首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homeostasis of the central nervous system (CNS) microenvironment is maintained by the blood–brain barrier (BBB) which regulates the transport of molecules from blood into brain and back. Many disorders change the functionality and integrity of the BBB. Glucocorticoids are being used sucessfully in the treatment of some disorders while their effects on others are questionable. In addition, conflicting results between clinical and experimental experience using animal models has arisen, so that the results of molecular studies in animal models need to be revisited in an appropriate in vitro model of the human BBB for more effective treatment strategies. Using the human brain microvascular endothelial cell line hCMEC/D3, the influence of glucocorticoids on the expression of barrier constituting adherens junction and tight junction transmembrane proteins (VE-cadherin, occludin, claudins) was investigated and compared to other established BBB models. In hCMEC/D3 cells the administration of glucocorticoids induced expression of the targets occludin 2.75 ± 0.04-fold and claudin-5 up to 2.32 ± 0.11-fold, which is likely to contribute to the more than threefold enhancement of transendothelial electrical resistance reflecting barrier tightness. Our analyses further provide direct evidence that the GC hydrocortisone prevents endothelial barrier breakdown in response to pro-inflammatory stimuli (TNFα administration), which could be demonstrated to be partly based on maintenance of occludin levels. Our studies strongly suggest stabilization of BBB function as a mode of GC action on a molecular level in the human brain vasculature.  相似文献   

2.
Penetration of the gut mucosa by pathogens expressing invasion genes is believed to occur mainly through specialized epithelial cells, called M cells, that are located in Peyer's patches. However, Salmonella typhimurium that are deficient in invasion genes encoded by Salmonella pathogenicity island 1 (SPI1) are still able to reach the spleen after oral administration. This suggests the existence of an alternative route for bacterial invasion, one that is independent of M cells. We report here a new mechanism for bacterial uptake in the mucosa tissues that is mediated by dendritic cells (DCs). DCs open the tight junctions between epithelial cells, send dendrites outside the epithelium and directly sample bacteria. In addition, because DCs express tight-junction proteins such as occludin, claudin 1 and zonula occludens 1, the integrity of the epithelial barrier is preserved.  相似文献   

