in DTNBP1 that were used in the original report of association, plus rs2619538 (SNP 'A') in the putative promoter region, which has also been associated with schizophrenia. In the Chinese trios we found that two SNPs (P1635 and P1765) were significantly overtransmitted, but with alleles opposite to those reported in the original studies. SNPs P1757 and P1765 formed a common haplotype, which also showed significant overtransmission. In the Scottish cases and controls, no individual markers were significantly associated with schizophrenia. A single haplotype, which included rs2619538 and P1583, and one rare haplotype, composed of P1320 and P1757, were significantly associated with schizophrenia, but no previously reported haplotypes were associated. Based on the data from the Chinese population, our results provide statistical support for DTNBP1 as a susceptibility gene for schizophrenia, albeit with haplotypes different from those of the original study. However, our lack of replication in the Scottish samples also indicates that caution is warranted when evaluating the robustness of the evidence for DTNBP1 as genetic risk factor for schizophrenia.  相似文献   

18.
Summary. Two research groups have recently reported a significant association between schizophrenia and genetic variants of Frizzled-3 (FZD3) gene. We examined a possible association in a Japanese sample of schizophrenia, bipolar disorder, unipolar depression and controls with four single nucleotide polymorphisms (SNPs), tested in previous reports. We failed to find significant association in the four SNPs or haplotype analysis. The FZD3 gene might not play a role in conferring susceptibility to major psychosis in our sample.  相似文献   

19.
The Translin-associated factor X/Disrupted in Schizophrenia 1 (TRAX/DISC) region was first implicated as a susceptibility locus for schizophrenia by analysis of a large Scottish family in which a t(1;11) translocation cosegregates with schizophrenia, bipolar disorder and recurrent major depression. We now report evidence for association between bipolar disorder and schizophrenia and this locus in the general Scottish population. A systematic study of linkage disequilibrium in a representative sample of the Scottish population was undertaken across the 510 kb of TRAX and DISC1. SNPs representing each haplotype block were selected for case-control association studies of both schizophrenia and bipolar disorder. Significant association with bipolar disorder in women P=0.00026 (P=0.0016 in men and women combined) was detected in a region of DISC1. This same region also showed nominally significant association with schizophrenia in both men and women combined, P=0.0056. Two further regions, one in TRAX and the second in DISC1, showed weaker evidence for sex-specific associations of individual haplotypes with bipolar disorder in men and women respectively, P<0.01. Only the association between bipolar women and DISC1 remained significant after correction for multiple testing. This result provides further supporting evidence for DISC1 as a susceptibility factor for both bipolar disorder and schizophrenia, consistent with the diagnoses in the original Scottish translocation family.  相似文献   

20.
A recent study has suggested that the brain-expressed genes for G72 and D-amino-acid oxidase (DAAO) exert an influence on susceptibility to schizophrenia. Our aim was to replicate this finding in German schizophrenic patients and to assess whether G72 and DAAO might also contribute to the development of bipolar affective disorder. We genotyped seven single-nucleotide polymorphisms (SNPs) in the G72 gene and three in the DAAO gene in 599 patients (299 schizophrenic, 300 bipolar) and 300 controls. At G72, individual SNPs and a four-marker haplotype were associated with schizophrenia. The most significant SNP as well as the haplotype were also associated with bipolar affective disorder (BPAD). DAAO was associated with schizophrenia, but not with BPAD. The association of variation at G72 with schizophrenia as well as BPAD provides molecular support for the hypothesis that these two major psychiatric disorders share some of their etiologic background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号