3.
AimTo explore the effects of hyperbaric oxygen preconditioning (HBOP) on the permeability of blood-brain barrier (BBB) and expression of tight junction proteins under hypoxic conditions in vitro.MethodsA BBB in vitro model was constructed using the hCMEC/D3 cell line and used when its trans-endothelial electrical resistance (TEER) reached 80-120 Ω · cm2 (tested by Millicell-Electrical Resistance System). The cells were randomly divided into the control group cultured under normal conditions, the group cultured under hypoxic conditions (2%O2) for 24 h (hypoxia group), and the group first subjected to HBOP for 2 h and then to hypoxia (HBOP group). Occludin and ZO-1 expression were analyzed by immunofluorescence assay.ResultsNormal hCMEC/D3 was spindle-shaped and tightly integrated. TEER was significantly reduced in the hypoxia (P = 0.001) and HBOP group (P = 0.014) compared to control group, with a greater decrease in the hypoxia group. Occludin membranous expression was significantly decreased in the hypoxia group (P = 0.001) compared to the control group, but there was no change in the HBOP group. ZO-1 membranous expression was significantly decreased (P = 0.002) and cytoplasmic expression was significantly increased (P = 0.001) in the hypoxia group compared to the control group, although overall expression levels did not change. In the HBOP group, there was no significant change in ZO-1 expression compared to the control group.ConclusionHyperbaric oxygen preconditioning protected the integrity of BBB in an in vitro model through modulation of occludin and ZO-1 expression under hypoxic conditions.Ischemic tolerance is an endogenous protective mechanism that refers to the ability of a sublethal stimulus to induce tolerance to a subsequent lethal ischemic injury. It was first demonstrated in neuronal cells of the gerbil hippocampus (1), after which it has aroused a considerable interest as a possible therapeutic modality for ischemic brain diseases. However, to expose patients to brief periods of ischemia is both impractical and unsafe. Chemical preconditioning substances that can induce ischemic tolerance, such as endotoxins, cytokines, metabolic inhibitors, potassium, chloride, and neurotoxin 3-nitro-propionic acid (1-5) have also been investigated but were found to have limited clinical application due to toxicity and side effects.A variety of experimental models of cerebral ischemia have found that hyperbaric oxygen preconditioning (HBOP) induces ischemic tolerance and attenuates cerebral injury (6-17). Its protective effect is also visible in other conditions leading to oxidative stress, with final anti-apoptotic result, as well as modulation of neutrophin and immune systems (6-17).The blood-brain barrier (BBB), a highly selective permeability barrier, consists of tight junctions (TJ) between capillary endothelial cells, the basal lamina, pericytes, and astrocyte end-feet (18). It plays an important role in maintaining cerebral homeostasis by restricting molecular movement from the cerebral capillaries to the brain tissue. BBB breakdown can result in a vasogenic edema, hemorrhage, and neuronal cell death, all of which can contribute to the pathophysiology of cerebral ischemic diseases (19). TJs between cerebral endothelial cells are formed by complex interactions of cytoskeletal proteins and tight junction proteins (TJPs), including claudins, occludin, zonula occludens (ZO), and cingulin (20). TJPs increase endothelial electrical resistance and decrease paracellular permeability (21). Changes in their expression can lead to the loss of BBB integrity and BBB breakdown (22).HBOP has been associated with reduced brain edema, decreased infarct volume, and improved neurological function (6-17), but it is not clear whether it directly affects the BBB, particularly TJPs expression. This should be clarified in order to find new therapeutic strategies to attenuate BBB permeability in cerebral ischemic disorders. Therefore, the aim of this study was to examine the HBOP effect on hypoxia-induced BBB breakdown in vitro and the changes of occludin and ZO-1 expression.  相似文献   

4.
5.
Epithelial barrier permeability is altered in inflammatory respiratory disorders by a variety of noxious agents through modifications of the epithelial cell structure that possibly involve tight junction (TJ) organization. To evaluate in vitro whether pro-inflammatory cytokines involved in the pathogenesis of respiratory disorders could alter TJ organization and epithelial barrier integrity, and to characterize the signal transduction pathway involved Calu-3 airway epithelial cells were exposed to TNF-a, IL-4 and IFN-g to assess changes in: (a) TJ assembly, that is, occludin and zonula occludens (ZO)-1 expression and localization, evaluated by confocal microscopy; (b) apoptotic activity, quantified using terminal transferase deoxyuridine triphosphate nick-end labeling staining; (c) epithelial barrier integrity, detected as transmembrane electrical resistance and expressed as G(T) values; (d) epidermal growth factor receptor (EGFR)-dependent mitogenactivated protein (MAP) kinase (MAPK)/extracellular signal-regulated kinases (ERK)1/2 phosphorylation, assessed by western blotting. Exposure to cytokines for 48 h induced a noticeable downregulation of the TJ transmembrane proteins. The degree ZO-1 and occludin colocalization was 62±2% in control cultures and significantly decreased in the presence of TNF-a (47±3%), IL-4 (43±1%) and INF-g (35±3%). Although no apoptosis induction was detected following exposure to cytokines, changes in the epithelial barrier integrity were observed, with a significant enhancement in paracellular conductance. G(T) values were, respectively, 1.030±0.0, 1.300±0.04, 1.260±0.020 and 2.220±0.015 (mS/cm2)1000 in control cultures and in those exposed to TNF-a, IFN-g and IL-4. The involvement of EGFR-dependent MAPK/ERK1/2 signaling pathway in cytokine-induced damage was demonstrated by a significant increase in threonine/tyrosine phosphorylation of ERK1/2, already detectable after 5 min incubation. All these cytokine-induced changes were markedly prevented when Calu-3 cells were cultured in the presence of an EGFR inhibitor (AG1478, 1 μM) or a MAP kinase inhibitor (U0126, 25 μM). In conclusion, cytokine-induced epithelial injury includes TJ disassembly and epithelial barrier permeability alteration and involves the EGFR-dependent MAPK/ERK1/2 signaling pathway.  相似文献   

6.
Background: Epidemiologic and experimental studies suggest that air pollution such as diesel exhaust particles (DEPs), one of the important air pollutants, may play a role in the increasing prevalence of allergic airway diseases. Objective: We studied the effect of suspended particulate matter (SPM) and its main component, DEPs, on the production of IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human airway epithelial cells in vitro. Methods: SPM obtained from high-volume air samplers and DEPs were added to cultured human nasal polyp–derived upper airway, normal bronchial, and transformed bronchial epithelial cells. Production of GM-CSF and IL-8 by airway epithelial cells was evaluated. Results: Nontoxic doses of DEPs showed a significant stimulatory effect on IL-8 and GM-CSF production by these three kinds of epithelial cells in a dose- and time-dependent fashion. SPM had a stimulatory effect on GM-CSF, but not IL-8, production. These effects were abrogated by treatment with a protein synthesis inhibitor, cycloheximide, suggesting that the process required a de novo protein synthesis. On the double-chamber plates, airway epithelial cells responded to DEPs only when they were stimulated from the apical sides, which can be a model for in vivo environments. Neither charcoal nor graphite showed such stimulatory effects, indicating that the activity of DEPs did not derive from their particulate nature. Benzo(a)pyrene, one of the main aromatic hydrocarbons contained in DEPs, showed a stimulatory effect on the release of the cytokines, and this organic substance might have a causative effect on of the potency of DEPs. Conclusion: We conclude that SPM and DEPs, its main component, might be important air pollutants in the activation of airway epithelial cells for the release of cytokines relevant to allergic airway inflammation. (J Allergy Clin Immunol 1998;101:778-785.)  相似文献   

7.
Loss of bone near joint prostheses is thought to be caused by activation of recruited osteoclasts by osteolytic mediators induced by wear particles. It is proposed that particles inhibit osteogenesis during bone remodelling causing a reduction in the levels of peri-implant bone. This study explores whether prosthetic particles modulate bone formation by affecting osteoblastic bone-related mRNAs (alkaline phosphatase, pro-collagen Ialpha1, osteopontin, osteonectin, osteocalcin, bone sialoprotein and thrombospondin) or their translated proteins using titanium alloy, commercially pure titanium, and cobalt-chrome particles. The direct effect of the particles revealed no change to the expression of the bone-related mRNAs in human bone-derived cells (HBDC) at the time points investigated; although non-collagenous translated proteins expressed by these HBDC were significantly effected (p<0.05). Different patterns of expression for bone-related proteins were induced by the different particles both directly and indirectly. Inflammatory mediators (interleukin-1beta, tumor necrosis factor alpha, interleukin-6, and prostaglandin E2) had similar effects on HBDC to the media obtained from monocytes incubated with particles. This study shows that prosthetic wear particles can significantly modify the expression of bone-related proteins by osteogenic cells in vitro. These alterations in osteogenic activity at the interface of the implant and bone may be an important factor in the failure of many orthopaedic implants.  相似文献   

8.
Melioidosis is a severe infectious disease caused by the saprophytic facultative intracellular pathogen Burkholderia pseudomallei. The disease is endemic in Southeast Asia and Northern Australia, and no effective vaccine exists. To describe human cell-mediated immune responses to B. pseudomallei and to identify candidate antigens for vaccine development, the ability of antigen-pulsed monocyte-derived dendritic cells (moDCs) to trigger autologous T-cell responses to B. pseudomallei and its products was tested. moDCs were prepared from healthy individuals exposed or not exposed to B. pseudomallei, based on serological evidence. These were pulsed with heat-killed B. pseudomallei or purified antigens, including ABC transporters (LolC, OppA, and PotF), Bsa type III secreted proteins (BipD and BopE), tandem repeat sequence-containing proteins (Rp1 and Rp2), flagellin, and heat shock proteins (Hsp60 and Hsp70), prior to being mixed with autologous T-cell populations. After pulsing of cells with either heat-killed B. pseudomallei, LolC, or Rp2, coculturing the antigen-pulsed moDCs with T cells elicited gamma interferon production from CD4(+) T cells from seropositive donors at levels greater than those for seronegative donors. These antigens also induced granzyme B (cytotoxic) responses from CD8(+) T cells. Activation of antigen-specific CD4(+) T cells required direct contact with moDCs and was therefore not dependent on soluble mediators. Rp peptide epitopes recognized by T cells in healthy individuals were identified. Our study provides valuable novel data on the induction of human cell-mediated immune responses to B. pseudomallei and its protein antigens that may be exploited in the rational development of vaccines to combat melioidosis.  相似文献   

9.
Tight junctions (TJs) are the most apical components of the cell–cell adhesion machinery in epithelial and endothelial cells and they play essential roles in homeostasis. Recent studies have revealed that aberrant expression of tight junction proteins (TJPs) is frequently observed in various type of cancers. Here we review cancer-associated aberrant expression of TJPs with focus on transmembrane-type TJPs including claudins, junctional adhesion molecule-A (JAM-A), and occludin. Some transmembrane-type TJPs are upregulated at the early neoplastic stage and their expression persists during dedifferentiation. Aberrant expression of TJPs contributes to proliferation, invasion, and dysregulated signaling of cancer cells. In addition to an increase in their expression level, their localization is altered from a TJ-restricted pattern to distribution throughout the whole cell membrane, making them suitable as therapeutic targets. Extracellular domains of transmembrane-type TJPs can be approached by target drugs not only from the lumen side (apical side) but also from the extracellular matrix side (basal side), including blood vessels. Aberrantly expressed TJPs are potential useful diagnostic markers as well as therapeutic targets for cancers.  相似文献   

10.
目的研究染锰诱导的大鼠睾丸超微结构改变及支持细胞vimentin(VM)和紧密连接Occludins mRNA和Claudin-11 mRNA表达,探讨锰对支持细胞骨架蛋白和紧密连接蛋白的破坏机制。方法雄性SD大鼠随机分为空白对照组,低剂量(15 mg/kg MnCl_2)和高剂量(30 mg/kg MnCl_2)组,8只/组。实验组分别染锰4周和6周,空白对照组给予等容生理盐水,给药途径均为腹腔注射,电镜观察睾丸支持细胞及血睾屏障超微结构,免疫组织化学(SABC)法检测支持细胞VM表达,实时定量PCR反应检测血睾屏障紧密连接Occludins,Claudin-11 mRNA表达。结果随着染锰时间延长和剂量增加,各组支持细胞数量及VM阳性细胞率、Occludins mRNA和Claudin-11 mRNA表达水平均显著降低。各组大鼠睾丸支持细胞数量与VM阳性细胞率及Occludins mRNA和Claudin-11 mRNA表达水平均成正相关。结论锰可抑制大鼠睾丸支持细胞骨架蛋白及紧密连接相关蛋白表达,产生生殖毒性效应。  相似文献   

11.
SARS coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The severe and sudden onset of symptoms, resulting in an atypical pneumonia with dry cough and persistent high fever in cases of severe acute respiratory virus brought to light the importance of coronaviruses as potentially lethal human pathogens and the identification of several zoonotic reservoirs has made the reemergence of new strains and future epidemics all the more possible. In this chapter, we describe the pathology of SARS-CoV infection in humans and explore the use of two models of the human conducting airway to develop a better understanding of the replication and pathogenesis of SARS-CoV in relevant in vitro systems. The first culture model is a human bronchial epithelial cell line Calu-3 that can be inoculated by viruses either as a non-polarized monolayer of cells or polarized cells with tight junctions and microvilli. The second model system, derived from primary cells isolated from human airway epithelium and grown on Transwells, form a pseudostratified mucociliary epithelium that recapitulates the morphological and physiological features of the human conducting airway in vivo. Experimental results using these lung epithelial cell models demonstrate that in contrast to the pathology reported in late stage cases SARS-CoV replicates to high titers in epithelial cells of the conducting airway. The SARS-CoV receptor, human angiotensin 1 converting enzyme 2 (hACE2), was detected exclusively on the apical surface of cells in polarized Calu-3 cells and human airway epithelial cultures (HAE), indicating that hACE2 was accessible by SARS-CoV after lumenal airway delivery. Furthermore, in HAE, hACE2 was exclusively localized to ciliated airway epithelial cells. In support of the hACE2 localization data, the most productive route of inoculation and progeny virion egress in both polarized Calu-3 and ciliated cells of HAE was the apical surface suggesting mechanisms to release large quantities of virus into the lumen of the human lung. Preincubation of the apical surface of cultures with antisera directed against hACE2 reduced viral titers by two logs while antisera against DC-SIGN/DC-SIGNR did not reduce viral replication levels suggesting that hACE2 is the primary receptor for entry of SARS-CoV into the ciliated cells of HAE cultures. To assess infectivity in ciliated airway cultures derived from susceptible animal species we generated a recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF 7a/7b) and insertion of the green fluorescent protein (GFP) resulting in SARS-CoV GFP. SARS-CoV GFP replicated to similar titers as wild type viruses in Vero E6, MA104, and CaCo2 cells. In addition, SARS-CoV replication in airway epithelial cultures generated from Golden Syrian hamster tracheas reached similar titers to the human cultures by 72 h post-infection. Efficient SARS-CoV infection of ciliated cell-types in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.  相似文献   

12.
Multiple sclerosis (MS) is a disease of the CNS in which inflammation, demyelination and neurodegeneration contribute to its initiation and progression. A frequently employed model of MS is experimental autoimmune encephalomyelitis (EAE). Here, to gain new insights into the disease process, an analysis of proteins in extracts of lumbar spinal cord from naïve and EAE rats was undertaken. The data mainly confirm that inflammation and blood–brain barrier (BBB) breakdown are the major hallmarks of disease in this model. Given their importance in the BBB, junctional proteins were further investigated. Occludin, a protein localizing to tight junctions in brain endothelial cells, showed strikingly increased migration in EAE when analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE). This increased migration was mimicked by in vitro phosphatase treatment, implying its dephosphorylation in EAE. Occludin dephosphorylation coincided with the onset of inflammation, slightly preceding visible signs of disease, and was just prior to apparent changes in BBB permeability. These findings suggest occludin is a target for signaling processes in EAE, perhaps regulating the response of the BBB to the inflammatory environment as seen in MS.  相似文献   

13.
Cigarette smoke increases the permeability of the lung epithelium. Consequences of increased permeability include increased access of toxins and pathogens from the air spaces to the interstitium and even the blood stream, and leakage of fluids into the air spaces. The mechanisms for permeability alterations have not been elucidated for airway epithelia. By analogy with other types of epithelia, we hypothesized that changes in the phosphorylation status and function of tight junction (TJ) or cytoskeletal proteins might mediate the smoke-induced permeability changes. We investigated the effects of exposure to mainstream cigarette smoke (MS) on cultures of Calu-3 cells, an airway epithelial cell line. Specifically, MS exposure caused increases in phosphorylation of the myosin-binding subunit (MBS) of myosin phosphatase and myosin light chain (MLC), proteins involved in the regulation of actin polymerization. These results implicate activation of Rho kinase (ROCK), consistent with previously reported data indicating that inhibition of ROCK activation suppressed MS-induced increases in permeability. MS exposure also increased polymerized (filamentous) actin (f-actin) content and caused redistribution of the TJ proteins from the normal apical circumferential band to a more basal location. The translocation of the TJ proteins was spatially associated with local increases in both f-actin and macromolecular permeability. Finally, MS exposure increased tyrosine phosphorylation of occludin but not ZO-1 and decreased association between the two TJ proteins. These results indicate that MS exposure causes alterations in cytoskeletal and TJ structure and function, resulting in increased macromolecular permeability that may contribute to the adverse health effects of MS.  相似文献   

14.
The filoviruses, Ebola (EBOV) and Marburg (MARV), are potential global health threats, which cause deadly hemorrhagic fevers. Although both EBOV and MARV logarithmically replicate in dendritic cells (DCs), these viruses do not elicit DC cytokine secretion and fail to activate and mature infected DCs. Here, we employed virus-like particles (VLPs) of EBOV and MARV to investigate whether these genome-free particles maintain similar immune evasive properties as authentic filoviruses. Confocal microscopy indicated that human myeloid-derived DCs readily took up VLPs. However, unlike EBOV and MARV, VLPs induced maturation of DCs including upregulation of costimulatory molecules (CD40, CD80, CD86), major histocompatibility complex (MHC) class I and II surface antigens, and the late DC maturation marker CD83. The chemokine receptors CCR5 and CCR7 were also modulated on VLP-stimulated DCs, indicating that DC could migrate following VLP exposure. Furthermore, VLPs also elicited DC secretion of the pro-inflammatory cytokines TNF-alpha, IL-8, IL-6, and MIP-1alpha. Most significantly, in stark contrast to DC treated with intact EBOV or MARV, DC stimulated with EBOV or MARV VLPs showed enhanced ability to support human T-cell proliferation in an allogenic mixed lymphocyte response (MLR). Thus, our findings suggest that unlike EBOV and MARV, VLPs are effective stimulators of DCs and have potential in enhancing innate and adaptive immune responses.  相似文献   

15.
16.
Since either macrophages (M?) or dendritic cells (DC) differentiate from monocytes (MO) depending on culture conditions, we investigated the relationship of the DC and M? differentiation pathways. Culturing MO-enriched blood mononuclear cells with M? colony-stimulating factor (M-CSF) or with granulocyte/M? (GM)-CSF induced M? with a different morphology and CD14/CD1a expression. In contrast, in cultures with GM-CSF and interleukin (IL)-4, cells rapidly became nonadherent and acquired DC morphology, ultrastructure, CD1a expression, and most DC markers; they lost membrane CD14 and CD64 and capacity of phagocytosis, displayed less CD68 than M?, but retained nonspecific esterase activity. These DC directly developed from MO without proliferation inasmuch as only day 0 FACS-sorted MO, but not small CD14? cells, differentiated into DC when cultured with GM-CSF and IL-4, or to M? with M-CSF. While overall cell numbers declined, DC numbers plateaued from culture day 2 onwards, indicating that most had differentiasted by then. This differentiation was radioresistant and occurred without [3H]thymidine incorporation. Commitment to differentiate into DC with GM-CSF and IL-4 was irreversible by day 2, since discontinuing IL-4 at this point did not revert cells to M?. Alternatively, cells rapidly converted to DC when IL-4 was added from day 2 to cultures initiated with GM-CSF only. If cultures were initiated with M-CSF and switched to GM-CSF and IL-4 after 2 or 5 days, about half of the cells still converted to DC. Thus, the capacity of MO and even of M? to differentiate into DC was conserved for at least this period. The increased capacity to stimulate the mixed leukocyte reaction correlated with the relative number of CD1a? cells at any time and under each condition tested, a confirmation that these cells functionally qualify as DC. Thus, MO and even M? can be directed to differentiate into DC depending on the cytokine microenvironment.  相似文献   

17.
目的研究紧密连接蛋白在6-羟多巴(6-OHDA)制备的帕金森病(PD)大鼠模型十二指肠黏膜的表达变化。方法用6-OHDA损毁双侧中枢黑质多巴胺能神经元建立大鼠模型。用免疫荧光组织化学和蛋白免疫印迹检测紧密连接蛋白claudin-1、occludin和ZO-1肠黏膜的定位和表达。结果紧密连接蛋白claudin-1、occludin和ZO-1在PD大鼠模型十二指肠黏膜上均有表达,但仅ZO-1(P0.001)和occludin(P0.01)表达明显下调,而claudin-1无显著变化。结论 PD大鼠模型十二指肠黏膜紧密连接蛋白ZO-1、occludin的表达显著下调,可能与帕金森病十二指肠溃疡的发生发展相关。  相似文献   

18.
目的研究染锰诱导的大鼠睾丸超微结构改变及支持细胞(vimentin,VM)和紧密连接Occludins、Claudin-11mRNA表达,探讨锰对支持细胞骨架蛋白和紧密连接蛋白的破坏机制。方法雄性SD大鼠随机分为空白对照组,低剂量(15 mg/kg MnCl_2)和高剂量(30 mg/kg MnCl_2)组,8只/组。实验组分别染锰4周和6周,空白对照组给予等容生理盐水,给药途径均为腹腔注射,电镜观察睾丸支持细胞及血睾屏障超微结构,免疫组织化学(SABC)法检测支持细胞VM表达,实时定量PCR反应检测血睾屏障紧密连接Occludins和Claudin-11 mRNA表达。结果 1与空白对照组比较,各染锰组支持细胞数量及VM阳性细胞率、Occludins mRNA和Claudin-11 mRNA表达均显著降低。2染锰剂量相同,6周与4周组比较,以及染锰时间相同,高剂量组与低剂量组比较,支持细胞数量及VM阳性细胞率、Occludins mRNA和Claudin-11 mRNA表达均显著降低。3各组大鼠睾丸支持细胞数量与VM阳性细胞率及Occludins mRNA和Claudin-11 mRNA表达均成正相关。结论锰可抑制大鼠睾丸支持细胞骨架蛋白及紧密连接相关蛋白表达,破坏血睾屏障,导致生精微环境改变,产生生殖毒性效应。  相似文献   

19.
Tight junctions (TJs) are essential features of endothelial barrier membranes and of fluid-secreting epithelial cells, such as in the salivary glands. Novel integral membrane proteins have been identified as components of TJs, namely claudins and occludin. The aim of the present study was to determine the distribution of occludin and claudins in the large salivary glands of the rat. The parotid, submandibular and sublingual salivary glands were harvested from adult Sprague-Dawley rats and cryostat sections were stained using immunoperoxidase and immunofluorescence methods. Claudin-1 was expressed in endothelial cells of microvessels and in short selected segments of the duct system. Claudin-3 was expressed principally in the acinar cells and intercalated ducts, while claudin-4 was principally expressed by the striated and interlobular ducts. Claudin-5 was specific to endothelial cells of microvessels. Occludin was ubiquitously detected in the duct system. Double labelling and confocal microscopy showed some co-localization of claudin-3 with claudin-4, and minimal co-localization of occludin with claudin-4, in the striated ducts. Claudin 2 was not detected in any of the salivary glands. The results indicate specificity of the chemical composition of tight junctions in the rat salivary glands, and may reflect different physiological roles for TJs in the glandular and duct epithelial cells, and in endothelial cells of salivary gland microvessels.  相似文献   

20.
Staphylococcus aureus produce a family of exotoxins (staphylococcal superantigen like proteins, SSLs) with structural, but not functional, homology to superantigens. These proteins have previously been shown to interact selectively with antigen presenting cells, including dendritic cells. The functional consequences of this interaction are now explored. SSL7 and 9 had no effect on viability or morphology of dendritic cells. The proteins did not induce dendritic cell maturation, as measured by cell surface phenotype. Exposure to SSL did not alter the ability of dendritic cells to take up FITC-dextran. Finally, exposure to SSLs did not impair the ability of the dendritic cells to stimulate allogeneic or antigen specific T cell responses. However, dendritic cells loaded with SSL7 or 9 were able to stimulate a T cell proliferative response in 3/8 healthy individuals tested. Sera from nine out of 10 individuals tested contained antibodies against both SSL7 and SSL9, and the response to each SSL was specific and not cross-reactive. The results demonstrate that SSLs are immunogenic in humans at both the B and T cell level, but it remains unclear whether this response is to the benefit of the bacterium or the host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号